Kings and Heirs: A Characterization of the (2,2)domination Graphs of Tournaments

Kim A. S. Factor
Marquette University, kim.factor@marquette.edu
Larry J. Langley
University of the Pacific

Accepted version. Discrete Applied Mathematics, Vol. 204 (May 11, 2016): 142-149. DOI. © 2016 Elsevier. Used with permission.

Kings and Heirs: A Characterization of the (2,2)-domination Graphs of Tournaments

Kim A.S. Factor
Department of Mathematics, Statistics and Computer Science,
Marquette University, Milwaukee, WI
Larry J. Langley
Department of Mathematics, University of the Pacific,
Milwaukee, WI

Abstract

In 1980, Maurer coined the phrase king when describing any vertex of a tournament that could reach every other vertex in two or fewer steps. A $(2,2)$-domination graph of a digraph $D, \operatorname{dom}_{2,2}(D)$, has vertex set $V(D)$, the vertices of D, and edge $u v$ whenever u and v each reach all other vertices of D in two or fewer steps. In this special case of the (i, j)-domination graph, we see that Maurer's theorem plays an important role in establishing which vertices form the kings that create some of the edges in $\operatorname{dom}_{2,2}(D)$. But of even more interest is that we are able to use the theorem to determine which other vertices, when paired with a king, form an edge in $\operatorname{dom}_{2,2}(D)$. These vertices are

referred to as heirs. Using kings and heirs, we are able to completely characterize the (2,2)-domination graphs of tournaments.

Keywords: Tournaments; Domination; Kings

1. Introduction

Domination in digraphs has been the focus of research for decades within a variety of areas in mathematics. The current branch of research has evolved from studying dominance in animal societies in the 1950 s, led by mathematical sociologist H. Landau. ${ }^{6} \mathbb{Z} ; 8$ Further results involving what would later be called a king in a tournament were supplied by Moonํ ${ }^{10}$ in his monograph. Yet it was Maurer in 19809 who coined the phrase king in a tournament to refer to any vertex that could beat every other vertex in at most two steps. It is that term we will use throughout this paper to refer to such a vertex, as it describes precisely the dominance we wish to explore.

Here, we are interested in a tournament, T, which is a set of n vertices where there is an arc between every pair of vertices. We say that u beats $v, u \rightarrow v$, if arc (u, v) is in T. The set of players that u beats is the outset of $u, O^{+}(u)$, and the set of players that beat u is the inset of $u, O^{-}(u)$. The distance between vertices u and $v, \operatorname{dist}(u, v)$ or $\operatorname{dist}_{T}(u, v)$, is the minimum number of arcs in a directed path from u to v.

The authors previously took the concept of (i, j) dominating sets defined by Hedetniemi et al. in their original works ${ }^{5 ; 3 ; 4}$ and created (i, j)-domination graphs. ${ }^{1}$ - ${ }^{2}$ Here, we look specifically at the $(2,2)$ domination graphs of tournaments. Given a digraph $D, \mathrm{G}=\operatorname{dom}_{2,2}(D)$ is the $(2,2)$-domination graph of D where $V(G)=V(D)$ with edge $u v$ if vertices u and v can each reach all of the remaining vertices in one or two steps. We call u and v a $(2,2)$-dominating pair. The definition of $d^{2} m_{2,2}(D)$ should bring to mind the definition of a king, as any pair of kings is a $(2,2)$-dominating pair. However, pairs of kings are not the only vertices to create edges in $d_{o m, 2}(\mathrm{D})$.

For simplicity of notation we will write $T-\{x\}$ to mean the induced subtournament obtained when x is removed from the vertex set of T. Consider any (2,2)-dominating pair, $\{u, v\}$, that creates an
edge in $d_{0,2}(\mathrm{D})$. Say that u beats v. Since u can reach all vertices, including v in one or two steps, u is a king. We know that v can reach all vertices except possibly u in one or two steps, so v must be a king in $T-\{u\}$. If v is not a king in T, then v cannot reach u in two steps, and consequently v fails to form a $(2,2)$-dominating pair with any vertex other than u. Call such a vertex an heir. In other words, an heir is a vertex who is not a king, but when a particular king is removed, it becomes a king.

Lemma 1.1. If h is an heir of king k, then h is not an heir of any other king.

Proof. Suppose h is an heir of k_{i} and k_{j}. Then h is a king in $T-\left\{k_{i}\right\}$, so must beat vertex k_{j} in at most two steps. Thus, h is not an heir of k_{j}.

In a tournament T, on n vertices with kings labeled $x_{1}, x_{2}, \ldots, x_{\mathrm{k}}$ define the royal sequence as follows $\left[k ; h_{1}, h_{2}, \ldots, h_{\mathrm{k}} ; r\right.$] with $r=n-k-$ $\sum_{i=1}^{k} h_{i}, h_{i}$ representing the number of heirs of king x_{i}, and r representing the number of vertices in T which are neither kings nor heirs. Note that it is not strictly necessary to provide k and r in the sequence but it is convenient to do so. Note also that we may label the kings arbitrarily so we may permute the sequence of h_{i} freely. In Sections ${ }^{2 ; 3}$ of this paper we will completely characterize royal sequences, and as a consequence present a complete characterization of (2,2)-domination graphs of tournaments.

