6 research outputs found

    Deep learning approach for Touchless Palmprint Recognition based on Alexnet and Fuzzy Support Vector Machine

    Get PDF
    Due to stable and discriminative features, palmprint-based biometrics has been gaining popularity in recent years. Most of the traditional palmprint recognition systems are designed with a group of hand-crafted features that ignores some additional features. For tackling the problem described above, a Convolution Neural Network (CNN) model inspired by Alex-net that learns the features from the ROI images and classifies using a fuzzy support vector machine is proposed. The output of the CNN is fed as input to the fuzzy Support vector machine. The CNN\u27s receptive field aids in extracting the most discriminative features from the palmprint images, and Fuzzy SVM results in a robust classification. The experiments are conducted on popular contactless datasets such as IITD, POLYU2, Tongji, and CASIA databases. Results demonstrate our approach outperformers several state-of-art techniques for palmprint recognition. Using this approach, we obtain 99.98% testing accuracy for the Tongji dataset and 99.76 % for the POLYU-II datasets

    Palmprint Recognition in Uncontrolled and Uncooperative Environment

    Full text link
    Online palmprint recognition and latent palmprint identification are two branches of palmprint studies. The former uses middle-resolution images collected by a digital camera in a well-controlled or contact-based environment with user cooperation for commercial applications and the latter uses high-resolution latent palmprints collected in crime scenes for forensic investigation. However, these two branches do not cover some palmprint images which have the potential for forensic investigation. Due to the prevalence of smartphone and consumer camera, more evidence is in the form of digital images taken in uncontrolled and uncooperative environment, e.g., child pornographic images and terrorist images, where the criminals commonly hide or cover their face. However, their palms can be observable. To study palmprint identification on images collected in uncontrolled and uncooperative environment, a new palmprint database is established and an end-to-end deep learning algorithm is proposed. The new database named NTU Palmprints from the Internet (NTU-PI-v1) contains 7881 images from 2035 palms collected from the Internet. The proposed algorithm consists of an alignment network and a feature extraction network and is end-to-end trainable. The proposed algorithm is compared with the state-of-the-art online palmprint recognition methods and evaluated on three public contactless palmprint databases, IITD, CASIA, and PolyU and two new databases, NTU-PI-v1 and NTU contactless palmprint database. The experimental results showed that the proposed algorithm outperforms the existing palmprint recognition methods.Comment: Accepted in the IEEE Transactions on Information Forensics and Securit

    Deep Palmprint Recognition with Alignment and Augmentation of Limited Training Samples

    Get PDF
    This paper builds upon a previously proposed automatic palmprint alignment and classification system. The proposed system was geared towards palmprints acquired from either contact or contactless sensors. It was robust to finger location and fist shape changes—accurately extracting the palmprints in images without fingers. An extension to this previous work includes comparisons of traditional and deep learning models, both with hyperparameter tuning. The proposed methods are compared with related verification systems and a detailed evaluation of open-set identification. The best results were yielded by a proposed Convolutional Neural Network, based on VGG-16, and outperforming tuned VGG-16 and Xception architectures. All deep learning algorithms are provided with augmented data, included in the tuning process, enabling significant accuracy gains. Highlights include near-zero and zero EER on IITD-Palmprint verification using one training sample and leave-one-out strategy, respectively. Therefore, the proposed palmprint system is practical as it is effective on data containing many and few training examples

    Reconocimiento biométrico egocéntrico para entornos de realidad virtual

    Full text link
    En este trabajo se presenta el primer entorno experimental para desarrollar sistemas biométricos de reconocimiento palmar en entornos virtuales. El entorno propuesto consta de una base de datos y de un sistema de reconocimiento inicial que sirva como base para futuros desarrollos. El sistema se divide en tres bloques principales: detección de pose de la mano, extracción de la palma y comparación entre palmas. Se crea uno automático que no necesita de supervisión humana, y otro donde la detección de pose se hace manualmente. El objetivo es crear un entorno que sirva como punto de partida para estudios futuros y que proponga distintas alternativas válidas para la implementación de estos sistemas. También intentar acompañar el auge de los entornos virtuales con un reconocimiento biométrico necesario en ciertas aplicaciones. Para lograr esto se ha hecho, en primer lugar, un estudio del estado del arte de la biometría y en concreto del reconocimiento palmar. A continuación, se han planteado los retos de este tipo de sistema y a partir de ellos se ha desarrollado el sistema completo. Por último, se han analizado los resultados y se han planteados posibles mejora
    corecore