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Packet Fan–Out Extension for the pcap Library
Nicola Bonelli, Fabio Del Vigna, Stefano Giordano, and Gregorio Procissi

Abstract—The large availability of multi–gigabit network cards
for commodity PCs requires network applications to potentially
cope with high volumes of traffic. However, computation intensive
operations may not catch up with high traffic rates and need to
be run in parallel over multiple processing cores. As of today, the
vast majority of network applications – e.g. monitoring and IDS
systems – are still based on the pcap library interface which,
unfortunately, does not provide the native multi–core support,
even though the current underlying capture technologies do.

This paper introduces a novel version of the pcap library for
the Linux operating system that enables transparent application
level parallelism. The new library supports fan–out operations for
both multi–threaded and multi–process applications, by means
of extended API as well as by a declarative grammar for
configuration files, suitable for legacy applications. In addition,
the library can transparently run on top of the standard Linux
socket as well as on other accelerated active engines. Performance
evaluation has been carried out on a multi–core architecture
in pure capture tests and in more realistic use cases involving
monitoring applications such as Tstat and Bro, with standard
Linux socket as well as PF RING and PFQ accelerated engines.

Index Terms—Accelerated Sockets, Concurrent Programming,
Multi-Core Architectures, Network Applications, Packet Fanout,
pcap Library

I. INTRODUCTION AND MOTIVATION

The technological maturity reached in the last years by
general purpose hardware is pushing commodity PCs as viable
platforms for running a whole bunch of network applications
devoted to traffic monitoring and processing, such as Intrusion
Detection and Prevention Systems, routers, firewall and so
on. Indeed, the availability of 10+ multi–gigabit network
cards allows to easily connect a standard PC to high–speed
communication links and potentially retrieve huge volumes [1]
of heterogeneous traffic streams. In addition, the constant
growth of computational power provided by the large number
of cores available on affordable processors has favoured a
significant interest in the research community towards software
accelerated solutions for efficient traffic handling on traditional
PCs running Unix Operating Systems.

As a result, to date, capturing packets at full rate over multi–
gigabit links is no longer an issue and it is made possible by
several packet I/O frameworks, each of them with its own set
of features. However, traffic capturing is only half of the task
of traffic processing which, in fact, may require a significant
(and, to some extent, orthogonal) phase of packet analysis
thereafter. As a result, the higher packet rate attained by the
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accelerated capture engines may not, by itself, guarantee better
application performance.

Indeed, computation intensive operations do not often catch
up even with the low traffic rates provided by the standard
sockets. In all such cases, the use of accelerated capture
engines does not give any benefit as the application would get
overwhelmed by an excessive amount of packets that cannot
be handled. In fact, in many cases, the overall performance
may even further degrade as the extra CPU power consumed
to accelerate capture operations is no longer available for the
application processing.

When the performance bottleneck is represented by the
application itself, the straightforward way of scaling up perfor-
mance is leveraging on computational parallelism by spread-
ing out the total workload over multiple workers running
on top of different cores. This, in turn, requires on one
hand network applications to be designed according to multi–
thread/multi–process paradigms and, on the other hand, the
underlying capture technology to provide the support for
packet fan–out to split and distribute the total workload among
multiple workers. Currently, albeit with different features and
programmable options, both standard and accelerated sock-
ets support packet fan–out. Unfortunately, most of today’s
network applications are still single–threaded and access live
traffic data through the Packet CAPture library (libpcap,
or pcap in short) [2] rather than using the underlying raw
sockets. Over the years, the pcap library has emerged as the
de–facto standard interface for handling raw traffic data and, as
it will be shown in the following, its use has many practical
advantages. Examples of commercial and non—commercial
applications using pcap include Qosmos ixEngine [3], Net-
workMiner and CapLoader from Netresec [4], Snort [5],
Bro [6], Wireshark [7], and so forth. However, the current
pcap library does not support packet fan–out, thus preventing
transparent application parallelism and hence requiring the ap-
plications themselves to implement the logic to load–balance
the workload across multiple threads or processes.

This work presents the implementation of a new pcap
library for the Linux operating system that supports packet
fan–out while still retaining full backward compatibility with
the current version. The new library is freely available for
download1 and provides an extended interface for network
applications consuming live traffic data.

The paper extends the previous conference version [8] in
several different directions. At first, the new pcap library
itself has been extended with a set of APIs to simplify its use
in practical scenarios. The applicability of the library has also
been broadened to include the explicit support of a full set of
accelerated sockets. In addition, the ongoing research towards

1Repository at https://github.com/awgn/libpcap, branch “fanout”.
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a unified architecture for nearly–agnostic support of any type
of underlying sockets is also given. The experimental part has
been significantly extended by including new sockets in the
performance tests as well as by adding more realistic traffic
scenarios in the library assessment in practical use–cases.