To create the environment in which we are working, both within the realms of kings and those of domination graphs, foundational results must be examined. First, we examine three results for kings.

Lemma 1.2 Landau. ${ }^{8}$ Any vertex with highest out degree in a tournament is a king.

A regular tournament is one where the outdegree of every vertex is the same. Thus, every vertex in a regular tournament is a king. The next two lemmas add more information on how kings interact with vertices in the tournament.

Lemma 1.3 Maurer. 9 If vertex u has nonempty inset, then u is beaten by a king.

Corollary 1.4. If a tournament contains exactly three kings, those kings form a three cycle.

Now we look at the insets of $u, O^{-}(u)$, and outsets of $u, O^{+}(u)$, in relationship to subsets, which ultimately help determine which vertices are or are not kings or heirs.

Lemma 1.5 Factor, Langley. $\underline{\underline{2}} u \in V(T)$ is a king if and only if for any $v \in V(T)-\{u\}, O^{-}(v) \nsubseteq O^{-}(u)$.

The contrapositive to this is the following.
Corollary 1.6. There exists a vertex $v \in V(T)-\{u\}$ where $O^{-}(v) \subseteq O^{-}(u)$ if and only if u is not a king of T.

Since no vertex is in its own outset, we remove the equality in the subset notation and rewrite the contrapositive using the definition of a king so that it is most useful to the approach in this paper.

Corollary 1.7. The vertex u cannot reach vertex v in two or fewer steps if and only if $O^{-}(v) \subset O^{-}(u)$ or equivalently, $O^{+}(u) \subset O^{+}(v)$.

The next sections use some constructions requiring the union of graphs. Given two tournaments $T_{1}=\left(V_{1}, A_{1}\right)$ and $T_{2}=\left(V_{2}, A_{2}\right)$, then $T_{1} \cup T_{2}$ is a directed graph with vertex set $V_{1} \cup V_{2}$ and arcs $A_{1} \cup A_{2}$. Since we are studying tournaments we will subsequently define arcs between all pairs of vertices $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ to create a tournament on $V_{1} \cup V_{2}$.

2. Royal sequences and Maurer's theorem

In this section, we begin to examine the existence of royal sequences. We delve into the role that heirs play in ascertaining the existence of the sequences, and observe how Maurer's theorem can be used to constrain the heirs by viewing them as future kings (kings with their associated king removed). With the exception of tournaments with $k=3$ or $k=4$ kings, the application of Maurer's theorem and constructive lemmas allows us to determine all possible royal sequences. The cases of $k=3$ or $k=4$ kings require particular approaches and are reserved for Section 3 .

Theorem 2.1 Maurer. 9 There exists a tournament T with n vertices and k kings, $n \geq k \geq 1$, unless $k=2$ or $k=n=4$.

Maurer's theorem includes all the tournaments where every vertex is a king, and thus we have the following corollaries:

Corollary 2.2. There exists a tournament T with royal sequence $[k ; 0, \ldots, 0 ; 0]$ if $k=1, k=3$ or $k \geq 5$.

Corollary 2.3. There exists no tournament T with royal sequence $\left[2 ; h_{1}, h_{2} ; r\right]$ or $[4 ; 0,0,0,0 ; 0]$.

The effect of Maurer's theorem on the existence of heirs in the royal sequence is what gives additional depth and interest to this study of $(2,2)$-domination. Since heir h of king k is king in the tournament $T-\{k\}$, Maurer's result must be extended to the heirs to ascertain which royal sequences are possible.

First we may directly address the case where there is exactly one king. Maurer observed that if a tournament has exactly one king, it must be a transmitter. That is, it has empty inset and is directed toward all other vertices in the tournament.

Proposition 2.4. There exists a tournament T with royal sequence [1;h;r] if and only if $h \neq 2$, if $h=0$ then $r=0$, and if $h=4, r>0$.

Proof. If T has one vertex, then we have royal sequence $[1 ; 0 ; 0]$. Otherwise if the unique king is removed from T then the resulting tournament must have $h>0$ kings. Consequently the only case where $h=0$ is the case where T has exactly one vertex. The other values of h and r are restricted only by Maurer's theorem, hence $h \neq 2$ and if $h=4$ then $r>0$. Conversely, attaching a transmitter to tournament with h kings and r additional vertices creates a tournament with royal sequence $[1 ; h ; r]$, consequently existence is assured.

In order to construct royal sequences we will constructively add $h_{i}>0$ heirs to their corresponding kings. With the exception of $h_{i}=2$ or $h_{i}=4$ heirs we may use Maurer's theorem directly, first by attaching a tournament with h_{i} kings, transforming them into the desired heirs.

Lemma 2.5. Let T_{1} be any tournament with king x, where x has no heirs. Let T_{2} be any tournament with exactly k kings. Construct T as follows: Begin with $T_{1} \cup T_{2}$. Then, for any pair of vertices u from T_{1} and v from T_{2} include arc (u, v) if and only if either (u, x) is an arc or $u=x$. Then, the kings of T are precisely the kings of T_{1}. The heirs of x are precisely the kings of T_{2}. The heirs of the other kings of T_{1} are unchanged and provide the only other heirs of T.

