10,742 research outputs found

    An asymptotic existence result on compressed sensing matrices

    Get PDF
    For any rational number hh and all sufficiently large nn we give a deterministic construction for an n×hnn\times \lfloor hn\rfloor compressed sensing matrix with (1,t)(\ell_1,t)-recoverability where t=O(n)t=O(\sqrt{n}). Our method uses pairwise balanced designs and complex Hadamard matrices in the construction of ϵ\epsilon-equiangular frames, which we introduce as a generalisation of equiangular tight frames. The method is general and produces good compressed sensing matrices from any appropriately chosen pairwise balanced design. The (1,t)(\ell_1,t)-recoverability performance is specified as a simple function of the parameters of the design. To obtain our asymptotic existence result we prove new results on the existence of pairwise balanced designs in which the numbers of blocks of each size are specified.Comment: 15 pages, no figures. Minor improvements and updates in February 201

    Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three

    Full text link
    The concept of group divisible codes, a generalization of group divisible designs with constant block size, is introduced in this paper. This new class of codes is shown to be useful in recursive constructions for constant-weight and constant-composition codes. Large classes of group divisible codes are constructed which enabled the determination of the sizes of optimal constant-composition codes of weight three (and specified distance), leaving only four cases undetermined. Previously, the sizes of constant-composition codes of weight three were known only for those of sufficiently large length.Comment: 13 pages, 1 figure, 4 table
    corecore