550 research outputs found

    The phase transition in the configuration model

    Full text link
    Let G=G(d)G=G(d) be a random graph with a given degree sequence dd, such as a random rr-regular graph where r≥3r\ge 3 is fixed and n=∣G∣→∞n=|G|\to\infty. We study the percolation phase transition on such graphs GG, i.e., the emergence as pp increases of a unique giant component in the random subgraph G[p]G[p] obtained by keeping edges independently with probability pp. More generally, we study the emergence of a giant component in G(d)G(d) itself as dd varies. We show that a single method can be used to prove very precise results below, inside and above the `scaling window' of the phase transition, matching many of the known results for the much simpler model G(n,p)G(n,p). This method is a natural extension of that used by Bollobas and the author to study G(n,p)G(n,p), itself based on work of Aldous and of Nachmias and Peres; the calculations are significantly more involved in the present setting.Comment: 37 page

    Kings and Heirs: A Characterization of the (2,2)-domination Graphs of Tournaments

    Get PDF
    In 1980, Maurer coined the phrase king when describing any vertex of a tournament that could reach every other vertex in two or fewer steps. A (2,2)-domination graph of a digraph D, dom2,2(D), has vertex set V(D), the vertices of D, and edge uv whenever u and v each reach all other vertices of D in two or fewer steps. In this special case of the (i,j)-domination graph, we see that Maurer’s theorem plays an important role in establishing which vertices form the kings that create some of the edges in dom2,2(D). But of even more interest is that we are able to use the theorem to determine which other vertices, when paired with a king, form an edge in dom2,2(D). These vertices are referred to as heirs. Using kings and heirs, we are able to completely characterize the (2,2)-domination graphs of tournaments

    Critical behavior in inhomogeneous random graphs

    Get PDF
    We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. The edge probabilities are moderated by vertex weights, and are such that the degree of vertex i is close in distribution to a Poisson random variable with parameter w_i, where w_i denotes the weight of vertex i. We choose the weights such that the weight of a uniformly chosen vertex converges in distribution to a limiting random variable W, in which case the proportion of vertices with degree k is close to the probability that a Poisson random variable with random parameter W takes the value k. We pay special attention to the power-law case, in which P(W\geq k) is proportional to k^{-(\tau-1)} for some power-law exponent \tau>3, a property which is then inherited by the asymptotic degree distribution. We show that the critical behavior depends sensitively on the properties of the asymptotic degree distribution moderated by the asymptotic weight distribution W. Indeed, when P(W\geq k) \leq ck^{-(\tau-1)} for all k\geq 1 and some \tau>4 and c>0, the largest critical connected component in a graph of size n is of order n^{2/3}, as on the Erd\H{o}s-R\'enyi random graph. When, instead, P(W\geq k)=ck^{-(\tau-1)}(1+o(1)) for k large and some \tau\in (3,4) and c>0, the largest critical connected component is of the much smaller order n^{(\tau-2)/(\tau-1)}.Comment: 26 page

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure
    • …
    corecore