More in detail, Section II presents the state–of–the art of
software accelerated packet I/O, from the most popular low
level capture engines to the higher level approaches for fast
packet switching and routing. The standard scheme for access-
ing live network data on Linux is then provided in Section III,
while Section IV presents a classification of the available
accelerated capture engines into the two broad categories of
active and passive sockets. The section specifically discusses
the different issues that emerge when trying to enable packet
fan–out in both classes and provides the reasons for the current
support of active sockets only. Two specific engines (PF RING
and PFQ) from this category are then briefly introduced as
they will be next used in the experiments to improve the
performance of applications using the newly developed library.
Section V briefly introduces the standard pcap interface by
concisely reporting on its main features and the reasons of its
popularity. Section VI represents the core of the paper and
includes the description of the library for parallelizing native
and legacy applications. Section VII presents a discussion on
how to practically configure software and hardware resources
to effectively take advantage of the new features available
from the library. Experimental assessment is carried out in
Sections VIII and IX that report on the performance improve-
ment brought by the new library in pure speed tests and in
practical use cases involving the well known applications Tstat
and Bro. Section X elaborates upon the extensions needed to
provide the pcap library with the support for passive sockets
and presents the design of a possible unifying architecture
whose development is currently ongoing. Finally, Section XI
concludes the paper.

II. BACKGROUND

As previously discussed, the technological maturity reached
by off–the–shelf hardware platforms has significantly fueled
the research towards effective software accelerated solutions
to packet capture. As a result, the echo–system of accelerated
capture engines is nowadays quite populated.

At the low level, many approaches have been proposed to
remove the limitations of general purpose operating systems.
Many of them are designed to bypass the OS network stack
if not the entire operating system. A detailed review of such
approaches can be found in the papers [9], [10], [11] along
with their comparison and usage guidelines.

One of the first software accelerated engines was
PF RING [12] which proved to be quite successful in case of
1 Gbps links. PF RING uses a memory mapped ring to export
packets to user space processes and supports both vanilla
(“classic”) and modified (“aware”) drivers. More recently,
PF RING ZC (Zero Copy) [13], and Netmap [14], allow a
single CPU to retrieve short sized packets up to full 10 Gbps
line rate by memory mapping the ring descriptors of NICs
at the user space. DPDK [15] is another successful solu-
tion that bypasses the operating system to accelerate packet

capture. DPDK provides a Linux user–space framework for
efficient packet processing on multi–core architectures based
on pipeline schemes. PFQ [16] is a software acceleration en-
gine built upon standard network device drivers that primarily
focuses on programmable packet fan–out. OpenOnLoad [17]
rebuilds the network stack for SolarFlare products to seam-
lessly accelerate existing applications. HPCAP [18] is a packet
capture engine that focuses on the efficient storage of live traf-
fic into non–volatile devices and to perform timestamping and
delivery to multiple listeners at user–space. NetSlices [19] is a
framework developed at Cornell University which provides op-
erating system abstractions towards hardware resources, such
as multi–core processors and multi–queue network adapters.
This allows fast packet processing at user–space with speed
linearly increasing with the number of computational cores.
The Linux kernel itself has significantly improved its capture
performance with the adoption of the efficient TPACKET
(version 3) socket that integrates PACKET MMAP [20] that
efficiently memory maps packets to user–space.

All of the above frameworks provide full control to low–
level packet I/O, from the driver management (which can be
vanilla or modified) to packet delivery to up–layer applica-
tions. The interaction between the underlying capture engine
and the application developer is given by the specific set
of APIs provided by the framework itself. To comply, most
of such frameworks implement specific binding towards the
pcap interface, the de–facto standard library for handling
packet I/O. Indeed, the pcap library is used by the large
majority of network applications, such as tcpdump, wireshark,
snort, Bro and so on. However, when it comes to packet
distribution to multiple workers, the pcap library lacks the
explicit support for packet fan–out. Hence, packet distribution
can only be enabled through either the low–level socket APIs
or by taking advantage of the Received Side Scaling (RSS)
hardware mechanism [21] as discussed in the works [22]
and [23], or finally using additional libraries, such as the Dis-
tributor library of DPDK [24] and the commercial PF RING
ZC library2 for PF RING ZC.

The main contribution of this work is to extend the pcap
library to support a unified packet fan–out mechanism over
different capture–engines. This way, network applications will
be able to select the packet distribution flavor straight from
the libpcap API without the need for managing raw socket
details and hardware configurations. As shown in Section IV,
the extension applies to the general class of active sockets
(which includes TPACKET, PF RING, PFQ) and allows pcap
based applications to split the workload across multiple thread-
s/processes and to transparently replace the underlying capture
engine within the active sockets.

For the sake of completeness, it is worth mentioning that
beside the low level approaches, software acceleration has
also been proposed at higher level in soft–based switches and
routers, seldom taking advantage of the previously mentioned
frameworks. Packetshader [25] was a successful proposal
for a high performing software router that leverages GPU
power to accelerate computation/memory intensive functions.

2Formerly known as libzero library.



3

It relies on a heavily modified driver that provides several
optimizations, such as using a reduced version of the socket
buffer structure and preallocating huge buffers to avoid per–
packet memory allocations. Egi et al. [26] provide a thorough
investigation on how to design and implement high perfor-
mance software routers by distributing workload across cores.

A handful of proposals are based on the Click [27] modular
router. Out of them, Routebricks [28] proposes an architecture
to improve the performance of software–based routing by
using multiple paths both within the same node and across
different nodes by forming a routing cluster. The Netmap
I/O framework has been used to accelerate Click [29] while
FastClick [30] relies on the integration of both Netmap
and DPDK and features I/O batching and advanced multi-
processing techniques. Snap [31] improves the Click perfor-
mance by offloading computation intensive processes to GPUs.
PFQ has been used to accelerate the OpenFlow software
switch OFSoftSwitch [32] and Blockmon [33], a monitoring
framework that borrows the modular principle of Click and
introduces the concept of primitive composition.

