251 research outputs found

    Pairwise Teacher-Student Network for Semi-Supervised Hashing

    Full text link
    Hashing method maps similar high-dimensional data to binary hashcodes with smaller hamming distance, and it has received broad attention due to its low storage cost and fast retrieval speed. Pairwise similarity is easily obtained and widely used for retrieval, and most supervised hashing algorithms are carefully designed for the pairwise supervisions. As labeling all data pairs is difficult, semi-supervised hashing is proposed which aims at learning efficient codes with limited labeled pairs and abundant unlabeled ones. Existing methods build graphs to capture the structure of dataset, but they are not working well for complex data as the graph is built based on the data representations and determining the representations of complex data is difficult. In this paper, we propose a novel teacher-student semi-supervised hashing framework in which the student is trained with the pairwise information produced by the teacher network. The network follows the smoothness assumption, which achieves consistent distances for similar data pairs so that the retrieval results are similar for neighborhood queries. Experiments on large-scale datasets show that the proposed method reaches impressive gain over the supervised baselines and is superior to state-of-the-art semi-supervised hashing methods

    ๋‹ค์–‘ํ•œ ๋”ฅ ๋Ÿฌ๋‹ ํ•™์Šต ํ™˜๊ฒฝ ํ•˜์˜ ์ปจํ…์ธ  ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ์กฐ๋‚จ์ต.๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์งˆ์˜์— ๋Œ€ํ•œ ๊ด€๋ จ ์ด๋ฏธ์ง€๋ฅผ ์ฐพ๋Š” ์ฝ˜ํ…์ธ  ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์€ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ๊ทผ๋ณธ์ ์ธ ์ž‘์—… ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ํŠนํžˆ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ•ด์‹ฑ (Hashing) ๋ฐ ๊ณฑ ์–‘์žํ™” (Product Quantization, PQ) ๋กœ ๋Œ€ํ‘œ๋˜๋Š” ๊ทผ์‚ฌ์ตœ๊ทผ์ ‘ ์ด์›ƒ (Approximate Nearest Neighbor, ANN) ๊ฒ€์ƒ‰ ๋ฐฉ์‹์ด ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ๋”ฅ ๋Ÿฌ๋‹ (CNN-based deep learning) ์ด ๋งŽ์€ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€ ์ดํ›„๋กœ, ํ•ด์‹ฑ ๋ฐ ๊ณฑ ์–‘์žํ™” ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ ๋ชจ๋‘ ๊ฐœ์„ ์„ ์œ„ํ•ด ๋”ฅ ๋Ÿฌ๋‹์„ ์ฑ„ํƒํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ ์ ˆํ•œ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ ๋Ÿฌ๋‹ ํ•™์Šต ํ™˜๊ฒฝ์•„๋ž˜์—์„œ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์˜ ๋ชฉ์ ์„ ๊ณ ๋ คํ•˜์—ฌ ์˜๋ฏธ์ ์œผ๋กœ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๋”ฅ ๋Ÿฌ๋‹ ํ•ด์‹ฑ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์ง€๋„ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ , ์˜๋ฏธ์ , ์‹œ๊ฐ์ ์œผ๋กœ ๋ชจ๋‘ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๋”ฅ ๋Ÿฌ๋‹ ๊ณฑ ์–‘์žํ™” ๊ธฐ๋ฐ˜์˜ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ์ค€์ง€๋„, ๋น„์ง€๋„ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ, ๋ถ„๋ฅ˜ํ•ด์•ผํ•  ํด๋ž˜์Šค (class category) ๊ฐ€ ๋งŽ์€ ์–ผ๊ตด ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ํ•˜๋‚˜ ์ด์ƒ์˜ ๋ ˆ์ด๋ธ” (label) ์ด ์ง€์ •๋œ ์ผ๋ฐ˜ ์ด๋ฏธ์ง€ ์„ธํŠธ๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๋”ฐ๋กœ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ๋จผ์ € ์ด๋ฏธ์ง€์— ๋ถ€์—ฌ๋œ ์˜๋ฏธ๋ก ์  ๋ ˆ์ด๋ธ”์„ ์‚ฌ์šฉํ•˜๋Š” ์ง€๋„ ํ•™์Šต์„ ๋„์ž…ํ•˜์—ฌ ํ•ด์‹ฑ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ํด๋ž˜์Šค ๊ฐ„ ์œ ์‚ฌ์„ฑ (๋‹ค๋ฅธ ์‚ฌ๋žŒ ์‚ฌ์ด์˜ ์œ ์‚ฌํ•œ ์™ธ๋ชจ) ๊ณผ ํด๋ž˜์Šค ๋‚ด ๋ณ€ํ™”(๊ฐ™์€ ์‚ฌ๋žŒ์˜ ๋‹ค๋ฅธ ํฌ์ฆˆ, ํ‘œ์ •, ์กฐ๋ช…) ์™€ ๊ฐ™์€ ์–ผ๊ตด ์ด๋ฏธ์ง€ ๊ตฌ๋ณ„์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ์ด๋ฏธ์ง€์˜ ํด๋ž˜์Šค ๋ ˆ์ด๋ธ”์„ ์‚ฌ์šฉํ•œ๋‹ค. ์–ผ๊ตด ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ์„ ๋”์šฑ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด SGH (Similarity Guided Hashing) ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋ฉฐ, ์—ฌ๊ธฐ์„œ ๋‹ค์ค‘ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•œ ์ž๊ธฐ ์œ ์‚ฌ์„ฑ ํ•™์Šต์ด ํ›ˆ๋ จ ์ค‘์— ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•ด์‹ฑ ๊ธฐ๋ฐ˜์˜ ์ผ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด DHD(Deep Hash Distillation) ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. DHD์—์„œ๋Š” ์ง€๋„ ์‹ ํ˜ธ๋ฅผ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํด๋ž˜์Šค๋ณ„ ๋Œ€ํ‘œ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํ›ˆ๋ จ ๊ฐ€๋Šฅํ•œ ํ•ด์‹œ ํ”„๋ก์‹œ (proxy) ๋ฅผ ๋„์ž…ํ•œ๋‹ค. ๋˜ํ•œ, ํ•ด์‹ฑ์— ์ ํ•ฉํ•œ ์ž์ฒด ์ฆ๋ฅ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์—ฌ ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ์˜ ์ž ์žฌ๋ ฅ์„ ์ผ๋ฐ˜์ ์ธ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ์ ์šฉํ•œ๋‹ค. ๋‘˜์งธ๋กœ, ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ํ™œ์šฉํ•˜๋Š” ์ค€์ง€๋„ ํ•™์Šต์„ ์กฐ์‚ฌํ•˜์—ฌ ๊ณฑ ์–‘์žํ™” ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ์ง€๋„ ํ•™์Šต ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•๋“ค์€ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ ค๋ฉด ๊ฐ’๋น„์‹ผ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ์ถฉ๋ถ„ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€ ์ˆ˜๋งŽ์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋Š” ํ›ˆ๋ จ์—์„œ ์ œ์™ธ๋œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฒกํ„ฐ ์–‘์žํ™” ๊ธฐ๋ฐ˜ ๋ฐ˜์ง€๋„ ์˜์ƒ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์ธ GPQ (Generalized Product Quantization) ๋„คํŠธ์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋œ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ์˜๋ฏธ๋ก ์  ์œ ์‚ฌ์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฉ”ํŠธ๋ฆญ ํ•™์Šต (Metric learning) ์ „๋žต๊ณผ ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ์˜ ๊ณ ์œ ํ•œ ์ž ์žฌ๋ ฅ์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜๋Š” ์—”ํŠธ๋กœํ”ผ ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ฐœ์„ ํ•œ๋‹ค. ์ด ์†”๋ฃจ์…˜์€ ์–‘์žํ™” ๋„คํŠธ์›Œํฌ์˜ ์ผ๋ฐ˜ํ™” ์šฉ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œ์ผœ ์ด์ „์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๊ฒŒํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์‚ฌ๋žŒ์˜ ์ง€๋„ ์—†์ด ์‹œ๊ฐ์ ์œผ๋กœ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ๋น„์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๋น„๋ก ๋ ˆ์ด๋ธ” ์ฃผ์„์„ ํ™œ์šฉํ•œ ์‹ฌ์ธต ์ง€๋„ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•๋“ค์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์— ๋Œ€๋น„ ์šฐ์ˆ˜ํ•œ ๊ฒ€์ƒ‰ ์„ฑ๋Šฅ์„ ๋ณด์ผ์ง€๋ผ๋„, ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์ •ํ™•ํ•˜๊ฒŒ ๋ ˆ์ด๋ธ”์„ ์ง€์ •ํ•˜๋Š” ๊ฒƒ์€ ํž˜๋“ค๊ณ  ์ฃผ์„์—์„œ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ์‰ฝ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ ˆ์ด๋ธ” ์—†์ด ์ž์ฒด ์ง€๋„ ๋ฐฉ์‹์œผ๋กœ ํ›ˆ๋ จํ•˜๋Š” SPQ (Self-supervised Product Quantization) ๋„คํŠธ์›Œํฌ ๋ผ๋Š” ์‹ฌ์ธต ๋น„์ง€๋„ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„๋œ ๊ต์ฐจ ์–‘์žํ™” ๋Œ€์กฐ ํ•™์Šต ๋ฐฉ์‹์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅด๊ฒŒ ๋ณ€ํ™˜๋œ ์ด๋ฏธ์ง€๋ฅผ ๋น„๊ตํ•˜์—ฌ ๊ณฑ ์–‘์žํ™”์˜ ์ฝ”๋“œ์›Œ๋“œ์™€ ์‹ฌ์ธต ์‹œ๊ฐ์  ํ‘œํ˜„์„ ๋™์‹œ์— ํ•™์Šตํ•œ๋‹ค. ์ด ๋ฐฉ์‹์„ ํ†ตํ•ด ์ด๋ฏธ์ง€์— ๋‚ด์ œ๋œ ๋‚ด์šฉ์„ ๋ณ„๋„์˜ ์‚ฌ๋žŒ ์ง€๋„ ์—†์ด ๋„คํŠธ์›Œํฌ๊ฐ€ ์Šค์Šค๋กœ ์ดํ•ดํ•˜๊ฒŒ ๋˜๊ณ , ์‹œ๊ฐ์ ์œผ๋กœ ์ •ํ™•ํ•œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์„ค๋ช… ๊ธฐ๋Šฅ์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ๋‹ค์–‘ํ•œ ํ‰๊ฐ€ ํ”„๋กœํ† ์ฝœ์—์„œ ๋›ฐ์–ด๋‚œ ๊ฒฐ๊ณผ๋ฅผ ์‚ฐ์ถœํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ์–ผ๊ตด ์˜์ƒ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ SGH๋Š” ์ €ํ•ด์ƒ๋„ ๋ฐ ๊ณ ํ•ด์ƒ๋„ ์–ผ๊ตด ์˜์ƒ ๋ชจ๋‘์—์„œ ์ตœ๊ณ ์˜ ๊ฒ€์ƒ‰ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜์˜€๊ณ , DHD๋Š” ์ตœ๊ณ ์˜ ๊ฒ€์ƒ‰ ์ •ํ™•๋„๋กœ ์ผ๋ฐ˜ ์˜์ƒ ๊ฒ€์ƒ‰ ์‹คํ—˜์—์„œ ํšจ์œจ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ์ค€์ง€๋„ ์ผ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ GPQ๋Š” ๋ ˆ์ด๋ธ”์ด ์žˆ๋Š” ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœํ† ์ฝœ์— ๋Œ€ํ•œ ์ตœ์ƒ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋น„์ง€๋„ ํ•™์Šต ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ ์ง€๋„ ๋ฐฉ์‹์œผ๋กœ ๋ฏธ๋ฆฌ ํ•™์Šต๋œ ์ดˆ๊ธฐ ๊ฐ’ ์—†์ด๋„ SPQ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ƒ์˜ ๊ฒ€์ƒ‰ ์ ์ˆ˜๋ฅผ ์–ป์—ˆ์œผ๋ฉฐ ์‹œ๊ฐ์ ์œผ๋กœ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๊ฐ€ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๊ฒ€์ƒ‰๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค.Content-based image retrieval, which finds relevant images to a query from a huge database, is one of the fundamental tasks in the field of computer vision. Especially for conducting fast and accurate retrieval, Approximate Nearest Neighbor (ANN) search approaches represented by Hashing and Product Quantization (PQ) have been proposed to image retrieval community. Ever since neural network based deep learning has shown excellent performance in many computer vision tasks, both Hashing and product quantization-based image retrieval systems are also adopting deep learning for improvement. In this dissertation, image retrieval methods under various deep learning conditions are investigated to suggest the appropriate retrieval systems. Specifically, by considering the purpose of image retrieval, the supervised learning methods are proposed to develop the deep Hashing systems that retrieve semantically similar images, and the semi-supervised, unsupervised learning methods are proposed to establish the deep product quantization systems that retrieve both semantically and visually similar images. Moreover, by considering the characteristics of image retrieval database, the face image sets with numerous class categories, and the general image sets of one or more labeled images are separated to be explored when building a retrieval system. First, supervised learning with the semantic labels given to images is introduced to build a Hashing-based retrieval system. To address the difficulties of distinguishing face images, such as the inter-class similarities (similar appearance between different persons) and the intra-class variations (same person with different pose, facial expressions, illuminations), the identity label of each image is employed to derive the discriminative binary codes. To further develop the face image retrieval quality, Similarity Guided Hashing (SGH) scheme is proposed, where the self-similarity learning with multiple data augmentation results are employed during training. In terms of Hashing-based general image retrieval systems, Deep Hash Distillation (DHD) scheme is proposed, where the trainable hash proxy that presents class-wise representative is introduced to take advantage of supervised signals. Moreover, self-distillation scheme adapted for Hashing is utilized to improve general image retrieval performance by exploiting the potential of augmented data appropriately. Second, semi-supervised learning that utilizes both labeled and unlabeled image data is investigated to build a PQ-based retrieval system. Even if the supervised deep methods show excellent performance, they do not meet the expectations unless expensive label information is sufficient. Besides, there is a limitation that a tons of unlabeled image data is excluded from training. To resolve this issue, the vector quantization-based