5,090 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Performance analysis of wireless LANs: an integrated packet/flow level approach

    Get PDF
    In this paper we present an integrated packet/flow level modelling approach for analysing flow throughputs and transfer times in IEEE 802.11 WLANs. The packet level model captures the statistical characteristics of the transmission of individual packets at the MAC layer, while the flow level model takes into account the system dynamics due to the initiation and completion of data flow transfers. The latter model is a processor sharing type of queueing model reflecting the IEEE 802.11 MAC design principle of distributing the transmission capacity fairly among the active flows. The resulting integrated packet/flow level model is analytically tractable and yields a simple approximation for the throughput and flow transfer time. Extensive simulations show that the approximation is very accurate for a wide range of parameter settings. In addition, the simulation study confirms the attractive property following from our approximation that the expected flow transfer delay is insensitive to the flow size distribution (apart from its mean)

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Impact of inter-cell interference on flow level performance of scheduling schemes for the UMTS EUL

    Get PDF
    The UMTS Enhanced Uplink (EUL) is expected to provide higher capacity, increased data rates, and smaller latency on the communication link from users towards the network. A key mechanism in EUL traffic handling is the packet scheduler, for which a number of basic schemes can be identified (one-by- one, partial parallel, and full parallel). In this paper we analyze the interaction between the EUL scheduling scheme deployed in the network and the inter-cell interference. On the one hand, different scheduling schemes cause different inter-cell interference patterns on neighbouring cells. On the other hand, the different schemes are affected by inter-cell interference in different ways. The scheduling schemes are evaluated and compared under different approaches for reserving part of the allowed noise rise at the base station for inter-cell interference. For our analysis, we have developed a hybrid analytical/simulation approach allowing for fast evaluation of performance measures such as the mean flow transfer time and fairness expressing how the performance depends on the user’s location. This approach takes into account both the packet-level characteristics and the flow-level dynamics due to the random user behaviour

    Efficient Channel Modeling Methods for Mobile Communication Systems

    Get PDF
    Siirretty Doriast

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers
    corecore