Finally, the Snabb switch [34] takes advantage of the kernel
bypass mode of Ethernet I/O and of the Lua scripting language
to build a fast and easy to use networking toolkit.

III. PACKET CAPTURE IN LINUX

In the Linux operating system, the whole mechanism of live
traffic retrieval is initiated by the device driver that manages
packets upon their arrival at the physical interface(s). Such
packets are either made available to the network applications
through the so–called packet sockets, or sent to the network
stack of the operating system when targeting the machine
itself. When used in raw mode, packet sockets provide native
APIs for handling low level operations, such as opening/clos-
ing the socket itself, binding the socket to selected interfaces,
selecting the dispatching method, and so on.

This section aims at describing the main internals of the
default Linux capture socket with specific focus on the less
known packet–dispatching features.

A. Linux Default Capture Socket

The default Linux socket for packet capture is the
AF PACKET socket and its more efficient memory mapped
variant TPACKET (currently at version 3).

As shown in Figure 1, both TPACKET and AF PACKET
support multi–core packet capturing, that is they take advan-
tage of the RSS algorithm to retrieve packets in parallel from
multiple hardware queues of network interfaces.

Since kernel version 3.1, to scale processing across up–
layer computing workers, such a socket supports configurable
packet fan–out to multiple endpoints through the abstraction
of fan–out group. Each thread/process in charge of processing
traffic from a network device opens a packet socket and joins
a common fan–out group: as a result, each matching packet is
queued onto one socket only and the workload is spread upon
the total number of instantiated threads/processes.

Groups are implicitly created by the first socket joining a
group and the maximum number of groups per network device
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Fig. 1. Standard Linux socket

is 65536. Yet, sockets join a fan–out group by means of the
setsockopt system call with the PACKET_FANOUT option
specified. Conversely, sockets can leave a group when closing.
When the last socket registered to the group is closed, the
group itself is deleted as well. Finally, to join an existing
group, new packet sockets must obey the set of common
settings already specified for the group, including the fan–out
mode.

B. Socket Fan–out Modes

Packet fan–out is the straightforward solution to scale
processing performance by distributing traffic workload across
multiple threads/processes. The criteria in which packets are
actually spread out among workers have a significant impact
on both the functional and the performance points of view.

The standard packet socket supports a limited number of
algorithms (modes) for traffic distribution. The available fan–
out modes are presented in the following list.

• The default mode, namely PACKET_FANOUT_HASH,
preserves flow consistency by sending packets of the
same flow to the same packet socket. Practically, a hash
function is computed over the network layer address and
(optionally) transport layer port fields. The result (modulo
the number of sockets participating the group) is used to
select the endpoint to send the packet to.

• The PACKET_FANOUT_LB mode simply implements a
round–robin balancing scheme to choose the destination
socket. This mode is suited for purely stateless processing
as no flow consistency is preserved.

• The PACKET_FANOUT_RND mode selects the destina-
tion socket by using a pseudo–random number generator.
Again, this mode only allows stateless processing.

• The PACKET_FANOUT_CPU mode selects the packet
socket based on the CPU that received the packet.

• The PACKET_FANOUT_ROLLOVER mode keeps send-
ing all data to a single socket until it becomes backlogged.
Then, it moves forward to the next socket in the group
until its exhaustion, and so on.
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• The PACKET_FANOUT_QM mode selects the packet
socket whose number matches the hardware queue where
the packet has been received.

IV. SOFTWARE ACCELERATION

So far, packet fan–out has been introduced as the straightfor-
ward way of scaling performance by splitting traffic workload
among multiple workers, typically running on different cores.
However, when link speeds raise up to multi–gigabit rates, the
default Linux sockets may not be able to catch up with the
actual packet arrival rate, causing a significant drop rate at the
physical interfaces. A typical example is that of VoIP links of
telco operators, in which significant packet rates, up to several
millions packets per second, are common. In all such cases, the
use of accelerated capture sockets is mandatory to increase the
number of packets captured over the wire and dispatched to the
application workers. Notice, however, that packet capture and
distribution to up–layer endpoints are independent operations
and even very efficient capture sockets may not necessarily
support fan–out algorithms.

Generally speaking, accelerated sockets can be divided into
two broad categories to distinguish those that use an active
context to fetch packets from the network card from those
that, instead, execute network driver operations in the calling
context – usually the user–space process. We name the sockets
of the first category as active sockets since they require a
running context (e.g., the NAPI kernel thread) to retrieve
packets from the network device. Conversely, we name as
passive the sockets that fall in the second category.

Among the accelerated sockets presented in Section II,
the active sockets category includes the standard Linux
PF PACKET/TPACKET3, PFQ and PF RING (both in its
classic and aware flavors). Instead, PF RING ZC, Netmap,
and DPDK belong to the class of passive sockets.

Although under different names, all of the active sockets
support packet fan–out in kernel space within the NAPI soft
IRQ context. At this stage, the different implementations allow
to distribute the incoming packets to a group of sockets, by
applying different balancing schemes.