Proof. First, x is a king of T_{1} and $(x, v) \in E(T)$ for any $v \in V\left(T_{2}\right)$, so x is a king of T.

Let $k \neq x$ be a king of T_{1}. For any $v \in V\left(T_{2}\right)$, either (k, v) and (k, x) or (v, k) and (x, k) are arcs of T. In the latter case, there exists a vertex u of T_{1} such that (k, u) and (u, x) are arcs in T_{1}, so (u, v) is an arc of T, and k reaches v in two steps. Thus, k is a king of T.

Let h be an heir of king $k \neq x$ in T_{1}. Vertex k is distance 3 from h in T_{1}. If there exists a path of length 2 in T from h to k, then there is a vertex $v \in V\left(T_{2}\right)$ so that (h, v) and (v, k) are arcs in T. But then (h, x) and (x, k) are arcs in T_{1}, which is a contradiction. Thus, h is not a king of T. If (h, x) is an arc in T_{1}, then (h, v) is an arc in T for all $v \in V\left(T_{2}\right)$. If (x, h) is an arc in T, then there is a vertex u in T_{1} such that (h, u) and (u, x) are arcs since h is an heir in T_{1}. Thus, (u, v) is an arc in T for all $v \in V\left(T_{2}\right)$, and h is an heir of k in T.

Let u be a vertex of T_{1} that is not a king or heir. As seen previously, no vertex in T_{2} exists that creates a path of length 2 between u and w in T_{1} where $\operatorname{dist}_{T 1}(u, w)>2$. Thus, u is not a king or heir of T.

Let k be a king of T_{2}. (x, k) is an arc of T and for any u in T_{1} such that (k, u) is an arc, (x, u) is also an arc of T so $O^{+}(k) \subset O^{+}(x)$. Therefore, by Corollary 1.7, k is not a king of T. However, for all $u \in V\left(T_{1}\right)$ where $u \neq x$, either (k, u) is an arc or (u, x) and thus (u, k) are arcs in T. In the latter case, there is an $x u$-path of length 2 in T_{1} so there is a vertex w in T_{1} such that (x, w) and (w, u) are arcs. Thus, (k, w) is an arc of T and k reaches u in 2 steps, making k an heir of x.

For any other vertex $v \in V\left(T_{2}\right)$, there is a vertex y in T_{2} where $\operatorname{dist}_{T 2}(v, y) \geq 3$, and there is no path less than 2 in T. For $u \in V\left(T_{1}\right)$ where
(v, u) is an arc indicates all vertices in T_{2} beat u, so (u, y) cannot exist. Thus, v is neither a king nor heir in T. So, the kings of T are precisely the kings of T_{1}, the heirs of the kings of T_{1} are still heirs of the same kings in T, and the kings of T_{2} are the heirs of x in T.

Corollary 2.6. If x is a king in a tournament T_{1} with zero heirs, there exists a tournament T with exactly the same royal sequence, with the exception that x has $h_{x}>0$ heirs, for $h_{x} \neq 2, h_{x} \neq 4$.

Proof. This follows from the previous lemma and Maurer's theorem by appending to T_{1} a tournament T_{2} with precisely $h>0, h \neq 2,4$ vertices all of which are kings.

As we see from Maurer's theorem, the challenging cases must involve two or four heirs, since we cannot simply append two or four kings. The following lemmas will be critical in managing two or four kings. The first follows closely the inductive step of Maurer's proof, and will allow for kings with exactly two heirs and transform them into kings with exactly four heirs. Then, the next lemma will provide certain conditions under which we may guarantee a king has exactly two heirs (and consequently may have four heirs instead).

Lemma 2.7. Let T be a tournament with king x, where x has $h>0$ heirs, then there exists a tournament T with precisely the same royal sequence as T, except x has $h+2$ heirs.

Proof. Let v be an heir of x. Construct T by replacing v with a directed three cycle of vertices v_{1}, v_{2}, v_{3} and all arcs (v_{i}, y) if and only if T has arc (v, y), and all other arcs of T preserved. Observe first that for any pair of vertices in $V\left(T^{\prime}\right)-\left\{v_{1}, v_{2}, v_{3}\right\}$ their distance is unchanged in T^{\prime} or in $T^{\prime}-\{x\}$, and that the distance from $y \in T$ to v_{i} in T^{\prime} or $T^{\prime}-\{x\}$ is the same as the distance from $y \in T$ to v in T or $T-\{x\}$ respectively. Furthermore v_{i} can reach v_{j} in two or fewer steps around the cycle. Because all distances are preserved, kings of T remain kings in T^{\prime} and no new kings are formed, heirs of T other than v remain heirs of T and of the same kings, and v_{1}, v_{2}, v_{3} are heirs of x.

Lemma 2.8. Let T be a tournament, x a king with no heirs and y a king in the outset of x such that x is a king in $T-\{y\}$. Then there exists
a tournament T with king x and x has exactly 2 or 4 heirs, but otherwise the heir sequence is unchanged.

