1 research outputs found

    Analysis of TCP Performance over a Low-Delay MAC Protocol Designed for Satellite-based Sensor Networks

    Get PDF
    Advances in terrestrial network technology such as fibre optic cables have significantly increased data rates and reduced cost, making it highly attractive for high-speed data networks. However, satellite communication remains competitive for certain applications where it has clear advantages over other technologies including fibre optic cables. The point to multipoint broadcast capability of a satellite is an important characteristic that allows multiple sub-networks or nodes to be controlled simultaneously by a single transmission. Similarly, multiple sub-networks or nodes can send data to a central point through a common channel, instead of using multiple point-to-point channels. This facilitates implementation of unique supervisory control and data acquisition systems such as a sensor network to monitor oil and gas pipelines or for agricultural purposes. One important problem in design of a satellite data network is how uncoordinated sources can share the common satellite channel. A multiple access control protocol is required to achieve efficient sharing of the channel while meeting the user traffic constraints. This paper investigates effects TCP performance when used with a new low-delay protocol that integrates Random Access and Bandwidth-on-Demand techniques
    corecore