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Abstract: Advances in terrestrial network technology such as fibre optic cables have 

significantly increased data rates and reduced cost, making it highly attractive for high-

speed data networks. However, satellite communication remains competitive for certain 

applications where it has clear advantages over other technologies including fibre optic 

cables. The point to multipoint broadcast capability of a satellite is an important 

characteristic that allows multiple sub-networks or nodes to be controlled simultaneously 

by a single transmission. Similarly, multiple sub-networks or nodes can send data to a 

central point through a common channel, instead of using multiple point-to-point channels. 

This facilitates implementation of unique supervisory control and data acquisition systems 

such as a sensor network to monitor oil and gas pipelines or for agricultural purposes. One 

important problem in design of a satellite data network is how uncoordinated sources can 

share the common satellite channel. A multiple access control protocol is required to 

achieve efficient sharing of the channel while meeting the user traffic constraints. This 

paper investigates effects TCP performance when used with a new low-delay protocol that 

integrates Random Access and Bandwidth-on-Demand techniques. 
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1. Introduction 

Many people rely on the Internet for communications every day. It supports a diverse range of 

applications, each of which generates traffic with distinct characteristics and needs. The performance 
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of these applications depends to a large extent on capacity [1][3], packet loss [1][2], and end-to-end 

delay [4] characteristics of the underlying network links.  

Network capacity is a measure of how much data can be transferred instantaneously, and is an 

important factor for applications that send large amounts of data i.e. long-lived flows to send large 

files, emails, film downloads, cloud storage or exchange datasets between applications. In recognition 

of this fact, major investments have been made to upgrade the core Internet infrastructure resulting in 

relatively cheap access to capacity, with global average peak access speeds above 18 Mbps [5]. Many 

complementary methods have also been proposed to increase throughput (i.e. bandwidth utilisation) of 

high-capacity paths [6][7] and to better utilise links with limited and/or variable bandwidth [8][9]. 

These are positive steps towards providing better support and higher performance for the majority of 

Internet traffic, especially during peak traffic periods. 

In contrast, short-lived flows that send only a small amount of data at a time constitute a majority of 

Internet connections [5][10][11]. For this class of application, latency (i.e. time delay to complete a 

transaction) is the main performance metric. One of the top online-based commercial stores 

(Amazon.com) recently estimated that every 100ms delay reduces profit by 1% [12].  

Marissa Mayer, former Google executive, also said that when the „Google Maps‟ home page was 

reduced in size from 100KB to about 70KB, user traffic increased by 10% in the first week and 25% 

more in the following three weeks [13]. This improvement was due to faster page load time. Google 

then reported that increasing the retrieval time of its search page from 400ms (old page with 10 results) 

to 900ms (new page with 30 results), decreased traffic and ad revenues by 20% [13]. 

A different set of results shows that end-users are willing to wait no longer than 4-8 seconds for a 

web page to be displayed [15][16], or 10 seconds for an Internet video streaming session to startup 

[14][16], before quitting or restarting the connection.  

These studies provide motivation for the research summarized in this paper, which seeks to address 

startup latency of satellite broadband for a growing sector of wireless sensor applications connecting to 

the Internet via satellite, and other long-haul wireless technologies. 

2. DRAWBACK OF SATELLITE BOD MECHANISM 

    Even as the Internet has become a fundamental commodity for many people around the globe, a 

significant number that reside in remote (35% in Europe) and developing regions (84% in Africa) still 

have poor Internet access, or none at all [17]. Getting high-speed (broadband) Internet access to many 

of these regions using fiber or other cable technologies is too expensive. However due to the 

importance of the Internet as a means of providing basic healthcare, education, and employment, it is 

now a common global policy to enable broadband Internet access for everyone. This requires enabling 

technologies such as long-range wireless or satellite networks. Satellites have special capabilities, 

which can be used to great advantage in this regard. A satellite can receive signals from, and transmit 

signals to all satellite terminals in its coverage area, allowing efficient distribution of data to very large 

number of users [18]. A mechanism is needed to share the transmit radio channel between 

geographically distributed users. This is called a satellite multiple access control (MAC) protocol [19].  

