98 research outputs found

    A New Approach for Jamming Attacks using -Packet-Hiding Methods

    Get PDF
    The open nature of the wireless medium leaves it vulnerable to intentional interference attacks, typically referred to as jamming. This intentional interference with wireless transmissions can be used as a launch pad for mounting Denial - of - Service attacks on wireless networks. Typically, jamming has been addressed under an external threat model. In this work, we address the problem of selective jamming attacks in wireless networks. In these attacks, the adversary is active only for a short period of time, selectively targeting messages of high importance. We illustrate the advantages of selective jamming in terms of network performance degradation and adversary effort by presenting two case studies; a selective attack o n TCP and one on routing. We show tha t selective jamming attacks can be launched by performing real - time packet classification at the physical layer. To mitigate these attacks, we develop three schemes that prevent real - time packet classification by combining cryptographic primitives with physical - layer attributes. O ur methods and evaluate their computational and communication overhea

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    JADE: Jamming-Averse Routing on Cognitive Radio Mesh Networks

    Get PDF
    Abstract-The spectrum sensing capability of cognitive radio (CR) enables a lot of opportunities to wireless networks, but also enables intelligent attacks by malicious players. One attack in this category is reactive jamming, in which the attacker senses the wireless spectrum, decodes parts of packets, and selectively interferes with with packets. In so doing, an attacker can reduce energy expenditure and increase stealth while maintaining a high impact. Of the approaches to mitigate jamming, in this work, we focus on the jamming resilient routing in CR mesh networks. To do this we use signal-to-noise-interference ratio (SINR) which reflects the jamming impact. This metric is difficult to measure with commodity radio chipsets that cannot differentiate jamming interference from the received signal. Detecting SINR becomes even harder if reactive jamming is used by an attacker. In this study, we develop a mechanism to estimate SINR under reactive jamming. The estimated SINR information of each wireless link is then used to determine the jamming-averse directivity (JAD) of packets, which improves the routing performance of the victim network. We validate the proposed mechanism with a simulation study, showing that the proposed JAD escorted (JADE) routing dramatically improves routing path discovery performance including path discovery probability, path length, elapsed time for path discovery, retransmission attempts, and path quality under reactive jamming. Among the 200 route requests at 10 different configurations in our simulation, the reactive jammer disrupts the 77.5% of total requests. However, our JADE routing decreases the route discovery failure rate to 7.5% by saving the 96.7% of failed requests

    Literature Study On Cloud Based Healthcare File Protection Algorithms

    Get PDF
    There is a huge development in Computers and Cloud computing technology, the trend in recent years is to outsource information storage on Cloud-based services. The cloud provides  large storage space. Cloud-based service providers such as Dropbox, Google Drive, are providing users with infinite and low-cost storage. In this project we aim at presenting a protection method through by encrypting and decrypting the files to provide enhanced level of protection. To encrypt the file that we upload in cloud, we make use of double encryption technique. The file is been encrypted twice one followed by the other using two algorithms. The order in which the algorithms are used is that, the file is first encrypted using AES algorithm, now this file will be in the encrypted format and this encrypted file is again encrypted using RSA algorithm. The corresponding keys are been generated during the execution of the algorithm. This is done in order to increase the security level. The various parameters that we have considered here are security level, speed, data confidentiality, data integrity and cipher text size. Our project is more efficient as it satisfies all the parameters whereas the conventional methods failed to do so. The Cloud we used is Dropbox to store the content of the file which is in the encrypted format using AES and RSA algorithms and corresponding key is generated which can be used to decrypt the file. While uploading the file the double encryption technique is been implemented

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper
    corecore