Proof. We will start with 2 heirs. The construction and proof are similar to Lemma 2.5. Let the vertices of T^{\prime} be the vertices of T together with two new vertices u_{1} and u_{2}. Maintain arcs for pairs vertices within T. Choose arcs $\left(x, u_{i}\right)$ for $1 \leq i \leq 2,\left(u_{2}, y\right),\left(y, u_{1}\right),\left(u_{1}, u_{2}\right)$. Finally, for all remaining vertices w if (x, w) is an arc, then $\left(u_{i}, w\right)$ is an arc and if (w, x) is an arc then so is $\left(w, u_{i}\right)$ for $1 \leq i \leq 2$. Note that the outset of u_{i} is strictly contained in the outset of x.

Claim: For any vertices v, w in T, where $v \neq x, y$, if there is no path of length shorter than three from v to w in T, then there is no path of length shorter than three in T^{\prime}. Proof of claim: Since the arc between v and w are unchanged in T^{\prime} there is clearly no path of length one from v to w. Suppose there is a path of length two in $T^{\prime},(v, z),(z, w)$. Then, since there is no path of length two in T, z must be u_{i} for some i. Since v is not equal to x or y, by construction, (v, x) is an arc in T. Also, since the outset of u_{i} is strictly contained in the outset of x, then (x, w) is an arc in T. Consequently there is a path of length 2 from v to w entirely contained in T.

Since x is a king in T and reaches both new vertices in one step, x is a king in T^{\prime}. Since the outset of u_{i} is strictly contained in the outset of x, no u_{i} is a king due to Corollary 1.7. Observe that $u_{i, 1} 1 \leq i \leq 2$ can reach $u_{j}, 1 \leq \mathrm{j} \leq 2$ and $j \neq i$, or y in at most two steps. Consider $v \notin\left\{x, y, u_{i}\right\}$. If (x, v) is an arc then so is $\left(u_{i}, v\right)$, so u_{i} can reach v in one step. On the other hand if (x, v) is not an arc, since x is a king of $T-\{y\}, x$ can reach v in two steps, via $w \notin\left\{x, y, u_{i}\right\}$. However, this means u_{i} can likewise reach v in two steps via w. Consequently u_{i} is a king in $T-\{x\}$, so is an heir of x.

Suppose z (possibly equal to y) is a king of T. Since the arcs of T are unchanged within T^{\prime}, z can reach all vertices of T in at most two steps. If (z, x) is an arc then so is $\left(z, u_{i}\right)$. On the other hand if $(z, v),(v, x)$ are arcs, then, since y is in the outset of $x, y \neq v$, so $\left(v, u_{i}\right)$ is an arc of T^{\prime} and thus z can reach u_{i} in two steps. Consequently, z is a king of T^{\prime}.

By the claim above we know that any vertex of T that is not a king of T does not become a king of T. We need to show that heirs are preserved: That is that any heir of T remains an heir of T and no new vertex of T becomes an heir in T^{\prime}.

Suppose z is an heir of T. We have shown z is not a king of T but we need to confirm z remains an heir. We know z can reach all vertices of T except for its king in two or fewer steps. Since z is not an heir of x, z can reach x in two or fewer steps, (and since (y, x) is not an arc, this path will avoid y). Consequently z can reach u_{i} in two or fewer steps. By the earlier claim, z cannot reach its own king in fewer than three steps, so remains an heir.

Suppose z is neither a king nor an heir of T. We know that z is not a king of T^{\prime}. Suppose z were transformed into an heir of a king w. Then, z would be a king of $T^{\prime}-\{w\}$. This means z can reach every vertex of $T-\{w\}$ in two or fewer steps. However adding $\{w\}$ back into the tournament cannot lengthen the distance between vertices, so z can reach all vertices in T^{\prime} except w in two or fewer steps. By the original claim z can reach all vertices of T except w in two or fewer steps, and consequently is an heir of w.

To extend this result to four heirs we may apply Lemma 2.7 to either u_{1} or u_{2}. It will be convenient to apply this lemma and replace u_{1} with three heirs.

Note for future reference u_{2} has the property that $O^{+}\left(u_{2}\right) \cap\left(T-\left\{x, u_{1}, u_{2}\right\}\right)=O^{+}(x) \cap\left(T-\left\{x, u_{1}, u_{2}\right\}\right)$.

The preceding lemma uses a fairly strict requirement on x and y in order to add exactly 2 or 4 heirs. However it turns out that if y is a king with a sufficiently robust heir, we can meet the conditions of the lemma.

Lemma 2.9. Suppose x and y are kings of a tournament T with arc $(x, y), u$ is an heir of y. Let V^{\prime} consist of the vertices of T with y and all heirs of y removed. If $O^{+}(y) \cap V^{\prime}=O^{+}(u) \cap V^{\prime}$, then x is a king of $T-\{y\}$.

Proof. For any heir of y, the inset of u must contain the inset of y, otherwise u could reach y in two steps. Consequently, x is directed toward all heirs of y. For any other vertex v of T if x can reach v in two steps via y then x can reach v in two steps via u.

