1,351 research outputs found

    The Evolutionary Price of Anarchy: Locally Bounded Agents in a Dynamic Virus Game

    Get PDF
    The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents\u27 rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature

    Local stability under evolutionary game dynamics

    Get PDF
    We prove that any regular ESS is asymptotically stable under any impartial pairwise comparison dynamic, including the Smith dynamic; under any separable excess payoff dynamic, including the BNN dynamic; and under the best response dynamic. Combined with existing results for imitative dynamics, our analysis validates the use of ESS as a blanket sufficient condition for local stability under evolutionary game dynamics.Evolutionary game dynamics, ESS

    Evolutionary dynamics in heterogeneous populations: a general framework for an arbitrary type distribution

    Full text link
    A general framework of evolutionary dynamics under heterogeneous populations is presented. The framework allows continuously many types of heterogeneous agents, heterogeneity both in payoff functions and in revision protocols and the entire joint distribution of strategies and types to influence the payoffs of agents. We clarify regularity conditions for the unique existence of a solution trajectory and for the existence of equilibrium. We confirm that equilibrium stationarity in general and equilibrium stability in potential games are extended from the homogeneous setting to the heterogeneous setting. In particular, a wide class of admissible dynamics share the same set of locally stable equilibria in a potential game through local maximization of the potential

    Flows and Decompositions of Games: Harmonic and Potential Games

    Get PDF
    In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to "nearby" games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games

    Voronoi languages: Equilibria in cheap-talk games with high-dimensional types and few signals

    Get PDF
    We study a communication game of common interest in which the sender observes one of infinite types and sends one of finite messages which is interpreted by the receiver. In equilibrium there is no full separation but types are clustered into convex categories. We give a full characterization of the strict Nash equilibria of this game by representing these categories by Voronoi languages. As the strategy set is infinite static stability concepts for finite games such as ESS are no longer sufficient for Lyapunov stability in the replicator dynamics. We give examples of unstable strict Nash equilibria and stable inefficient Voronoi Languages. We derive efficient Voronoi languages with a large number of categories and numerically illustrate stability of some Voronoi languages with large message spaces and non-uniformly distributed types.Cheap Talk, Signaling Game, Communication Game, Dynamic stability, Voronoi tesselation
    corecore