10,676 research outputs found

    Panoramic Depth Imaging: Single Standard Camera Approach

    Get PDF
    In this paper we present a panoramic depth imaging system. The system is mosaic-based which means that we use a single rotating camera and assemble the captured images in a mosaic. Due to a setoff of the camera’s optical center from the rotational center of the system we are able to capture the motion parallax effect which enables stereo reconstruction. The camera is rotating on a circular path with a step defined by the angle, equivalent to one pixel column of the captured image. The equation for depth estimation can be easily extracted from the system geometry. To find the corresponding points on a stereo pair of panoramic images the epipolar geometry needs to be determined. It can be shown that the epipolar geometry is very simple if we are doing the reconstruction based on a symmetric pair of stereo panoramic images. We get a symmetric pair of stereo panoramic images when we take symmetric pixel columns on the left and on the right side from the captured image center column. Epipolar lines of the symmetrical pair of panoramic images are image rows. The search space on the epipolar line can be additionaly constrained. The focus of the paper is mainly on the system analysis. Results of the stereo reconstruction procedure and quality evaluation of generated depth images are quite promissing. The system performs well for reconstruction of small indoor spaces. Our finall goal is to develop a system for automatic navigation of a mobile robot in a room

    Dual-fisheye lens stitching for 360-degree imaging

    Full text link
    Dual-fisheye lens cameras have been increasingly used for 360-degree immersive imaging. However, the limited overlapping field of views and misalignment between the two lenses give rise to visible discontinuities in the stitching boundaries. This paper introduces a novel method for dual-fisheye camera stitching that adaptively minimizes the discontinuities in the overlapping regions to generate full spherical 360-degree images. Results show that this approach can produce good quality stitched images for Samsung Gear 360 -- a dual-fisheye camera, even with hard-to-stitch objects in the stitching borders.Comment: ICASSP 17 preprint, Proc. of the 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, March 201

    The survey of the Basilica di Collemaggio in L’Aquila with a system of terrestrial imaging and most proven techniques

    Get PDF
    The proposed job concerns the evaluation of a series of surveys carried out in the context of a campaign of studies begun in 2015 with the objective of comparing the accuracies obtainable with the systems of terrestrial imaging, compared to unmanned aerial vehicle imaging and laser scanner survey. In particular, the authors want to test the applicability of a system of imaging rover (IR), an innovative terrestrial imaging system, that consists of a multi-camera with integrated global positioning system (GPS)/global navigation satellite system (GNSS) receiver, that is very recently released technique, and only a few literature references exist on the specific subject. In detail, the IR consists of a total of 12 calibrated cameras – seven “panorama” and five downward-looking – providing complete site documentation that can potentially be used to make photogrammetric measurements. The data acquired in this experimentation were then elaborated with various software packages in order to obtain point clouds and a three-dimensional model in different cases, and a comparison of the various results obtained was carried out. Following, the case study of the Basilica di Santa Maria di Collemaggio in L’Aquila is reported; Collemaggio is an UNESCO world heritage site; it was damaged during the seismic event of 2009, and its restoration is still in progress

    Mosaiced-Based Panoramic Depth Imaging with a Single Standard Camera

    Get PDF
    In this article we present a panoramic depth imaging system. The system is mosaic-based which means that we use a single rotating camera and assemble the captured images in a mosaic. Due to a setoff of the camera’s optical center from the rotational center of the system we are able to capture the motion parallax effect which enables the stereo reconstruction. The camera is rotating on a circular path with the step defined by an angle, equivalent to one column of the captured image. The equation for depth estimation can be easily extracted from system geometry. To find the corresponding points on a stereo pair of panoramic images the epipolar geometry needs to be determined. It can be shown that the epipolar geometry is very simple if we are doing the reconstruction based on a symmetric pair of stereo panoramic images. We get a symmetric pair of stereo panoramic images when we take symmetric columns on the left and on the right side from the captured image center column. Epipolar lines of the symmetrical pair of panoramic images are image rows. We focused mainly on the system analysis. Results of the stereo reconstruction procedure and quality evaluation of generated depth images are quite promissing. The system performs well in the reconstruction of small indoor spaces. Our finall goal is to develop a system for automatic navigation of a mobile robot in a room
    • …
    corecore