Passive sockets, instead, target top performance by remov-
ing the IRQ latency and thus relying on a more aggressive
polling which executes in the caller context directly3. As
a matter of fact, parallelizing a network application on top
of a passive socket over multiple working threads/processes
requires the application itself to implement a suitable packet
distribution scheme. This, in turn, requires a significant rewrite
of the application code, including the implementation of re-
ceiving threads that poll the NIC and perform packet steering,
the integration of lock–free queues for packets passing, etc.
(incidentally, these are typical issues to be handled when
using DPDK). However, this approach harshly clashes with
the design philosophy of both the original pcap library, which
aims at simplifying the life of applications in capturing/inject-
ing packets, and our variant version that, in addition, target

3Aggressive polling is required to cope with the limited amount of packet
descriptors available in commodity NICs.

performance scaling by means of the fan–out feature with no
modifications to the original source code of applications.

For all the above reasons, the current version of the new
pcap library implements the fan–out feature for active sockets
only, i.e. the standard Linux socket, PF RING and PFQ.
In order to include the support of passive sockets within
the same semantic, an additional fan–out abstraction layer
(FAL) is required. Although not yet fully implemented, a
brief description of the preliminary architecture of the FAL
is reported in Section X.

A. The PF RING accelerated socket

PF RING is a popular family of accelerated sockets. The
family includes a variety of sockets (PF RING, PF RING
DNA, PF RING ZC), each with different network device
drivers and internal semantics. All of the PF RING variants
are supported by a custom pcap library (with no fan–out
feature) implemented by the maintainers that makes it easily
pluggable into legacy applications.

As shown in Figure 2, the classic PF RING (also known
as vanilla PF RING) is an active socket that polls packet
from the NIC through the Linux NAPI. Packets are then
copied into circular buffers that are memory mapped in the
user–space for application consumption. As such, PF RING
allows workload distribution to multiple rings (hence, multiple
applications) and supports packet fan–out through the concept
of clustering. PF RING clusters are very similar to TPACKET
and PFQ groups. Indeed, a set of applications sharing the
same cluster ID receive packets coming from one or more
ingress interfaces according to different balancing algorithms.
Such algorithms typically rely on the aggregated values of
selected IP header fields of either flat or tunnelled packets. As
an example, the “round robin” balancing scheme sends data to
sockets according to round robin algorithm, while the “flow”
algorithm delivers packets to sockets according to the hash
value computed over the 6–tuple <src ip, src port, dst ip, dst
port, protocol, vlan tag>.

In the recent past, the PF RING package contained a set of
hardware–specific optimized (aware) device drivers for several
NICs that significantly increased capturing performance. To
date, classic PF RING ships with vanilla driver only, as very
top performance is left to the PF RING ZC passive socket.

B. The PFQ accelerated socket

The architecture of PFQ as a whole is shown in Figure 3.
In short, PFQ is a Linux kernel module that retrieves packets
from one or more traffic sources, makes some computations
by means of functional engines (the λi blocks in the picture)
and finally delivers them to one or more endpoints.

Traffic sources are either represented by Network Interface
Cards (NICs) or – in case of multi–queue cards – by single
hardware queues of network devices.

Similarly to Linux sockets, PFQ uses the abstraction of
group as the set of sockets that share the same computation
and the same data sources. Each user–space thread or process
opens a socket and registers the latter to a group. The group
is then bound to a set of data sources and is associated
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with a functional computation instantiated as a PFQ–Lang
program [35] that processes and steers packets among the
subscribed endpoints.

V. THE STANDARD PCAP INTERFACE

As above mentioned, packet sockets provide native APIs to
let applications manage their low level operations. The very
popular alternative to the use of native socket APIs is provided
by the Packet CAPture (pcap) library. The libpcap layer
stands logically between the socket level and the application
level and provides standard and unified APIs for generic
packet retrieval and handling. The pcap library is written in
the C language and is available (as open–source) for Unix
like operating systems as well as for Windows, hence easing
application portability. The library provides a rich set of
functions to handle live data and, with respect to native APIs,
adds useful features such as read/write access to trace files and
packet filtering by means of Berkeley Packet Filters (BPF).

The libpcap is widely adopted in commercial and non–
commercial tools and, in fact, many popular network applica-

libpcap

App. 1

Network Device Drivers

kernel space

user space

Capture socket

thread 1 thread 2

App. 2 App. 2

Fig. 4. Multi–workers network applications

tions (such as tcpdump, Wireshark, Tstat etc.) and IDS (Snort,
Bro) are written on top of it.

However, as already mentioned, its major drawback is that
it lacks a native support for multi–thread programming. This
forces developers to implement their own parallel schemes
(such as the one shown in Figure 4) to provide an additional
layer of packet distribution right into the applications them-
selves. Indeed, in the example, both threads of the Application
1 would receive by default an exact replica of the same traffic,
and so would the two instances of the Application 2. This
design looks even more bizarre as the default socket used by
libpcap in the Linux version (TPACKET) natively supports
packet fan–out. The main objective of this work is indeed to
remove this limitation.

VI. PACKET FAN–OUT SUPPORT IN THE PCAP INTERFACE

This section reports on the extension of the current pcap
library that enables packet fan–out to provide flexible support
for multi–core processing.

