456 research outputs found

    Content-preserving image stitching with piecewise rectangular boundary constraints

    Get PDF
    This paper proposes an approach to content-preserving image stitching with regular boundary constraints, which aims to stitch multiple images to generate a panoramic image with a piecewise rectangular boundary. Existing methods treat image stitching and rectangling as two separate steps, which may result in suboptimal results as the stitching process is not aware of the further warping needs for rectangling. We address these limitations by formulating image stitching with regular boundaries in a unified optimization. Starting from the initial stitching results produced by the traditional warping-based optimization, we obtain the irregular boundary from the warped meshes by polygon Boolean operations which robustly handle arbitrary mesh compositions. By analyzing the irregular boundary, we construct a piecewise rectangular boundary. Based on this, we further incorporate line and regular boundary preservation constraints into the image stitching framework, and conduct iterative optimization to obtain an optimal piecewise rectangular boundary. Thus we can make the boundary of the stitching results as close as possible to a rectangle, while reducing unwanted distortions. We further extend our method to video stitching, by integrating the temporal coherence into the optimization. Experiments show that our method efficiently produces visually pleasing panoramas with regular boundaries and unnoticeable distortions

    Wireless Software Synchronization of Multiple Distributed Cameras

    Full text link
    We present a method for precisely time-synchronizing the capture of image sequences from a collection of smartphone cameras connected over WiFi. Our method is entirely software-based, has only modest hardware requirements, and achieves an accuracy of less than 250 microseconds on unmodified commodity hardware. It does not use image content and synchronizes cameras prior to capture. The algorithm operates in two stages. In the first stage, we designate one device as the leader and synchronize each client device's clock to it by estimating network delay. Once clocks are synchronized, the second stage initiates continuous image streaming, estimates the relative phase of image timestamps between each client and the leader, and shifts the streams into alignment. We quantitatively validate our results on a multi-camera rig imaging a high-precision LED array and qualitatively demonstrate significant improvements to multi-view stereo depth estimation and stitching of dynamic scenes. We release as open source 'libsoftwaresync', an Android implementation of our system, to inspire new types of collective capture applications.Comment: Main: 9 pages, 10 figures. Supplemental: 3 pages, 5 figure

    Consistent Video Filtering for Camera Arrays

    Get PDF
    International audienceVisual formats have advanced beyond single-view images and videos: 3D movies are commonplace, researchers have developed multi-view navigation systems, and VR is helping to push light field cameras to mass market. However, editing tools for these media are still nascent, and even simple filtering operations like color correction or stylization are problematic: naively applying image filters per frame or per view rarely produces satisfying results due to time and space inconsistencies. Our method preserves and stabilizes filter effects while being agnostic to the inner working of the filter. It captures filter effects in the gradient domain, then uses \emph{input} frame gradients as a reference to impose temporal and spatial consistency. Our least-squares formulation adds minimal overhead compared to naive data processing. Further, when filter cost is high, we introduce a filter transfer strategy that reduces the number of per-frame filtering computations by an order of magnitude, with only a small reduction in visual quality. We demonstrate our algorithm on several camera array formats including stereo videos, light fields, and wide baselines

    MegaParallax: Casual 360° Panoramas with Motion Parallax

    Get PDF
    The ubiquity of smart mobile devices, such as phones and tablets, enables users to casually capture 360° panoramas with a single camera sweep to share and relive experiences. However, panoramas lack motion parallax as they do not provide different views for different viewpoints. The motion parallax induced by translational head motion is a crucial depth cue in daily life. Alternatives, such as omnidirectional stereo panoramas, provide different views for each eye (binocular disparity), but they also lack motion parallax as the left and right eye panoramas are stitched statically. Methods based on explicit scene geometry reconstruct textured 3D geometry, which provides motion parallax, but suffers from visible reconstruction artefacts. The core of our method is a novel multi-perspective panorama representation, which can be casually captured and rendered with motion parallax for each eye on the fly. This provides a more realistic perception of panoramic environments which is particularly useful for virtual reality applications. Our approach uses a single consumer video camera to acquire 200–400 views of a real 360° environment with a single sweep. By using novel-view synthesis with flow-based blending, we show how to turn these input views into an enriched 360° panoramic experience that can be explored in real time, without relying on potentially unreliable reconstruction of scene geometry. We compare our results with existing omnidirectional stereo and image-based rendering methods to demonstrate the benefit of our approach, which is the first to enable casual consumers to capture and view high-quality 360° panoramas with motion parallax.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 66599

    Capture, Reconstruction, and Representation of the Visual Real World for Virtual Reality

    Get PDF
    We provide an overview of the concerns, current practice, and limitations for capturing, reconstructing, and representing the real world visually within virtual reality. Given that our goals are to capture, transmit, and depict complex real-world phenomena to humans, these challenges cover the opto-electro-mechanical, computational, informational, and perceptual fields. Practically producing a system for real-world VR capture requires navigating a complex design space and pushing the state of the art in each of these areas. As such, we outline several promising directions for future work to improve the quality and flexibility of real-world VR capture systems
    corecore