It is essential at this point to emphasize that adding heirs via Corollary 2.6 or Lemma 2.8 creates an heir with precisely such a relationship as described in the previous lemma. In Theorem 2.11, Theorem 3.5 and Lemma 3.9 we construct examples by sequentially adding heirs, which is allowed by this property. As our final constructive lemma let us observe that it is not difficult to append vertices which are neither kings nor heirs.

Lemma 2.10. Suppose T is a tournament on at least two vertices with royal sequence $\left[k ; h_{1}, \ldots, h_{k} ; r\right]$. Then there exists a tournament T^{\prime} with royal sequence $\left[k ; h_{1}, \ldots, h_{k} ; r+s\right]$ for any positive integer s.

Proof. Let S be any tournament on s vertices. Construct T^{\prime} from T and S by directing every vertex in T toward every vertex is S. We need only show that any vertex of S is neither a king nor an heir. Since there is no path from any vertex of S to any vertex of T, no vertex of S is a king, and since even removing any vertex of T leaves at least one vertex of T remaining, no vertex of S is an heir.

Theorem 2.11. Let $k \geq 5$. Then $\left[k ; h_{1}, \ldots, h_{k} ; r\right.$] is a royal sequence.

Proof. Corollary 2.2 takes care of the case in which all $h_{i}=0$, so we may assume otherwise.

We will construct examples, beginning with the first case, k is odd. Consider the rotational tournament R_{k} on $k=2 t+1 \geq 5$ vertices, labeled $v_{0}, \ldots, v_{2 t}$ with v_{i} directed toward $v_{i+1}, v_{i+2}, \ldots, v_{i+t}$ using subscript addition mod $2 t+1$. Since R_{k} is a regular tournament, every vertex of R_{k} is a king. This tournament will form the subtournament of kings of our tournament T. For each of these kings, we want to be able to add as many heirs as desired by adding vertices and arcs outside of R_{k}, to create T.

Next observe that, $v_{2 t}$ is a king of $R_{k}-v_{0}$, since $v_{2 t}$ can reach v_{1}, \ldots, v_{t-1} in one step and $v_{t}, \ldots, v_{2 t-1}$ via v_{t-1} in two steps, even if v_{0} is
removed. We will construct our royal sequence as follows: Sort h_{i} so h_{1} through h_{l} are not zero and h_{l+1} through h_{k} equal zero (although / might equal $k_{\text {, if no }} h_{i}$ is zero). We may assign h_{l} heirs to v_{l} by Corollary 2.6 or Lemma 2.8 depending on whether $h_{l}=2$ or 4 or not. Then by Lemma 2.9 we may assign h_{l-1} heirs to v_{l-1}, and then to v_{l-2} and so on through v_{1}. Finally we may add r vertices which are neither kings nor heirs by Lemma 2.10.

In the second case, let k be even with $k=2 t+2 \geq 6$, construct a tournament R_{k}^{\prime} as follows: We begin with the rotational tournament $R_{2 t+1}$ and append one vertex as follows: Add vertex u, $\operatorname{arcs}\left(v_{2 t}, u\right)$, (v_{t}, u) and for $i \neq 2 t, i \neq t,\left(u, v_{i}\right)$. The vertex uu has highest out degree in R^{\prime} so is a king. Observe that each of $v_{0}, \ldots, v_{2 t}$ is a king of R^{\prime} and $R^{\prime}-\{u\}=R$. We construct a tournament in a similar fashion as before. We append h_{1} heirs to v_{l} by Corollary 2.6 or Lemma 2.8 and proceed, via Lemma 2.9 to add heirs as before until appending heirs to $/$ vertices, including finally vertex u if $I=k$.

3. Three or four kings

The constructions of the previous section require that we begin with exactly k vertices, all kings. Maurer's theorem demonstrates that this is impossible if $k=4$. Although some of the constructions work for 3 kings, Lemma 2.8 requires that kings have a sufficiently robust relationship, in terms of arcs, which does not necessarily hold when $k=3$. Therefore we must try different approaches for tournaments with 3 or 4 kings.

Suppose T is a tournament with three kings. These must form a three cycle, so we will name them x_{1}, x_{2}, x_{3} with arcs $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)$, $\left(x_{3}, x_{1}\right)$. Fortunately, in most cases the lemmas from the preceding section do apply.

Lemma 3.1. If h_{1}, h_{2}, h_{3} are nonnegative integers such that at least one of h_{i} is greater than zero and not equal to 2 or 4 , then $\left[3 ; h_{1}, h_{2}, h_{3} ; r\right]$ is a royal sequence.

Proof. Assume without loss of generality that h_{1} is greater than zero, $h_{1} \neq 2, h_{1} \neq 4$. Also assume that if exactly one $h_{i}=0$, then $h_{3}=0$. To construct T we use Corollary 2.6 to append h_{1} heirs to x_{1}. If $h_{2}=0$ we
are finished. If $h_{2}=2$ or $h_{2}=4$ then we use Lemma 2.8 ; Lemma 2.9 to append 2 or 4 heirs to x_{3}, otherwise we add h_{2} heirs to x_{3} by Corollary 2.6. We repeat this process by adding h_{3} heirs to x_{2}.

This means we need only consider the cases where h_{i} is 0 , 2 , or 4. We know that in the case of [3;0,0,0;r] we can construct such a tournament by Corollary 2.2 and by Lemma 2.10, so we may assume at least one of h_{i} is not zero.

