2 research outputs found

    Packet Fan-Out Extension for the pcap Library

    Get PDF
    The large availability of multi-gigabit network cards for commodity PCs requires network applications to potentially cope with high volumes of traffic. However, computation intensive operations may not catch up with high traffic rates and need to be run in parallel over multiple processing cores. As of today, the vast majority of network applications - e.g., monitoring and IDS systems - are still based on the pcap library interface which, unfortunately, does not provide the native multi-core support, even though the current underlying capture technologies do. This paper introduces a novel version of the pcap library for the Linux operating system that enables transparent application level parallelism. The new library supports fan-out operations for both multi-threaded and multi-process applications, by means of extended API as well as by a declarative grammar for configuration files, suitable for legacy applications. In addition, the library can transparently run on top of the standard Linux socket as well as on other accelerated active engines. Performance evaluation has been carried out on a multi-core architecture in pure capture tests and in more realistic use cases involving monitoring applications such as Tstat and Bro, with standard Linux socket as well as PFRING and PFQ accelerated engines

    Enif-lang: A specialized language for programming network functions on commodity hardware

    Get PDF
    The maturity level reached by today’s commodity platforms makes even low-cost PCs viable alternatives to dedicated hardware to implement real network functions without sacrificing performance. Indeed, the availability of multi-core processing packages and multi-queue network interfaces that can be managed by accelerated I/O frameworks, provides off-the-shelf servers with the necessary power capability for running a broad variety of network applications with near hardware-class performance. At the same time, the introduction of the Software Defined Networks (SDN) and the Network Functions Virtualization (NFV) paradigms call for new programming abstractions and tools to allow this new class of network devices to be flexibly configured and functionally repurposed from the network control plane. The paper presents the ongoing work towards Enif-Lang (Enhanced Network processIng Functional Language), a functional language for programming network functions over generic middleboxes running the Linux operating system. The language addresses concurrent programming by design and is targeted at developing simple stand-alone applications as well as pre-processing stages of packet elaborations. Enif-Lang is implemented as a Domain Specific Language embedded in the Haskell language and inherits the main principles of its ancestor, including the strong typedness and the concept of function compositions. Complex network functions are implemented by composing a set of elementary operations (primitives) by means of a compact yet expressive language grammar. Throughout the paper, the description of the design principles and features of Enif-Lang are accompanied by examples and use cases. In addition, a preliminary performance assessment is carried out to prove the effectiveness of the language for developing practical applications with the performance level required by 5G systems and the Tactile Internet
    corecore