53,578 research outputs found

    Physical Properties of Traditional and Water-Miscible Oil Paints as Assessed By Single-Sided Nmr

    Get PDF
    Single-sided NMR has been demonstrated as a useful technique for the inexpensive and non-invasive study of cultural heritage objects, including numerous different painting and paint samples. The relatively recent invention of water-miscible oil paints – a new form of environmentally friendly oil paint that can be thinned and cleaned by water – provides a need for analysis of the physical properties of the cured paint films. Single-sided NMR offers an excellent analytical tool to study the structural effects of the emulsifying agent present in water-miscible oil paints on the paint linoxyn network by measuring the transverse (T2) relaxation times for various pigments. In this research, single-sided NMR is shown to be a successful technique in analyzing the physical properties of oil paint networks in comparison to the chemical composition of the paints as assessed by fatty acid ratios produced from complimentary GCMS data. The discovery of a correlation between specific fatty acid ratios and relaxation times suggests that the presence of the emulsifying agent interferes with autoxidation and the cross-linking of the paint network, impeding the relative rate of curing. The conclusions drawn from this research offer the potential for multiple new experiments to better understand the chemistry behind the curing of oil paints in the presence of an emulsifying agent

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Prediction of long and short time rheological behavior in soft glassy materials

    Full text link
    We present an effective time approach to predict long and short time rheological behavior of soft glassy materials from experiments carried out over practical time scales. Effective time approach takes advantage of relaxation time dependence on aging time that allows time-aging time superposition even when aging occurs over the experimental timescales. Interestingly experiments on variety of soft materials demonstrate that the effective time approach successfully predicts superposition for diverse aging regimes ranging from sub-aging to hyper-aging behaviors. This approach can also be used to predict behavior of any response function in molecular as well as spin glasses.Comment: 13 pages, 4 figure

    Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings

    Get PDF
    The mechanical properties of an alkyd resin filled with zinc oxide pigment were studied at different concentrations over a wide range of time scales using dynamic mechanical analysis, quartz crystal rheometry and nanoindentation. The motivation for this work stems from the interest in accessing the long-term properties of paint coatings by studying the mechanical properties of historic paints. In this foundational work, we compare three different modalities of mechanical measurements and systematically determine the effect of pigment filler loading on the measured properties. Quantitative agreement between the methods is obtained when the characteristic time scales of each of the methods is taken into account. While nanoindentation is the technique most readily applied to historic paint samples, the rheometric quartz crystal microbalance (rheo-QCM) is the best suited for obtaining mechanistic information from measurements of paint properties over time, provided that appropriate thin-film samples can be produced. In these studies we find that ZnO increases the rate of oxidation of the alkyd during the initial stages of cure by an amount that depends on the ZnO content

    Non-intrinsic origin of the Colossal Dielectric Constants in CaCu3Ti4O12

    Full text link
    The dielectric properties of CaCu3Ti4O12, a material showing colossal values of the dielectric constant, were investigated in a broad temperature and frequency range extending up to 1.3 GHz. A detailed equivalent circuit analysis of the results and two crucial experiments, employing different types of contacts and varying sample thickness, provide clear evidence that the apparently high values of the dielectric constant in CaCu3Ti4O12 are non-intrinsic and due to electrode polarization effects. The intrinsic properties of CaCu3Ti4O12 are characterized by charge transport via hopping of localized charge carriers and a relatively high dielectric constant of the order of 100.Comment: 4 pages, 4 figure

    Dielectric properties of Li2O-3B2O3 glasses

    Full text link
    The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the transparent glasses in the composition Li2O-3B2O3 (LBO) were investigated in the 100 Hz- 10 MHz frequency range. The dielectric constant and the loss in the low frequency regime were electrode material dependent. Dielectric and electrical relaxations were respectively analyzed using the Cole-Cole and electric modulus formalisms. The dielectric relaxation mechanism was discussed in the framework of electrode and charge carrier (hopping of the ions) related polarization using generalized Cole-Cole expression. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was 0.80 \pm 0.02 eV, which was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. Temperature dependent behavior of the frequency exponent (n) suggested that the correlated barrier hopping model was the most apposite to rationalize the electrical transport phenomenon in Li2O-3B2O3 glasses. These glasses on heating at 933 K/10h resulted in the known non-linear optical phase LiB3O5.Comment: 32 pages, 13 figure

    Apparent giant dielectric constants, dielectric relaxation, and ac-conductivity of hexagonal perovskites La1.2Sr2.7BO7.33 (B = Ru, Ir)

    Full text link
    We present a thorough dielectric investigation of the hexagonal perovskites La1.2Sr2.7IrO7.33 and La1.2Sr2.7RuO7.33 in a broad frequency and temperature range, supplemented by additional infrared measurements. The occurrence of giant dielectric constants up to 10^5 is revealed to be due to electrode polarization. Aside of dc and ac conductivity contributions, we detect two intrinsic relaxation processes that can be ascribed to ionic hopping between different off-center positions. In both materials we find evidence for charge transport via hopping of localized charge carriers. In the infrared region, three phonon bands are detected, followed by several electronic excitations. In addition, these materials provide further examples for the occurrence of a superlinear power law in the broadband ac conductivity, which recently was proposed to be a universal feature of all disordered matter.Comment: 8 pages, 7 figure

    Multiferroic behavior in CdCr2X4 (X = S, Se)

    Full text link
    The recently discovered multiferroic material CdCr2S4 shows a coexistence of ferromagnetism and relaxor ferroelectricity together with a colossal magnetocapacitive effect. The complex dielectric permittivity of this compound and of the structurally related CdCr2Se4 was studied by means of broadband dielectric spectroscopy using different electrode materials. The observed magnetocapacitive coupling at the magnetic transition is driven by enormous changes of the relaxation dynamics induced by the development of magnetic order
    • …
    corecore