2 research outputs found

    A Framework for Verification in Contactless Secure Physical Access Control and Authentication Systems

    Get PDF
    Biometrics is one of the very popular techniques in user identification for accessing institutions and logging into attendance systems. Currently, some of the existing biometric techniques such as the use of fingerprints are unpopular due to COVID-19 challenges. This paper identifies the components of a framework for secure contactless access authentication. The researcher selected 50 journals from Google scholar which were used to analyze the various components used in a secure contactless access authentication framework. The methodology used for research was based on the scientific approach of research methodology that mainly includes data collection from the 50 selected journals, analysis of the data and assessment of results. The following components were identified: database, sensor camera, feature extraction methods, matching and decision algorithm. Out of the considered journals the most used is CASIA database at 40%, CCD Sensor camera with 56%, Gabor feature extraction method at 44%, Hamming distance for matching at 100% and PCA at 100% was used for decision making. These findings will assist the researcher in providing a guide on the best suitable components. Various researchers have proposed an improvement in the current security systems due to integrity and security problems

    Improving hand vein recognition by score weighted fusion of wavelet-domain multi-radius local binary patterns

    Get PDF
    Among biometric modalities, hand vein patterns are seen as providing an attractive method for high-level security access applications owing to high impenetrability and good user convenience. For biometric recognition based on near-infrared dorsal hand vein images, Local Binary Patterns (LBP) have emerged as a highly effective descriptor of local image texture with high recognition performance reported. In this paper, the traditional approach with LBP applied in the spatial domain is extended to multi-radius LBP in the wavelet domain to provide a more comprehensive set of feature categories to capture grey-level variation characteristics of vein patterns, and score weighted fusion based on the relative discriminative power of each feature category is proposed to achieve higher recognition performance. The proposed methodology is shown to provide a more robust performance with a recognition rate in excess of 99% and an equal error rate significantly less than 2%
    corecore