5,777 research outputs found

    Sequence-specific sequence comparison using pairwise statistical significance

    Get PDF
    Sequence comparison is one of the most fundamental computational problems in bioinformatics for which many approaches have been and are still being developed. In particular, pairwise sequence alignment forms the crux of both DNA and protein sequence comparison techniques, which in turn forms the basis of many other applications in bioinformatics. Pairwise sequence alignment methods align two sequences using a substitution matrix consisting of pairwise scores of aligning different residues with each other (like BLOSUM62), and give an alignment score for the given sequence-pair. The biologists routinely use such pairwise alignment programs to identify similar, or more specifically, related sequences (having common ancestor). It is widely accepted that the relatedness of two sequences is better judged by statistical significance of the alignment score rather than by the alignment score alone. This research addresses the problem of accurately estimating statistical significance of pairwise alignment for the purpose of identifying related sequences, by making the sequence comparison process more sequence-specific. The major contributions of this research work are as follows. Firstly, using sequence-specific strategies for pairwise sequence alignment in conjunction with sequence-specific strategies for statistical significance estimation, wherein accurate methods for pairwise statistical significance estimation using standard, sequence-specific, and position-specific substitution matrices are developed. Secondly, using pairwise statistical significance to improve the performance of the most popular database search program PSI-BLAST. Thirdly, design and implementation of heuristics to speed-up pairwise statistical significance estimation by an factor of more than 200. The implementation of all the methods developed in this work is freely available online. With the all-pervasive application of sequence alignment methods in bioinformatics using the ever-increasing sequence data, this work is expected to offer useful contributions to the research community

    Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty

    Get PDF
    Background: Accurate estimation of statistical significance of a pairwise alignment is an important problem in sequence comparison. Recently, a comparative study of pairwise statistical significance with database statistical significance was conducted. In this paper, we extend the earlier work on pairwise statistical significance by incorporating with it the use of multiple parameter sets. Results: Results for a knowledge discovery application of homology detection reveal that using multiple parameter sets for pairwise statistical significance estimates gives better coverage than using a single parameter set, at least at some error levels. Further, the results of pairwise statistical significance using multiple parameter sets are shown to be significantly better than database statistical significance estimates reported by BLAST and PSI-BLAST, and comparable and at times significantly better than SSEARCH. Using non-zero parameter set change penalty values give better performance than zero penalty. Conclusion: The fact that the homology detection performance does not degrade when using multiple parameter sets is a strong evidence for the validity of the assumption that the alignment score distribution follows an extreme value distribution even when using multiple parameter sets. Parameter set change penalty is a useful parameter for alignment using multiple parameter sets. Pairwise statistical significance using multiple parameter sets can be effectively used to determine the relatedness of a (or a few) pair(s) of sequences without performing a time-consuming database search

    Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies

    Get PDF
    Existing sequence alignment algorithms use heuristic scoring schemes which cannot be used as objective distance metrics. Therefore one relies on measures like the p- or log-det distances, or makes explicit, and often simplistic, assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI) which is, in principle, an objective and model independent similarity measure. MI can be estimated by concatenating and zipping sequences, yielding thereby the "normalized compression distance". So far this has produced promising results, but with uncontrolled errors. We describe a simple approach to get robust estimates of MI from global pairwise alignments. Using standard alignment algorithms, this gives for animal mitochondrial DNA estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. Due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics, but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia

    Back-translation for discovering distant protein homologies

    Get PDF
    Frameshift mutations in protein-coding DNA sequences produce a drastic change in the resulting protein sequence, which prevents classic protein alignment methods from revealing the proteins' common origin. Moreover, when a large number of substitutions are additionally involved in the divergence, the homology detection becomes difficult even at the DNA level. To cope with this situation, we propose a novel method to infer distant homology relations of two proteins, that accounts for frameshift and point mutations that may have affected the coding sequences. We design a dynamic programming alignment algorithm over memory-efficient graph representations of the complete set of putative DNA sequences of each protein, with the goal of determining the two putative DNA sequences which have the best scoring alignment under a powerful scoring system designed to reflect the most probable evolutionary process. This allows us to uncover evolutionary information that is not captured by traditional alignment methods, which is confirmed by biologically significant examples.Comment: The 9th International Workshop in Algorithms in Bioinformatics (WABI), Philadelphia : \'Etats-Unis d'Am\'erique (2009

    Homology-extended sequence alignment

    Get PDF
    We present a profile–profile multiple alignment strategy that uses database searching to collect homologues for each sequence in a given set, in order to enrich their available evolutionary information for the alignment. For each of the alignment sequences, the putative homologous sequences that score above a pre-defined threshold are incorporated into a position-specific pre-alignment profile. The enriched position-specific profile is used for standard progressive alignment, thereby more accurately describing the characteristic features of the given sequence set. We show that owing to the incorporation of the pre-alignment information into a standard progressive multiple alignment routine, the alignment quality between distant sequences increases significantly and outperforms state-of-the-art methods, such as T-COFFEE and MUSCLE. We also show that although entirely sequence-based, our novel strategy is better at aligning distant sequences when compared with a recent contact-based alignment method. Therefore, our pre-alignment profile strategy should be advantageous for applications that rely on high alignment accuracy such as local structure prediction, comparative modelling and threading
    corecore