Satellite equipment cost represents start-up cost for both the network operator and the service users. 

The cost of operation, which represents the dominant long-term cost, is determined by the bandwidth 

efficiency and complexity of the system [20]. Hence many satellite systems now use sophisticated 
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bandwidth-on-demand (BoD) MAC protocols to optimize bandwidth efficiency. This follows a gradual 

evolution from early generation satellite systems that used frequency division multiple access 

(FDMA), random access (RA), and time division multiple access (TDMA) techniques. Unfortunately, 

BoD can add an extra delay component to the application latency. While this delay may be small for 

long-lived flows where the satellite terminal is continuously busy, it can be in the order of several 

seconds when the terminal requesting capacity was previously idle [21][22]. 

• Initial Access Delay 

Initial access delay occurs when a return channel satellite terminal (RCST) is logged-on and has no 

previous allocations, or following a period with no traffic from an idle terminal (referring to a terminal 

that is logged-on but exchanging only control/signalling information with the network control centre 

(NCC)). If new traffic arrives while the RCST is in this state, it has to submit a capacity request (CR) 

and wait for timeslot allocations from the NCC before packets can be transmitted. This request-

allocation cycle is called BoD access delay. Similarly, when traffic is still growing (e.g. following a 

DNS request or TCP SYN packet), it is difficult to accurately predict the capacity needed for the initial 

demand in terms of volume, rate and time of allocation (i.e. due to TCP slow start, or variable rate 

applications). This results in a BoD system introducing initial delay when optimizing for allocation 

efficiency, or bandwidth over-allocation when optimizing for application performance [22][23]. 

• Additional Capacity Delay 

Additional capacity delay occurs for an active terminal (referring to a terminal that is logged-on and 

currently transmitting user data traffic) if the traffic arrival rate exceeds network allocation rate. This is 

normally due to an unpredicted increase in traffic (e.g. due to a scene-change in variable-bit-rate video, 

or the start of additional traffic flows), or when allocation reduces unexpectedly (e.g. due to rain-fade, 

movement of a mobile terminal to a location with a different channel condition, or loss of a capacity 

request). If any of these two events occur, this causes the terminal queues to buildup (or packets are 

dropped) due to insufficiency of transmission slots. To empty these queues or to prevent packet losses, 

a new request-allocation cycle is required to update the terminal burst time plan (TBTP). 
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3. PROPOSED RA-DAMA INTEGRATION TECHNIQUE 

In [24][25] we proposed a new architecture for combining RA and BOD (herein referred to as DAMA) 

to reduce startup latency of satellite broadband Internet. Two techniques were recommended for use of 

the RA channel, referred to as RA Warm Start and RA Top-up. 

A. RA Warm Start 

RA Warm Start is a technique that avoids initial access delay for a satellite terminal initiating 

transmission after log-on or resuming transmission after a reasonably long idle period. In this period, 

DAMA allocations are not available (as there is no previous traffic to trigger a CR) and the terminal 

would normally wait an entire allocation cycle before receiving transmission slots for a new CR 

generated for the new traffic.  In this state, RA Warm Start uses the RA channel to remove access 

delay before DAMA allocations are assigned. This reduces the response time for interactive 

transactions and real-time messaging. Two Warm Start modes are specified: Exclusive RA mode and 

Switched RA-DAMA mode.  

Exclusive RA mode starts a „RA-eligible flow‟ on the RA channel and aims to maintain the flow on 

this channel for all its duration. RA-eligible flows are defined as flows that benefit from fast packet 

transmission and are able to cope with the loss and low throughput characteristics of the RA channel. 

Switched RA-DAMA mode starts an RA-eligible flow on the RA channel, but aims to dynamically 

switch the flow from RA to DAMA channel as quickly as possible. Exclusive RA mode attempts to 

deliver the packets of a flow exclusively on the RA channel. It is based on the idea that a low-rate of 

RA channel is sufficient to serve an RA-eligible flow. Hence the aggregate flow is queued in a RA 

buffer, which does not solicit DAMA allocations (i.e. no CR is sent due to traffic arrivals on this 

queue).  