The starting point was to comply with the basic operation of
the underlying Linux socket TPACKET so as to integrate the
notions of group of sockets and fan–out modes into the pcap
library. This implied a significant rework throughout the whole
library code. However, as all of the changes are buried into
the library implementation, the packet fan–out can be enabled
through the following single API:
int pcap_fanout(pcap_t *p,

int group,
const char *fanout);

Along with the obvious pcap descriptor p, the function
takes the (integer) group identifier and a string representing
the fan–out mode. It returns 0 in case of success and -1 when
the operation cannot be completed4.

The use of this function enables multiple threads of an
application to register to a specific group and obtain a quota
of the overall traffic according to the selected fan–out mode.

When the extended library is used over the standard Linux
socket, the fan–out mode should be selected among the ones
listed in Section III-B. Conversely, when using an alternative
socket, fan–out modes must comply with the ones supported
by the underlying capture engine.

4The specific error string can still be accessed through the function
pcap_geterr(p).
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A. Legacy application: the pcap configuration file

The use of the extended API is well suited when writing a
new application in a multi–threaded fashion. However, many
popular network applications are single threaded and their
refactoring toward a multi-threaded paradigm is not feasible
in most practical cases.

In all such cases, the extended pcap library still allows to
attain parallelism by running multiple instances of the same
application and properly merging the outputs. Indeed, by using
a declarative grammar specified in a configuration file, all
of the processes that capture packets from the same NIC
can join a common group and receive a fraction of the total
traffic according to a specified fan–out algorithm, without any
modifications to the source code.

The grammar of the pcap configuration file has the follow-
ing syntax:

key[@group] = value[,value, value]

where the most commonly used keys are:
• def_group: default group associated with the configu-

ration file
• fanout: string that specifies the fan–out mode (example:
fanout = hash)

• caplen: integer that specifies the capture snaplen (if not
specified by the application itself)

• group_eth<N> = i: force all sockets bound to the
eth<N> interface to join group i (example):
group_eth0 = 2
group_eth3 = 3

Different fan–out modes can also be selected for distinct
groups. As an example, the configuration file may contain the
following two lines:

fanout@2 = hash
fanout@3 = rnd

The use of the configuration file is enabled by the en-
vironment variable PCAP_CONFIG that contains the full
path to the file. The first time it is invoked, the func-
tion pcap_activate checks if the environment variable
PCAP_CONFIG is set and, if so, it parses the file to retrieve
the values of the keys therein specified.

Notice that several keys of the configuration file can also be
specified in the command line by using additional environment
variables, with the consequence of overriding the correspon-
dent settings in the configuration file. A set of common
environment variables is reported in Table I. As an example,
a instance of the application foo launched as:

PCAP_FANOUT="rnd" PCAP_GROUP = 3 foo

will receive traffic according to the ”rnd” fan–out mode on the
group 3, regardless of the values specified in the configuration
file.

B. Accelerated configuration

The combined use of environment variables and the config-
uration file makes applications running totally agnostic to the

TABLE I
PCAP ENVIRONMENT VARIABLES

Environment Variable Description
PCAP_DRIVER Forces the socket type when the device name

cannot be mocked (e.g., PCAP_DRIVER=pfq
or PCAP_DRIVER=pfring)

PCAP_CONFIG Overrides the default configuration files
”/etc/pcap.conf”, ”/root/.pcap.conf”

PCAP_GROUP Specifies the default group for the application
(e.g., PCAP_GROUP=2)

PCAP_GROUP_dev Specifies the group for the sockets bound to
the dev device (e.g., PCAP_GROUP_eth0 =
5)

PCAP_FANOUT Specifies the fan–out algorithm
PCAP_CAPLEN Overrides the pcap snaplen value
PCAP_CHANNEL_dev Specifies the number of channels for device

<dev> (e.g., RSS)
PCAP_IRQ_dev_0 Sets the IRQ affinity of device <dev> (e.g.,

eth0) channel 0

underlying capture engine and to the way it implements the
fan–out stage. As such, although the features of the capture
sockets may be significantly different, the basic semantic of
the pcap configuration does not change and the common set
of environment variables reported in Table I can still be used
irrespective of the underlying technology. However, socket–
dependent features are still available by using the specific
environment variables (e.g., those provided by the specific
capture engines) supported for backward compatibility.

This section describes the specific configurations needed
to use the pcap library on top of the PF RING and PFQ
sockets. It is worth pointing out that analogous arguments may
be applied to other possible accelerated capture engines, if
properly integrated.

PF RING configuration.
The standard Linux socket can be effortlessly replaced with

PF RING by simply prefixing the names of the network de-
vices to be monitored with the string “pfring” (as an example,
pfring:eth3).

The semantic implemented by the new pcap library allows
to select the fan–out algorithm and to choose the group number
of the applications which is transparently mapped into the
cluster ID of PF RING.

As an example, the following two lines enable two sessions
of tcpdump to receive a round robin share of the packets
arriving at the network interface eth3, within the common
group 42.
PCAP_FANOUT="round_robin" PCAP_GROUP = 42

tcpdump -i pfring:eth3
PCAP_FANOUT="round_robin" PCAP_GROUP = 42

tcpdump -i pfring:eth3

It is worth noticing that even the PF RING Zero Copy (ZC)
passive socket is supported and it can be activated by simply
prefixing the name of the network card with the string “zc”.
However, as discussed in Section IV, packet fan–out is not
available in this case as PF RING ZC does not implement
clustering at low level, unless a suitable RSS configuration is
used.

