1,953 research outputs found

    A hybrid solution approach for the 3L-VRP with simultaneous delivery and pickups

    Get PDF
    This paper deals with a special vehicle routing problem with backhauls where each customer receives items from a depot and, at the same time, returns items back to the depot. Moreover, time windows are assumed and three-dimensional loading constraints are to be observed, i.e. the items are three-dimensional boxes and packing constraints, e.g. regarding load stability, are to be met. The resulting problem is the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), time windows, and three-dimensional loading constraints (3L-VRPSDPTW). This problem occurs, for example, if retail stores are supplied by a central warehouse and wish to return packaging material.A particular challenge of the problem is to transport delivery and pickup items simultaneously on the same vehicle. In order to avoid any reloading effort during a tour, we consider two different loading approaches of vehicles: (i) loading from the back side with separation of the loading space into a delivery section and a pickup section and (ii) loading at the long side. A hybrid algorithm is proposed for the 3L-VRPSDPTW consisting of an adaptive large neighbourhood search for the routing and different packing heuristics for the loading part of the problem. Extensive numerical experiments are conducted with VRPSDP instances from the literature and newly generated instances for the 3LVRPSDPTW

    Hybrid Algorithms for the Vehicle Routing Problem with Pickup and Delivery and Two-dimensional Loading Constraints

    Get PDF
    We extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and two-dimensional loading problem, called PDP with two-dimensional loading constraints (2L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. Each request consists of a given set of 2D rectangular items with a certain weight. The vehicles have a weight capacity and a rectangular two-dimensional loading area. All loading and unloading operations must be done exclusively by movements parallel to the longitudinal axis of the loading area of a vehicle and without moving items of other requests. Furthermore, each item must not be moved after loading and before unloading. The problem is of interest for the transport of rectangular-shaped items that cannot be stacked one on top of the other because of their weight, fragility or large dimensions. The 2L-PDP also generalizes the well-known Capacitated Vehicle Routing Problem with Two-dimensional Loading Constraints (2L-CVRP), in which the demand of each customer is to be transported from the depot to the customer’s unloading site.This paper proposes two hybrid algorithms for solving the 2L-PDP and each one consists of a routing and a packing procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood search for the one-dimensional PDP and the packing procedure uses six different constructive heuristics for packing the items. Computational experiments were carried out using 60 newly proposed 2L-PDP benchmark instances with up to 150 requests

    A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints

    Get PDF
    In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and three-dimensional loading problem, called PDP with 3D loading constraints (3L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. In the 3L-PDP, each request is given as a set of 3D rectangular items (boxes) and the vehicle capacity is replaced by a 3D loading space. We investigate which constraints will ensure that no reloading effort will occur, i.e. that no box is moved after loading and before unloading. A spectrum of 3L-PDP variants is introduced with different characteristics in terms of reloading effort. We propose a hybrid algorithm for solving the 3L-PDP consisting of a routing and a packing procedure. The routing procedure modifies a well-known large neighborhood search for the 1D-PDP. A tree search heuristic is responsible for packing boxes. Computational experiments were carried out using 54 newly proposed 3L-PDP benchmark instances

    A hybrid algorithm for the vehicle routing problem with three-dimensional loading constraints and mixed backhauls

    Get PDF
    In this paper, a variant of the vehicle routing problem with mixed backhauls (VRPMB) is presented, i.e. goods have to be delivered from a central depot to linehaul customers, and, at the same time, goods have to be picked up from backhaul customers and brought to the depot. Both types of customers can be visited in mixed sequences. The goods to be delivered or picked up are three-dimensional (cuboid) items. Hence, in addition to a routing plan, a feasible packing plan for each tour has to be provided considering a number of loading constraints. The resulting problem is the vehicle routing problem with three-dimensional loading constraints and mixed backhauls (3L-VRPMB)

    Cosolver2B: An Efficient Local Search Heuristic for the Travelling Thief Problem

    Full text link
    Real-world problems are very difficult to optimize. However, many researchers have been solving benchmark problems that have been extensively investigated for the last decades even if they have very few direct applications. The Traveling Thief Problem (TTP) is a NP-hard optimization problem that aims to provide a more realistic model. TTP targets particularly routing problem under packing/loading constraints which can be found in supply chain management and transportation. In this paper, TTP is presented and formulated mathematically. A combined local search algorithm is proposed and compared with Random Local Search (RLS) and Evolutionary Algorithm (EA). The obtained results are quite promising since new better solutions were found.Comment: 12th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) 2015. November 17-20, 201

    Metaheuristics for the Vehicle Routing Problem with Loading Constraints

    Get PDF
    We consider a combination of the capacitated vehicle routing problem and a class of additional loading constraints involving a parallel machine scheduling problem. The work is motivated by a real-world transportation problem occurring to a wood-products retailer, which delivers its products to a number of customers in a specific region. We solve the problem by means of two different metaheuristics algorithms: a Tabu Search and an Ant Colony Optimization. Extensive computational results are given for both algorithms, on instances derived from the vehicle routing literature and on real-world instances

    The split delivery vehicle routing problem with three-dimensional loading constraints

    Get PDF
     The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints (3L-SDVRP) combines vehicle routing and three-dimensional loading with additional packing constraints. In the 3L-SDVRP splitting deliveries of customers is basically possible, i.e. a customer can be visited in two or more tours. We examine essential problem features and introduce two problem variants. In the first variant, called 3L-SDVRP with forced splitting, a delivery is only split if the demand of a customer cannot be transported by a single vehicle. In the second variant, termed 3L-SDVRP with optional splitting, splitting customer deliveries can be done any number of times. We propose a hybrid algorithm consisting of a local search algorithm for routing and a genetic algorithm and several construction heuristics for packing. Numerical experiments are conducted using three sets of instances with both industrial and academic origins. One of them was provided by an automotive logistics company in Shanghai; in this case some customers per instance have a total freight volume larger than the loading space of a vehicle. The results prove that splitting deliveries can be beneficial not only in the one-dimensional case but also when goods are modeled as three-dimensional items

    A branch-and-cut algorithm for vehicle routing problems with three-dimensional loading constraints

    Full text link
    This paper presents a new branch-and-cut algorithm based on infeasible path elimination for the three-dimensional loading capacitated vehicle routing problem (3L-CVRP) with different loading problem variants. We show that a previously infeasible route can become feasible by adding a new customer if support constraints are enabled in the loading subproblem and call this the incremental feasibility property. Consequently, different infeasible path definitions apply to different 3L-CVRP variants and we introduce several variant-depending lifting steps to strengthen infeasible path inequalities. The loading subproblem is solved exactly using a flexible constraint programming model to determine the feasibility or infeasibility of a route. An extreme point-based packing heuristic is implemented to reduce time-consuming calls to the exact loading algorithm. Furthermore, we integrate a start solution procedure and periodically combine memoized feasible routes in a set-partitioning-based heuristic to generate new upper bounds. A comprehensive computational study, employing well-known benchmark instances, showcases the significant performance improvements achieved through the algorithmic enhancements. Consequently, we not only prove the optimality of many best-known heuristic solutions for the first time but also introduce new optimal and best solutions for a large number of instances.Comment: 33 pages, 13 figures, 7 tables, Submitted to Transportation Scienc
    • …
    corecore