Lemma 3.2. There exists no tournament T with royal sequence [3;2,0,0;0] or [3;4,0,0;0].

Proof. We may assume without loss of generality that x_{1} has 2 or 4 heirs while x_{2} and x_{3} have none. This set of heirs must form a subtournament T^{\prime}. None of these heirs may be directed toward x_{1} or x_{3} since they cannot reach x_{1} in two or fewer steps. However each vertex must be able to reach x_{3} in two or fewer steps when x_{1} is removed, consequently they must all be directed toward x_{2}, since $O^{-}\left(x_{3}\right)=\left\{x_{2}\right\}$. A consequence of this, is that in order for vertex $v_{i} \in T^{\prime}$ to reach $v_{j} \in T^{\prime}$ it must follow a path of length 2 entirely in T^{\prime}, and thus must be a king in T. This means T has either exactly two kings or exactly 4 kings and 4 vertices, which is a contradiction.

Lemma 3.3. Let $h_{1}=2$ or 4. There exists a tournament T with royal sequence [3; $\left.h_{1}, 0,0 ; r\right]$, with $r>1$.

Proof. Begin with the case $h_{1}=2, r=1$. We construct a tournament on six vertices as follows: x_{1}, x_{2}, x_{3} form a three cycles as above. In addition we have u_{1}, u_{2}, v with the following relationships: $\left(x_{1}, u_{\mathrm{i}}\right)$, $\left(u_{i}, x_{2}\right),\left(x_{3}, u_{i}\right),\left(x_{i}, v\right),\left(u_{1}, u_{2}\right),\left(v, u_{1}\right),\left(u_{2}, v\right), 1 \leq i \leq 2$. This tournament is illustrated in the first tournament of Fig. 1. Each x_{i} reaches v directly and either u_{i} directly, or in the case of x_{2} in two steps via x_{3}. Observe that the outsets of u_{i} and v are strictly contained in the outset of x_{1}, none of the u_{i} nor v is a king, and if any were an heir it must be an heir of x_{1}. Now u_{i} can reach x_{2} directly and x_{3} via x_{2}. Since u_{1}, u_{2}, v form a directed three cycle each can reach the other in two steps. Consequently u_{1} and u_{2} are heirs of x_{1}. On the other hand v cannot reach x_{3} in two steps, so is not an heir of x_{1}, and therefore, not an heir of any king of T. We can change r to any positive integer by

Lemma 2.10 and h_{1} to 4 by Lemma 2.7 and replacing u_{1} with a three cycle.

Fig. 1. The tournaments with sequences $[3 ; 2,0,0 ; 1]$ and $[3 ; 2,2,0 ; 0]$ respectively.

Lemma 3.4. Let $h_{1}=2$ or 4 and $h_{2}=2$ or 4 . There exists a tournament T with royal sequence $\left[3 ; h_{1}, h_{2}, 0 ; r\right]$.

Proof. We start with the case that $h_{1}=h_{2}=2, r=0$ and construct a tournament on seven vertices as follows: x_{1}, x_{2}, x_{3} form a three cycles as above. In addition we have $u_{1}, u_{2}, v_{1}, v_{2}$ with the following relationships: $\left(x_{1}, u_{i}\right),\left(x_{1}, v_{i}\right),\left(x_{2}, u_{1}\right),\left(u_{2}, x_{2}\right),\left(x_{2}, v_{i}\right),\left(x_{3}, u_{i}\right),\left(v_{i}, x_{3}\right)$, $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right),\left(u_{1} v_{1}\right),\left(v_{2}, u_{1}\right),\left(u_{2}, v_{i}\right)$. This tournament is the second tournament in Fig. 1. First observe that each of x_{i} can reach each of u_{j} and v_{k} in one or two steps, so each x_{i} is a king. Next observe that the $O^{+}\left(u_{i}\right) \subset O^{+}\left(x_{1}\right)$ and $O^{+}\left(v_{j}\right) \subset O^{+}\left(x_{2}\right)$, so none of u_{i} nor v_{j} are kings. Finally we observe that u_{i} is a king when x_{1} is deleted from the tournament and v_{i} is a king when x_{2} is deleted from the tournament so each of u_{i} and v_{j} is an heir. We can change h_{i} to 4 by Lemma 2.7 and increase r by Lemma 2.10.

Theorem 3.5. There exists a tournament T with royal sequence $\left[3 ; h_{1}, h_{2}, h_{3} ; r\right]$, with the exceptions of $[3 ; 2,0,0 ; 0]$ and [3;4,0,0;0].

Proof. We have covered almost all cases in the previous lemmas. The only remaining cases have all $h_{i}=2$ or 4 for $i=1,2,3$. However, in the previous lemma observe that x_{1} and u_{2} satisfy the conditions of Lemma 2.9, so we may add 2 or 4 heirs to x_{3} by Lemma 2.8.

Our final case is four kings. We know that it is impossible for a tournament to have exactly four kings and four vertices, so we must have at least one extra vertex. We will first prove that we must have at least one heir.

Lemma 3.6. [4;0,0,0,0;r] fails to be a royal sequence for any tournament T.