Apart from removing access delay during startup, Exclusive RA mode helps to improve system 

efficiency by avoiding DAMA bandwidth over-allocation that occurs with low-rate bursty traffic 

flows. However, if unused DAMA slots become available before the completion of an RA-eligible 

flow (e.g. due to some variable rate DAMA flows), Exclusive RA mode does allow transmission of 

packets on the DAMA channel. This is useful because the DAMA channel is more reliable and 

removes possibility of further RA channel packet losses, thus improving network response time. 

Exclusive RA mode depends heavily on RA channel performance and does not always take advantage 

of DAMA channel. A high PLR could be experienced when demand on the RA channel is high even 

though DAMA channel capacity could be used. 

Switched RA-DAMA mode starts an RA eligible flow on RA channel while also sending a CR for 

DAMA allocations. Hence the rational of this method is to optimize delay performance at the expense 

of low allocation efficiency. When DAMA allocations arrive, the flow is dynamically switched from 

the RA to DAMA channel depending on timeslot availability. Since Switched RA-DAMA mode 

actively takes advantage of both RA and DAMA transmission opportunities, it is more dynamic than 

Exclusive RA mode and allows a higher transmission rate. 

B. RA Top Up 
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RA Top-up is a method to address extra capacity requirements of the terminal when real time 

conversations occasionally send sequence of packets at a speed faster than their average rate (e.g. 

videoconferencing and variable-bit-rate video). This may cause the terminal to be temporarily short of 

capacity allocations, requiring a request-allocation delay before obtaining timeslots for excess packets. 

RA Top-up may take advantage of the RA channel for instantaneous transmission of the excess real 

time packets to mitigate the impact of jitter, queuing delay, and backlogs at the terminal. 

For the considered scenarios, it was shown that the Switched RA-DAMA methods outperform DAMA 

for a large majority of trials. When the CR period is 10 s, DAMA cannot meet the Quality of Service 

(QoS) delay targets for interactive transactions. In contrast, Exclusive RA and Switched RA-DAMA 

response times remain below the target in most of the cases showing considerable performance gains. 

Also, in this case, the two RA methods exhibit similar behaviour unless CRs are also sent using the RA 

channel. Switched RA-DAMA mode (with RA CR) achieves highest performance, with response times 

always below 4 seconds even in presence of high PLR. 

4. TCP ANALYSIS OVER AN INTEGRATED RA-DAMA SYSTEM 

The protocols that control communication of packets across the Internet are organized into a structure 

to form a layered design called the TCP/IP protocol stack [26]. The link (or MAC) layer transfers data 

between adjacent Internet nodes called routers or end-hosts while the transport layer provides end-to-

end communication services for user applications. There are two common transport protocols: 

Transmission Control Protocol (TCP) [27][29] and User Datagram Protocol (UDP) [30]. Most 

common Internet applications, such as the Web, E-commerce, and E-mail, use services provided by 

TCP. 

 

Fig. 4.1 Layering of TCP/IP Internet Protocols at a Host [26] 

TCP is implemented at End-hosts for reliable data transfers, and managing Internet congestion over 

short time periods. When congestion is detected, TCP causes the end-host to reduce its current sending 

rate by half before data transmission continues. This helps to reduce utilisation and prevent unstable 

behaviour due to oversubscription of the network over short-time scales.  

TCP congestion control has been very successful and remains fundamentally unchanged since it 

was invented almost 30 years ago [27]. However due to the varying transport needs of new data 

applications and changes to the underlying network technologies, TCP is continuously being 

challenged. One fundamental goal is to improve Internet latency without causing congestion problems.  



JWSN 2015, 2, 1-0011   ISSN: 2001-6417 

Due to the complex nature of TCP and its extensive use, even a small change can potentially have 

serious consequences. This section investigates how TCP performance may be affected by the dynamic 

switching of traffic flows between parallel MAC channels with different characteristics. This 

potentially creates new transport challenges due to random packet losses, delay variation and packet 

reordering. 

A. Loss of Control Segments During TCP Handshake 

If a TCP segment suffers RA collision during the TCP 3WHS leading to loss of a SYN/ACK or the 

last ACK, the loss would only be detected after the RTO delay at the TCP sender. The SYN packet is 

retransmitted, but only after the cwnd and ssthresh values have been set to reflect the „severe‟ 

congestion implied by the packet loss. 