PFQ configuration.
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Similarly to PF RING, the PFQ socket is enabled if the
network device name is prefixed by the string “pfq”. For appli-
cations that do not allow arbitrary names for physical devices
(.e.g, when they expect real device names), its use can still be
enabled by setting the environment variable PCAP_DRIVER
to pfq, and this is true for any other kind of framework.

The general syntax of the device name is the following:

pfq:[device[ˆdevice..]]

where the character ˆ is used to separate the names of multiple
devices.

As previously introduced in Section IV, the major benefit
of using PFQ resides in its programmable fan–out described
through the PFQ–Lang functional language. As such, the
packet fan–out mode may indeed be specified through a PFQ–
Lang program and conveniently placed in the configuration file
as in the following example5:
# Pcap configuration file (PFQ flavor)
def_group = 11
caplen = 64
rx_slots = 131072
> main = do
> tcp
> steer_flow

In some cases, a given group must be associated with a
network device rather than a process. This let a process handle
multiple devices at a time, each under a different group of
sockets. A typical scenario is that of an OpenFlow Software
Switch (e.g., OFSoftSwitch [36]), in which multiple instances
of the switch can run in parallel by means of the new pcap
library, each of them processing a separate portion of the traffic
over a set of network devices.

The PCAP_GROUP_devname environment variable (and
its group_devname counterpart keyword in the config file)
can be used to override the default group for the process when
opening a specific device, as in the following example:

PCAP_DEF_GROUP=42 PCAP_GROUP_eth0=11
tcpdump -n -i pfq:eth0ˆeth1

Here the application tcpdump sniffs traffic on the group 11
from device eth0 and on the default group 42 from the device
eth1.

Finally, there are cases in which an application needs to
open the same device multiple times with different configu-
ration parameters (e.g., with a different criterion for packet
steering). In all such cases, the new library provides the
concept of virtual device, namely a device name postfixed with
the character ’:’ and with a number. This is very similar to the
alias device name, but it does not require the user to create
network aliases at system level. As an example, the next two
lines allow to collect traffic from the network device eth0
under two different group (11 and 23) by virtually renaming
the network interface itself.
group_eth0 = 11
group_eth0:1 = 23

5Notice the use of the character > to prefix each line according to the
Haskell bird style as alternative to the fan–out keyword.
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Fig. 5. Application and interrupt affinities

VII. PCAP FAN–OUT IN PRACTICE

Although the new pcap library is ready to use in paral-
lel applications, the attained performance significantly varies
depending on the overall setup of the computation resources.

By design, the code of the library is re–entrant, which
means that it can be used in both single and multi–threaded
applications. In other words, it just suffices to open a socket,
bind it to one or more devices, and join a socket group with a
specific fan–out algorithm to start receiving a fraction of the
incoming traffic.

It goes without saying that a multi–threaded application
is expected to open a socket on a per–thread basis and be
assigned to a dedicated group. This procedure allows it to cap-
ture the whole traffic coming from a NIC under the specified
packet dispatching algorithm. Obviously, the same reasoning
applies to multiple processes of single–threaded applications.
New threads or processes can join a group at any time. In
that case, the underlying implementation adapts the fan–out
stage to deliver packets to a different number of end–points.
While this is generally an endearing feature, it may however
raise flow consistency issues. For this reason, applications with
strict requirements on flow consistency should be restarted
to guarantee correct results when the number of endpoints
changes.

Using more than one group is also possible – if supported
by the underlying socket – and allows multiple multi–threaded
applications (or groups of processes) to receive the traffic
coming from the same NIC, possibly under different fan–out
algorithms and degrees of parallelism.
A. Applications and Interrupt Affinities

When dealing with parallel computation, the first critical
issue to be addressed is the configuration of the application
affinity, namely the selection of the CPUs that will run the
threads (or instances) of the application itself.

Such a scenario is depicted in Figure 5 in which, as an
example, the affinity of the threads of the application A is set
to CPUs 3, 4 and 5 while the affinity of the two instances of ap-
plication B is set to CPUs 6 and 7. As a good practice, differ-
ent workers (threads/processes) should run on top of different
cores (possibly of the same NUMA node) to take advantage of
maximum computation power. In any case, the application it-
self is ultimately responsible of setting its own affinity. To this
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aim, the non–POSIX API pthread_setaffinity_np as
well as the sched_setaffinity system call can be used
to assign threads and processes to specific cores, respectively.

The bottom part of Figure 5 shows another critical aspect to
be addressed when dealing with packet capturing using active
sockets. Indeed, in addition to user defined threads/processes,
the Linux operating system provides a dedicated kernel thread
(ksoftirqd) for packet capture. Such a thread is designed
to run on top of any CPU serving the soft interrupt (IRQ)
scheduled by network cards. Yet, the set of CPUs running
the capturing kernel threads is defined by the interrupt (IRQ)
affinity. Modern NICs (like 10/40G Intel cards) support
multiple hardware queues (channels), where packets coming
from the network are split into by using the RSS algorithm
The distribution of traffic across such queues allows multiple
ksoftirqd threads to fetch network packets in parallel, thus
improving the receive performance of the system6.

