118 research outputs found

    Hitting minors, subdivisions, and immersions in tournaments

    Full text link
    The Erd\H{o}s-P\'osa property relates parameters of covering and packing of combinatorial structures and has been mostly studied in the setting of undirected graphs. In this note, we use results of Chudnovsky, Fradkin, Kim, and Seymour to show that, for every directed graph HH (resp. strongly-connected directed graph HH), the class of directed graphs that contain HH as a strong minor (resp. butterfly minor, topological minor) has the vertex-Erd\H{o}s-P\'osa property in the class of tournaments. We also prove that if HH is a strongly-connected directed graph, the class of directed graphs containing HH as an immersion has the edge-Erd\H{o}s-P\'osa property in the class of tournaments.Comment: Accepted to Discrete Mathematics & Theoretical Computer Science. Difference with the previous version: use of the DMTCS article class. For a version with hyperlinks see the previous versio

    Parameterized Directed kk-Chinese Postman Problem and kk Arc-Disjoint Cycles Problem on Euler Digraphs

    Full text link
    In the Directed kk-Chinese Postman Problem (kk-DCPP), we are given a connected weighted digraph GG and asked to find kk non-empty closed directed walks covering all arcs of GG such that the total weight of the walks is minimum. Gutin, Muciaccia and Yeo (Theor. Comput. Sci. 513 (2013) 124--128) asked for the parameterized complexity of kk-DCPP when kk is the parameter. We prove that the kk-DCPP is fixed-parameter tractable. We also consider a related problem of finding kk arc-disjoint directed cycles in an Euler digraph, parameterized by kk. Slivkins (ESA 2003) showed that this problem is W[1]-hard for general digraphs. Generalizing another result by Slivkins, we prove that the problem is fixed-parameter tractable for Euler digraphs. The corresponding problem on vertex-disjoint cycles in Euler digraphs remains W[1]-hard even for Euler digraphs

    Packing Strong Subgraph in Digraphs

    Get PDF
    In this paper, we study two types of strong subgraph packing problems in digraphs, including internally disjoint strong subgraph packing problem and arc-disjoint strong subgraph packing problem. These problems can be viewed as generalizations of the famous Steiner tree packing problem and are closely related to the strong arc decomposition problem. We first prove the NP-completeness for the internally disjoint strong subgraph packing problem restricted to symmetric digraphs and Eulerian digraphs. Then we get inapproximability results for the arc-disjoint strong subgraph packing problem and the internally disjoint strong subgraph packing problem. Finally we study the arc-disjoint strong subgraph packing problem restricted to digraph compositions and obtain some algorithmic results by utilizing the structural properties

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an s′s'-t′t' path P′P' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path P⊆EP\subseteq E and a spanning tree T⊆ET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)
    • …
    corecore