semi-supervised image retrieval scheme: Generalized Product Quantization (GPQ) network is proposed. A novel metric learning strategy that preserves semantic similarity between labeled data, and a entropy regularization term that fully exploits inherent potentials of unlabeled data are employed to improve the retrieval system. This solution increases the generalization capacity of the quantization network, which allows to overcome previous limitations. Lastly, to enable the network to perform a visually similar image retrieval on its own without any human supervision, unsupervised learning algorithm is explored. Although, deep supervised Hashing and PQ methods achieve the outstanding retrieval performances compared to the conventional methods by fully exploiting the label annotations, however, it is painstaking to assign labels precisely for a vast amount of training data, and also, the annotation process is error-prone. To tackle these issues, the deep unsupervised image retrieval method dubbed Self-supervised Product Quantization (SPQ) network, which is label-free and trained in a self-supervised manner is proposed. A newly designed Cross Quantized Contrastive learning strategy is applied to jointly learn the PQ codewords and the deep visual representations by comparing individually transformed images (views). This allows to understand the image content and extract descriptive features so that the visually accurate retrieval can be performed. By conducting extensive image retrieval experiments on the benchmark datasets, the proposed methods are confirmed to yield the outstanding results under various evaluation protocols. For supervised face image retrieval, SGH achieves the best retrieval performance for both low and high resolution face image, and DHD also demonstrates its efficiency in general image retrieval experiments with the state-of-the-art retrieval performance. For semi-supervised general image retrieval, GPQ shows the best search results for protocols that use both labeled and unlabeled image data. Finally, for unsupervised general image retrieval, the best retrieval scores are achieved with SPQ even without supervised pre-training, and it can be observed that visually similar images are successfully retrieved as search results.Abstract i Contents iv List of Tables vii List of Figures viii 1 Introduction 1 1.1 Contribution 3 1.2 Contents 4 2 Supervised Learning for Deep Hashing: Similarity Guided Hashing for Face Image Retrieval / Deep Hash Distillation for General Image Retrieval 5 2.1 Motivation and Overview for Face Image Retrieval 5 2.1.1 Related Works 9 2.2 Similarity Guided Hashing 10 2.3 Experiments 16 2.3.1 Datasets and Setup 16 2.3.2 Results on Small Face Images 18 2.3.3 Results on Large Face Images 19 2.4 Motivation and Overview for General Image Retrieval 20 2.5 Related Works 22 2.6 Deep Hash Distillation 24 2.6.1 Self-distilled Hashing 24 2.6.2 Teacher loss 27 2.6.3 Training 29 2.6.4 Hamming Distance Analysis 29 2.7 Experiments 32 2.7.1 Setup 32 2.7.2 Implementation Details 32 2.7.3 Results 34 2.7.4 Analysis 37 3 Semi-supervised Learning for Product Quantization: Generalized Product Quantization Network for Semi-supervised Image Retrieval 42 3.1 Motivation and Overview 42 3.1.1 Related Work 45 3.2 Generalized Product Quantization 47 3.2.1 Semi-Supervised Learning 48 3.2.2 Retrieval 52 3.3 Experiments 53 3.3.1 Setup 53 3.3.2 Results and Analysis 55 4 Unsupervised Learning for Product Quantization: Self-supervised Product Quantization for Deep Unsupervised Image Retrieval 58 4.1 Motivation and Overview 58 4.1.1 Related Works 61 4.2 Self-supervised Product Quantization 62 4.2.1 Overall Framework 62 4.2.2 Self-supervised Training 64 4.3 Experiments 67 4.3.1 Datasets 67 4.3.2 Experimental Settings 68 4.3.3 Results 71 4.3.4 Empirical Analysis 71 5 Conclusion 75 Abstract (In Korean) 88๋ฐ•