Both the number of channels7 involved in the capturing
operations, and the specific CPUs selected to serve them, are
fundamental parameters to configure for optimal performance.
Again, as a good practice, running an application thread and
a kernel context on the same CPU is in general a bad idea.
Conversely, wherever possible, the application affinity should
be set to avoid core overlapping with the IRQ affinity. The
latter can be set by means of rather naive bash scripts generally
shipped with device drivers code. However, since such an
operation involves the configuration of low level physical
parameters, we argue that this should be handled by the pcap
library. To this purpose we provided a new set of APIs to
let the application itself select on–the–fly the the number of
channels and the IRQ affinity.

At first, the following APIs deals with device channels:
int pcap_set_channels(

const char *dev,
struct pcap_channels const * ch,
int channel_mask,
char *errbuf);

int pcap_get_channels(
const char *dev,
struct pcap_channels *info,
char *errbuf);

The two APIs allow to set and get the number of
hardware queues enabled for a given device. In particu-
lar, the pcap_channels data structure and its associated
channel_mask allow the setter function to selectively up-
date the number of the supported channels for device dev,
namely Rx, Tx, Combined and Other. Conversely, the second
function is used to retrieve the information about this number,
as well as the type of channels enabled for the device.
Nevertheless, depending on the hardware and the driver in
use, some of the channels might not be available. For instance,
the Intel 10G card supports combined channels only, and the
definition of a different number of Rx and Tx channels is not
possible.

6An analogous behavior occurs in the transmission side.
7The number of channels is generally referred to as the RSS parameter,

where RSS = n means that n channels are used on that interface.

Once the information about channels is set, the IRQ affinity
can be set/retrieved through the following APIs:
int pcap_channel_setaffinity(

const char *dev,
int channel_number,
const cpu_set_t *cpuset);

int pcap_channel_getaffinity(
const char *dev,
int channel_number,
cpu_set_t *cpuset);

that define the set of CPUs in charge of handling the IRQs
and retrieve the actual IRQ configuration, respectively.

As an example, the following snippet sets the number of
the combined channels to 2 for the device eth0:
struct pcap_channels ch =

{ .combined_count = 2 };
if (pcap_set_channels(p,

eth0, &ch,
PCAP_COMBINED_CHANNELS) != 1)

{ /* error */ }

whereas the following statement retrieves the full configuration
for the device:
pcap_get_channels(p, eth0, &ch);

In analogous way, it is possible to specify the IRQ affinity to
a specific set of CPUs for each single channel. The following
example sets the affinity for the channel 0 to core 0 and
channel 1 to core 1, respectively:
cpu_set_t cpuset;
CPU_ZERO(&cpuset); CPU_SET(0, &cpuset);
if (pcap_channel_setaffinity(

eth0,
0,
&cpuset) != 1) { /* error */ }

CPU_ZERO(&cpuset);
CPU_SET(1, &cpuset);
if (pcap_channel_setaffinity(

eth0,
1,
&cpuset) != 1) { /* error */ }

Finally, notice that the whole procedure can also be repli-
cated by declaring a few statements in the pcap configuration
file, as in the example reported next:
combined_channels@eth0 = 2
irq@eth0.0 = 0
irq@eth0.1 = 1

VIII. PERFORMANCE EVALUATION

This section aims at assessing the performance of a sim-
ple multi–threaded application using the new pcap library
through the extended API, when running on top of the standard
Linux socket, as well as PF RING and PFQ.

The experimental test bed consists of a pairs of identical
PCs with a 8-core Intel Xeon E5–1660V3 on board running
at 3.0GHz and equipped with Intel 82599 10G NICs and used
for traffic capturing and generation, respectively. Both systems
run a Linux Debian distribution with kernel version 4.9.
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Fig. 6. 10 Gbps packet capture with libpcap over standard Linux socket

A. Speed–Tests

The first set of tests aims at assessing the impact of fan–
out in the performance of the light–weight multi–threaded
pcap application captop8 that simply counts the received
packets when running on top of the standard Linux socket,
PF RING and PFQ, under different packet sizes and number
of underlying capturing cores (different RSS values). Packets
with randomized IP addresses are synthetically generated at
10 Gbps full line rate by pfq-gen, an open–source tool
included in the PFQ distribution.

Figure 6 shows the result of the speed–test when four
working threads of captop retrieve the packet streams on
top of the TPACKET Linux socket according to different fan–
out modes. The whole set of measurements is replicated by
progressively increasing the number of underlying capturing
cores, from 1 to 4 (RSS = 1,. . .,4), yet keeping application and
interrupt affinities not overlapped. Moreover, as a reference
value, the theoretical line rate limit as well as the capturing
rate of a single–threaded instance of captop (“no fanout”)
are also reported for each packet size.

