144 research outputs found

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Efficient radio resource management for future generation heterogeneous wireless networks

    Get PDF
    The heterogeneous deployment of small cells (e.g., femtocells) in the coverage area of the traditional macrocells is a cost-efficient solution to provide network capacity, indoor coverage and green communications towards sustainable environments in the future fifth generation (5G) wireless networks. However, the unplanned and ultra-dense deployment of femtocells with their uncoordinated operations will result in technical challenges such as severe interference, a significant increase in total energy consumption, unfairness in radio resource sharing and inadequate quality of service provisioning. Therefore, there is a need to develop efficient radio resource management algorithms that will address the above-mentioned technical challenges. The aim of this thesis is to develop and evaluate new efficient radio resource management algorithms that will be implemented in cognitive radio enabled femtocells to guarantee the economical sustainability of broadband wireless communications and users' quality of service in terms of throughput and fairness. Cognitive Radio (CR) technology with the Dynamic Spectrum Access (DSA) and stochastic process are the key technologies utilized in this research to increase the spectrum efficiency and energy efficiency at limited interference. This thesis essentially investigates three research issues relating to the efficient radio resource management: Firstly, a self-organizing radio resource management algorithm for radio resource allocation and interference management is proposed. The algorithm considers the effect of imperfect spectrum sensing in detecting the available transmission opportunities to maximize the throughput of femtocell users while keeping interference below pre-determined thresholds and ensuring fairness in radio resource sharing among users. Secondly, the effect of maximizing the energy efficiency and the spectrum efficiency individually on radio resource management is investigated. Then, an energy-efficient radio resource management algorithm and a spectrum-efficient radio resource management algorithm are proposed for green communication, to improve the probabilities of spectrum access and further increase the network capacity for sustainable environments. Also, a joint maximization of the energy efficiency and spectrum efficiency of the overall networks is considered since joint optimization of energy efficiency and spectrum efficiency is one of the goals of 5G wireless networks. Unfortunately, maximizing the energy efficiency results in low performance of the spectrum efficiency and vice versa. Therefore, there is an investigation on how to balance the trade-off that arises when maximizing both the energy efficiency and the spectrum efficiency simultaneously. Hence, a joint energy efficiency and spectrum efficiency trade-off algorithm is proposed for radio resource allocation in ultra-dense heterogeneous networks based on orthogonal frequency division multiple access. Lastly, a joint radio resource allocation with adaptive modulation and coding scheme is proposed to minimize the total transmit power across femtocells by considering the location and the service requirements of each user in the network. The performance of the proposed algorithms is evaluated by simulation and numerical analysis to demonstrate the impact of ultra-dense deployment of femtocells on the macrocell networks. The results show that the proposed algorithms offer improved performance in terms of throughput, fairness, power control, spectrum efficiency and energy efficiency. Also, the proposed algorithms display excellent performance in dynamic wireless environments

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF

    Leveraging Cognitive Radio Networks Using Heterogeneous Wireless Channels

    Get PDF
    The popularity of ubiquitous Internet services has spurred the fast growth of wireless communications by launching data hungry multimedia applications to mobile devices. Powered by spectrum agile cognitive radios, the newly emerged cognitive radio networks (CRN) are proposed to provision the efficient spectrum reuse to improve spectrum utilization. Unlicensed users in CRN, or secondary users (SUs), access the temporarily idle channels in a secondary and opportunistic fashion while preventing harmful interference to licensed primary users (PUs). To effectively detect and exploit the spectrum access opportunities released from a wide spectrum, the heterogeneous wireless channel characteristics and the underlying prioritized spectrum reuse features need to be considered in the protocol design and resource management schemes in CRN, which plays a critical role in unlicensed spectrum sharing among multiple users. The purpose of this dissertation is to address the challenges of utilizing heterogeneous wireless channels in CRN by its intrinsic dynamic and diverse natures, and build the efficient, scalable and, more importantly, practical dynamic spectrum access mechanisms to enable the cost-effective transmissions for unlicensed users. Note that the spectrum access opportunities exhibit the diversity in the time/frequency/space domain, secondary transmission schemes typically follow three design principles including 1) utilizing local free channels within short transmission range, 2) cooperative and opportunistic transmissions, and 3) effectively coordinating transmissions in varying bandwidth. The entire research work in this dissertation casts a systematic view to address these principles in the design of the routing protocols, medium access control (MAC) protocols and radio resource management schemes in CRN. Specifically, as spectrum access opportunities usually have small spatial footprints, SUs only communicate with the nearby nodes in a small area. Thus, multi-hop transmissions in CRN are considered in this dissertation to enable the connections between any unlicensed users in the network. CRN typically consist of intermittent links of varying bandwidth so that the decision of routing is closely related with the spectrum sensing and sharing operations in the lower layers. An efficient opportunistic cognitive routing (OCR) scheme is proposed in which the forwarding decision at each hop is made by jointly considering physical characteristics of spectrum bands and diverse activities of PUs in each single band. Such discussion on spectrum aware routing continues coupled with the sensing selection and contention among multiple relay candidates in a multi-channel multi-hop scenario. An SU selects the next hop relay and the working channel based upon location information and channel usage statistics with instant link quality feedbacks. By evaluating the performance of the routing protocol and the joint channel and route selection algorithm with extensive simulations, we determine the optimal channel and relay combination with reduced searching complexity and improved spectrum utilization. Besides, we investigate the medium access control (MAC) protocol design in support of multimedia applications in CRN. To satisfy the quality of service (QoS) requirements of heterogeneous applications for SUs, such as voice, video, and data, channels are selected to probe for appropriate spectrum opportunities based on the characteristics and QoS demands of the traffic along with the statistics of channel usage patterns. We propose a QoS-aware MAC protocol for multi-channel single hop scenario where each single SU distributedly determines a set of channels for sensing and data transmission to satisfy QoS requirements. By analytical model and simulations, we determine the service differentiation parameters to provision multiple levels of QoS. We further extend our discussion of dynamic resource management to a more practical deployment case. We apply the experiences and skills learnt from cognitive radio study to cellular communications. In heterogeneous cellular networks, small cells are deployed in macrocells to enhance link quality, extend network coverage and offload traffic. As different cells focus on their own operation utilities, the optimization of the total system performance can be analogue to the game between PUs and SUs in CRN. However, there are unique challenges and operation features in such case. We first present challenging issues including interference management, network coordination, and interworking between cells in a tiered cellular infrastructure. We then propose an adaptive resource management framework to improve spectrum utilization and mitigate the co-channel interference between macrocells and small cells. A game-theory-based approach is introduced to handle power control issues under constrained control bandwidth and limited end user capability. The inter-cell interference is mitigated based upon orthogonal transmissions and strict protection for macrocell users. The research results in the dissertation can provide insightful lights on flexible network deployment and dynamic spectrum access for prioritized spectrum reuse in modern wireless systems. The protocols and algorithms developed in each topic, respectively, have shown practical and efficient solutions to build and optimize CRN

    QoS-aware and Policy Based Mobile Data O oading

    Get PDF
    corecore