Proof. Let T be a tournament with exactly four kings. Let T^{\prime} be the induced subgraph of T on exactly those four kings. T will have either one or three kings. In the first case, if T^{\prime} has exactly one king, say x, since T has four kings, $O^{-}(x)$ is not empty in T. No other vertex of T^{\prime} may be in $O^{-}(x)$ since x is the sole king in T^{\prime}. However, since x has nonempty inset and therefore, by Lemma 1.3 must contain a king, T has a king which is not in T^{\prime}, contradicting our construction. In the second case, let v be the sole vertex of T^{\prime} which is not a king of T^{\prime}, let x be a king of T^{\prime} which v cannot reach in one or two steps within T^{\prime}, and let y be a king in the inset of x. By examining both tournaments of size 4 with three kings (see Fig. 2), we observe that y is unique to each x. Consider now the tournament $T-\{y\}$. Since v must reach x in T via some vertex not in T^{\prime}, the inset of x is not empty in $T-\{y\}$ and so contains a king. That king is not in T^{\prime} by our choice of y and so is an heir of y, consequently T must have at least one heir.

Fig. 2. Two tournaments with four vertices and three kings.
Lemma 3.7. [4; $m, 0,0,0 ; 0], m>0, m \neq 2,4$ is a royal sequence.

Proof. Let T_{1} be the unique strongly connected tournament on four vertices, labeled as in the first tournament in Fig. 2, and T_{2} be any tournament on m vertices with exactly m kings. Create a new tournament T consisting of the vertices and arcs of T_{1} and T_{2} with arcs as follows: Let u be any vertex of T_{2}. Set arcs $\left(u, x_{2}\right)$ and $\left(x_{i}, u\right)$ for all vertices $x_{i}, i \neq 2$. Observe that x_{2} can reach all of T_{2} in two steps via x_{3} or x_{4} and that each of x_{i} can reach x_{j} in one or two steps, so all of x_{i}
are kings of T. Observe that for any u in T_{2}, the outset of u is strictly contained in the outset of x_{1}, so u is not a king, however u is a king in T_{2} and can reach x_{2} directly or x_{3} or x_{4} in two steps via x_{2}, so u is a king in $\mathrm{T}-\left\{x_{1}\right\}$ and hence is an heir of x_{1}.

Lemma 3.8. $[4 ; m, 0,0,0 ; 0], m=2, m=4$ is a royal sequence.

Proof. We will start with two heirs and then extend this to four vertices via Lemma 2.7. Let T_{1} be the first tournament from Fig. 2. Add two vertices u_{1}, and u_{2} with arcs as follows: $\left(u_{1}, u_{2}\right),\left(u_{i}, x_{2}\right),\left(x_{1}, u_{i}\right),\left(x_{3}, u_{i}\right)$, $\left(x_{4}, u_{1}\right),\left(u_{2}, x_{4}\right)$ to create the tournament in Fig. 3. We observe that u_{i} is an heir of x_{1}, thus we have royal sequence $[4 ; 2,0,0,0 ; 0]$.
Furthermore u_{2} and x_{1} satisfy the conditions of Lemma 2.9 so we may extend this tournament to one with royal sequence $[4 ; 4,0,0,0,0]$.

Fig. 3. A tournament with four kings, x_{1} having exactly two heirs.
Lemma 3.9. [4; $\left.h_{1}, h_{2}, h_{3}, h_{4} ; r\right]$ is a royal sequence for any tournament T provided at least one of $h_{i}>0$.

Proof. Without loss of generality we may assume h_{1} is not zero. First suppose none of h_{i} are equal to two or four. Then we use the construction from Lemma 3.7 to set h_{1} heirs and Corollary 2.6 for nonzero values of h_{2}, h_{3}, and h_{4}. Finally we add r vertices which are neither kings nor heirs by Lemma 2.10. Suppose at least one of h_{i} equals 2 or 4 . We may assume, without loss of generality that h_{1} is one such number. Furthermore we will assume that if $h_{i}=0$ and $h_{j} \neq 0$ that $j<i$. We use Lemma 3.8 to attach heirs to x_{2}, then by either Lemma 2.8 or $\underline{2.9}$ add h_{2} heirs to x_{3}, x_{4} until $h_{j}=0$. Finally we add r remaining vertices using Lemma 2.10.

We collect the previous theorems.

Theorem 3.10. There exists a tournament with royal sequence [$\left.k ; h_{1}, \ldots, h_{k} ; r\right], k \geq 1, h_{i} \geq 0, r \geq 0$, with the following restrictions (up to permutations of h_{i}): [1;0;r] if $r>0,[1 ; 2 ; r],[1 ; 4 ; 0],\left[2 ; h_{1}, h_{2} ; r\right]$, [3;2,0,0;0], [3;4,0,0;0], [4;0,0,0,0;r].

4. (2,2)-domination graphs

In the (2,2)-domination graph of a tournament T, the edges are formed by any two vertices each of whom beat all of the remaining vertices in one or two steps. In the previous sections, we formed the restrictions on what kings and heirs can exist in a tournament. From that information, we characterize the structure of (2,2)-domination graphs of tournaments. First we list the only pairs of vertices that can form an edge in dom $\mathrm{d}_{2,2}(T)$.