    Context Unaware Knowledge Distillation for Image Retrieval

    Full text link
    Existing data-dependent hashing methods use large backbone networks with millions of parameters and are computationally complex. Existing knowledge distillation methods use logits and other features of the deep (teacher) model and as knowledge for the compact (student) model, which requires the teacher's network to be fine-tuned on the context in parallel with the student model on the context. Training teacher on the target context requires more time and computational resources. In this paper, we propose context unaware knowledge distillation that uses the knowledge of the teacher model without fine-tuning it on the target context. We also propose a new efficient student model architecture for knowledge distillation. The proposed approach follows a two-step process. The first step involves pre-training the student model with the help of context unaware knowledge distillation from the teacher model. The second step involves fine-tuning the student model on the context of image retrieval. In order to show the efficacy of the proposed approach, we compare the retrieval results, no. of parameters and no. of operations of the student models with the teacher models under different retrieval frameworks, including deep cauchy hashing (DCH) and central similarity quantization (CSQ). The experimental results confirm that the proposed approach provides a promising trade-off between the retrieval results and efficiency. The code used in this paper is released publicly at \url{https://github.com/satoru2001/CUKDFIR}.Comment: Accepted in International Conference on Computer Vision and Machine Intelligence (CVMI), 202

    Faster Person Re-Identification

    Full text link
    Fast person re-identification (ReID) aims to search person images quickly and accurately. The main idea of recent fast ReID methods is the hashing algorithm, which learns compact binary codes and performs fast Hamming distance and counting sort. However, a very long code is needed for high accuracy (e.g. 2048), which compromises search speed. In this work, we introduce a new solution for fast ReID by formulating a novel Coarse-to-Fine (CtF) hashing code search strategy, which complementarily uses short and long codes, achieving both faster speed and better accuracy. It uses shorter codes to coarsely rank broad matching similarities and longer codes to refine only a few top candidates for more accurate instance ReID. Specifically, we design an All-in-One (AiO) framework together with a Distance Threshold Optimization (DTO) algorithm. In AiO, we simultaneously learn and enhance multiple codes of different lengths in a single model. It learns multiple codes in a pyramid structure, and encourage shorter codes to mimic longer codes by self-distillation. DTO solves a complex threshold search problem by a simple optimization process, and the balance between accuracy and speed is easily controlled by a single parameter. It formulates the optimization target as a FฮฒF_{\beta} score that can be optimised by Gaussian cumulative distribution functions. Experimental results on 2 datasets show that our proposed method (CtF) is not only 8% more accurate but also 5x faster than contemporary hashing ReID methods. Compared with non-hashing ReID methods, CtF is 50ร—50\times faster with comparable accuracy. Code is available at https://github.com/wangguanan/light-reid.Comment: accepted by ECCV2020, https://github.com/wangguanan/light-rei
    • โ€ฆ
    corecore