B. ACK Losses During Data Transfer 

After completion of the 3WHS, the server delivers data requested by the client. Standard TCP sends an 

initial burst of 3 segments and waits for ACKs before further segments are sent. In the case of ACK 

losses on a return link (e.g. from forwarding some ACK packets over the RA channel using Top Up), 

there is no requirement for their retransmission. Therefore if specific ACKs are lost while the 

FlightSize (or cwnd) is small, a TCP sender may wrongly assume that data packets were lost on the 

forward link. This can cause RTO and a false congestion response as illustrated in Figure 3. 

 

Fig. 4.2 Loss of ACK packets during TCP data transfer phase 

A. Data Losses During Data Transfer 

TCP flows may be bi-directional, and may exhibit different traffic patterns in the forward and 

return directions. RA packet loss (even of small control packets) can result in a long-term reduction in 

the performance of TCP flows that continue to become medium-sized bulk transfers. These flows are 

constrained by the combination of a limited ssthresh (after the initial loss) and a large round trip path 

delay, since it can require many more RTTs to complete a transfer as the flow linearly increases the 

cwnd towards a value that is sufficient to sustain a high transfer rate. However, RA systems may not 

be optimal for transmission of large data segments and a well-designed RA-DAMA system should 

avoid using the RA channel to send data segments of medium-sized or long-lived TCP flows. 

B. Packet Reordering 



JWSN 2015, 2, 1-0011   ISSN: 2001-6417 

Packet Reordering is a phenomenon where the order of packets is inverted in the Internet [31], 

which is mostly caused due to parallelism in a device or logical link. Integration of RA-DAMA may 

also cause packet reordering in the following ways: 

I. Link Layer Retransmissions 

Packets lost due to RA collisions could be recovered by link-layer retransmissions [32]. This 

would hide the packet loss from TCP, hence avoiding the negative consequences including RTO and 

congestion control. However in this case, the retransmitted packets may be delivered out-of-order with 

respect to packets belonging to the same traffic flow if the ARQ does not also provide a reordering 

buffer. This would be bad with a long delay, requiring a method (e.g. F-RTO [33] and the Eifel 

algorithm [34][36]) or similar stack improvements to recover from the disordered retransmissions. 

II. QoS Traffic Classification and Scheduling 

Traffic classification techniques allow a separate IP queue behaviour to be assigned for 

different applications or traffic types. DiffServ and IntServ are designed to avoid significant re-

ordering of packets within a flow. That is, they attempt to preserve per-flow order. The modification of 

this architecture may alter this behaviour if not properly managed.  

III. Traffic Switching between RA and DAMA Channels 

The switch of traffic (or unbalanced loading) from a RA to DAMA channel could result in 

reordering of packets at a TCP receiver when the return path implements a queuing method that does 

not preserve per-flow order. Such methods could be motivated by the desire to use the RA channel for 

short packets, where it has the best possibility of reducing the queuing delay. Examples of such 

methods include size-based queuing algorithms [38] (e.g. ACKs-first scheduling and variants of the 

shortest-packet first algorithm). These methods have been used in early routers [37] to reduce the 

queuing delay that can result when ACKs are queued behind larger data segments sent over low 

capacity links. ACK-first based scheduling [3] can produce unusual pathologies when used with TCP, 

and their impact depends on the traffic pattern, as described in the examples below. In these examples 

size-based network queuing is considered for a path that comprises a capacity-constrained return link 

and high-speed forward link using standard queuing: 

 ACKs only RL - When the return link carries only ACKs, the forward path does not benefit 

from these methods. This also has issues when the TCP flow is in part bi-directional and hence 

some segments carry data. The problem is less when only ACKs are sent since ACK reordering 

does not trigger issues it simply slows slow-start.   