Lemma 4.1. Let T be a tournament. Then $u v$ is an edge in $\operatorname{dom}_{2,2}(T)$ if and only if
(a) u and v are kings in T, or
(b) u is a king in T and v is an heir of u.

Proof. (\Rightarrow) Since $u v$ is an edge in dom $m_{2,2}(T), u$ beats every vertex except possibly v in at most two steps. Similarly for v. Say that u beats v. If v beats u in at most two steps, they are both kings. If not, v must still beat all other vertices in at most two steps, so u is a king and v is an heir of u. (\Leftarrow) In (a) and (b), both u and v beat all other vertices in $T-\{u, v\}$ in at most two steps, so form the edge $u v$ in $\operatorname{dom}_{2,2}(T)$.

Further, we formulate the structures within the (2,2)domination graphs with the following lemma.

Lemma 4.2. The (2,2)-domination graph of a tournament is formed as follows:
(a) The kings of T form a complete subgraph of dom ${ }_{2,2}(T)$.
(b) An heir forms a pendant vertex with its associated king.
(c) All vertices that are neither kings nor heirs are isolated vertices.

Proof. (a) All kings beat all other vertices in at most two steps, so form a clique. (b) An heir does not beat its king in 2 or fewer steps, but does beat all others, so can only form an edge with that one vertex. (c) All other vertices have at least two vertices they cannot reach in one or two steps, so cannot form an edge with any other vertex.

Finally, we combine the structure of the (2,2)-domination graph with Theorem 3.10 to obtain the characterization of $(2,2)$-domination graphs of tournaments.

Theorem 4.3. G is the $(2,2)$-domination graph of a tournament T on $n \geq 1$ vertices with royal sequence $\left[k ; h_{1}, \ldots, h_{k} ; r\right]$ if and only if G is a complete graph with or without pendant vertices and with or without isolated vertices except for the following:

1. K_{2} with or without pendant vertices and with or without isolated vertices;
2. K_{4} with or without isolated vertices;
3. The graph of $n \geq 2$ isolated vertices;
4. $K_{1,4}$;
5. K_{3} with 2 or 4 vertices pendant to exactly one of its vertices.

Proof. Theorem 3.10 provides all sequences which are not royal sequences, so lays the groundwork for the structure of kings and heirs in a tournament. Lemma 4.1 ; Lemma 4.2 give us the only way the dom ${ }_{2,2}(T)$ edges can be formed and the structures that are created. Using Theorem 3.10, we have the following. [1;0;r],r>0 disallows graph 3 in the theorem. [$2 ; h_{1}, h_{2} ; r$] disallows any copy of K_{2} with or without pendant vertices and with or without isolated vertices, which is graph 1 . Sequence $[1 ; 2 ; r]$ is a subset of the previous constraint, as it is K_{2} with a pendant vertex and possible isolated vertices. We obtain graph 2 with sequence $[4 ; 0,0,0,0 ; r]$ and graph 4 with sequence [$1 ; 4 ; 0$]. Finally, royal sequences $[3 ; 2,0,0 ; 0$] and $[3 ; 4,0,0 ; 0$] disallow graph 5.

References

${ }^{1}$ K.A.S. Factor, L.J. Langley. An introduction to (1,2)(1,2)-domination graphs. Congr. Numer., 199 (2009), pp. 33-38
${ }^{2}$ K.A.S. Factor, L.J. Langley. A characterization of connected $(1,2)(1,2)$-domination graphs of tournaments. AKCE Int. J. Graphs Comb., 8 (1) (2011), pp. 51-62
${ }^{3}$ J.T. Hedetniemi, K.D. Hedetniemi, S.M. Hedetniemi, S.T. Hedetniemi. Secondary and internal distances in sets in graphs. AKCE J. Graphs Combin., 6 (2) (2009), pp. 239-266
${ }^{4}$ J.T. Hedetniemi, K.D. Hedetniemi, S.M. Hedetniemi, S.T. Hedetniemi. Secondary and internal distances in sets in graphs ii. AKCE J. Graphs Combin., 9 (1) (2012), pp. 85-113
${ }^{5}$ S.M. Hedetniemi, S.T. Hedetniemi, D.F. Rall, J. Knisely. Secondary domination in graphs. AKCE J. Graphs Combin., 5 (2) (2008), pp. 117-125
${ }^{6}$ H.G. Landau. On dominance relations and the structure of animal societies; i. effect of inherent characteristics. Bull. Math. Biophys., 13 (1951), pp. 1-19
${ }^{7}$ H.G. Landau. On dominance relations and the structure of animal societies; ii. some effects of possible social factors. Bull. Math. Biophys., 13 (1951), pp. 245-262
${ }^{8}$ H.G. Landau. On dominance relations and the structure of animal societies; iii the condition for a score structure. Bull. Math. Biophys., 15 (2) (1953), pp. 143-148
${ }^{9}$ S.B. Maurer. The king chicken theorems. Math. Mag., 53 (1980), pp. 67-80
${ }^{10}$ J.W. Moon. Topics on Tournaments. Holt, Rinehart and Winston, NY (1968)