 ACKs and Data RL - When the return link predominantly carries ACKs with occasional data 

segments and ACKs, the forward link will observe decreased delay. Bi-directional flows may 

experience slower cwnd growth (disordered ACKs in data segments do not inflate cwnd in 

modern TCP). Overall there may be benefit for forward transfers, which decreases as the 

volume of data increases. The return link data performance may not be appreciably impacted, 

since ACKs are generally much smaller than data. Small packet reordering relative to larger 

packets is a dangerous approach that can trigger congestion control and loss recovery and may 

even trigger RTO. 

 Data and ACKs RL - When the return link predominantly carries data segments with occasional 

ACKs, the forward link will benefit. But Shortest-First queuing can result in reordering of 

bursts when there are variable-sized data segments, which can trigger fast retransmission and 

reduce performance. 

 Data only RL – When the return link carries only data, the forward path does not benefit from 

these methods, and the return path is not significantly impacted by ACK-First queuing. The 

impact of Shortest-First queuing depends on the viability of data segments, but is not 

recommended, since it can result in unpredictable behaviour with specific applications (e.g. 
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block-oriented data transfers that typically send full-sized segments but periodically send small 

segments at end of each block).  

The use of size-based queuing was common in early packet networks, but is not recommended 

for use in the general Internet, since it can lead to erratic application performance [3]. Packet 

reordering causes a number of problems for both TCP and the underlying network [39][40]. These are 

briefly summarized below: 

 When actual packet losses occur, fast retransmit speeds up recovery. But it can have negative 

effects if packet reordering occurs. Excessive packet reordering beyond the SuPACKThreshold 

[41] will trigger spurious fast retransmission possibly causing network congestion. 

 A spurious fast retransmit is followed by fast recovery with resulting impact on the cwnd and 

ssthresh. TCP congestion response in case of ACK based recovery is not as severe as RTO 

based recovery. However if this happens frequently, long-term TCP performance can be 

affected. 

 Packet reordering can cause loss of TCP‟s ACK clock. This causes bursty transmission and 

may lead to packet loss. This problem is caused when new segments cannot be sent in response 

to duplicate ACKs before fast retransmit is triggered. When the ACK finally arrives, all 

accumulated packets at the transmit buffer will be sent in a burst.  

 When a packet is retransmitted due to packet reordering, then measured RTT samples must be 

discarded due to the ambiguity introduced [40]. The TCP sender may not be able to know 

which packet triggered the eventual ACK received. This could cause long retransmission delay 

especially in satellite scenarios. 

 TCP Friendly Rate Control (TFRC) [42] is used by real-time applications to compete for 

bandwidth fairly with TCP flows. TFRC emulates TCP using the throughput equation below to 

calculate a sending rate, X. This equation means packet loss due to reordering will cause the 

sending rate to be kept low. 

 

 

 
C. Packet Jitter 

A system that switches traffic flows from RA to DAMA channel could result in a change of the 

delay, or introduce variation of delay. This is especially the case for size-based network queuing. 

These considerations are in fact most important for scenarios where the traffic may be divided between 

multiple physical layer transmission queues. Sudden changes in delay could adversely impact the TCP 

RTT measurements, potentially resulting in expiry of the RTO and hence an unwanted congestion 

response. This is not expected to be a significant effect when using a modern TCP implementation.   

The impact of delay variation occurs at the application layer. Most TCP applications, such as 

web browsing, are tolerant to small (<RTT) delay variations [43]. On the other hand, performance of 

real-time applications such as VoIP can be affected by delay variation [44][14], resulting in loss at the 

input to a speech codec, or adversely impacting the round-trip estimator used to scale the play-out 

buffer. 

5. SUMMARY AND CONCLUSION 

In the world today, majority of users still access the Internet using terrestrial wired 

technologies. However there is a growing sector of wireless sensor applications that need to connect to 
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the Internet via satellite, and other long-haul wireless technologies, that cannot be disregarded. 

Therefore support for short flows needs to be addressed at both TCP and link layers. Updating one 

without the other is only a partial solution, but together these can provide effective support for all 

Internet users. This paper analyzed the performance of TCP over an integrated RA-DAMA system. 

Three main consequences of RA-DAMA integration include startup losses, packet delay variation, and 

packet reordering. Of these, packet reordering was recognized as the main problem that needs to be 

addressed in future work. 
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