The performance figures are in line with the expected
capabilities of the TPACKET socket and show that full capture
rate is reached at around 128 Bytes long packets when using
the lightest “qm” dispatching algorithm and at the 256 Bytes
long packets in all other cases. However, further interesting
insights come out from the figure. Indeed, especially for short
packets, the introduction of fan–out turns out to accelerate
the overall application capture rate. This effect was somewhat
unexpected, as fan–out is used to distribute traffic among
up–layers working threads and should not impact the pure
underlying capture rate. In fact, this beneficial effect is likely
due to the internal implementation of the Linux socket that
proves to be inefficient in handling contentions when multiple
cores (i.e., NAPI contexts) concurrently inject packets to
a single socket (or to memory mapped rings in the case
of TPACKET). With fan–out enabled, when the number of
application sockets increases, the contention on the socket

8Available at https://github.com/awgn/captop
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Fig. 7. 10 Gbps packet capture with libpcap over PF RING

queues among multiple napi–threads is reduced accordingly,
and this determines a beneficial impact on the performance.

In addition, the observed performance acceleration varies
with the fan–out mode, as each algorithm has a different
computational cost. As a result, the lightest “qm” fan–out
mode (that simply matches an integer number), proves to
outperform both the “rnd” and “hash” modes which need to
either generate random numbers or compute hashes functions
before dispatching packets to the target sockets.

Figure 7 shows the results of the same test when the default
Linux socket is replaced with PF RING using the “flow” and
the “round robin” fan–out schemes. As expected, the use of
vanilla drivers does not allow to attain stellar performance
which, for small packet sizes, drops below the ones reached
by the standard socket. We deem that much better figures could
be reached by using the set of “aware” driver once shipped
with the PF RING release. However, even in this case, line
rate packet capture is still reached for data length of 256 Bytes
and the same beneficial effect of packet fan–out on the socket
capture performance is observed.

For reference purposes, Figure 7 also includes the perfor-
mance of the passive socket PF RING Zero Copy (ZC) run-
ning underneath the new pcap library (to which it keeps se-
mantic compliance), although with no fan–out support. Again,
the results are in line with the expected capture potential of the
socket that proves to attain line rate speed on a single capturing
core. However, notice that packet distribution over multiple
application threads would not be possible in this case unless
the commercial ZC library is purchased separately. Without
such a library, the application threads can be increased through
the RSS algorithm only, albeit they cannot be decoupled from
those fetching packets from the interface.

Figure 8 shows the results of the same test when the PFQ
socket is used to capture packets and distribute them according
to analogous fan–out modes (steering algorithms). Again, the
performance of the pcap application is consistent with the
typical PFQ capture figures which prove to reach line rate
speed even with the shortest packet size. However, in this
case the use of fan–out does not accelerate the application
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Fig. 8. 10 Gbps packet capture with libpcap over PFQ
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performance. This, in fact, is the expected effect of fan–out
and it is consistently observed as the internal lock–free queues
of PFQ efficiently manage multi–core access contention.

The last experiment of this section aims at showing the
impact of the correct selection of the application affinity on
the capture performance. In this test, four capturing cores
(RSS = 4) retrieve a full 10 Gbps stream of traffic from the
physical device and distribute the workload according to the
“qm” fan–out mode across four working threads of captop
that counts the number of received packets and bytes. The
four threads of the application are allowed to run on top of
the capturing cores, so as to span the full range of overlapping
configurations. Figure 9 shows the capture speed attained when
the number of overlapping cores increases from zero (best
affinity configuration) to four (worst affinity configuration)
for different packet sizes. As expected, in spite of the light
computational burden of captop, the capture performance
significantly degrades when the affinity of application threads
and interrupts overlap. This effect is well visible for short
packet length, and vanishes when the packet size increases
due to the lighter effort required to the capturing cores.

IX. USE–CASES

In this section the performance of the new pcap library
in practical use–cases is presented. To this aim, the two well
known network applications Tstat and Bro have been selected
as they are both single–threaded and support live traffic access
through the libpcap library.

In the following experiments, Tstat and Bro are flooded with
different traffic streams at 10 Gbps speed. Synthetic and real
(VoIP) UDP traces with different mean packet sizes are used in
the Tstat experiments, while a real packet trace containing both
TCP and UDP traffic is used with Bro. As it will be elaborated
upon, in some cases the fan–out alone allows to scale the
processing power up to full rate capacity while, in other case,
socket acceleration must be enabled to attain top performance
figures. In all tests, the following metrics are observed:

• Link received, the number of packets captured and man-
aged by the socket. In the following, it will be represented
as a fraction of the packets that are transmitted by the
traffic generator;

• IF dropped, the number of packets that cannot be handled
by the socket and are dropped at the interface level.
Notice that the sum of IF dropped and Link received is
the total number of packets sent;

• App. received, the number of packets processed by the ap-
plication, represented as a fraction of the packet received
at the socket level (Link received);

• App. dropped, the number of packets dropped because
the application is backlogged. Again, notice that App.
received + App. dropped = Link received.

The first two metrics reflect the socket capture efficiency,
and can only be improved by means of socket acceleration.
Conversely, the remaining metrics are associated with the
application processing speed and can be improved by enabling
packet fan–out.

In all experiments, both Tstat and Bro were run with their
default configurations as the main purpose was to show how
performance scale up with multiple cores rather than focusing
on any specific application setup.

A. Tstat

Tstat [37] is a popular tool for generic traffic analysis.
It includes a large number of deterministic and statistical
algorithms and can be used for post–processing of trace files
as well as for stream analysis of live data using the pcap
library.

In the first experiment, Tstat runs on top of the standard
Linux socket (configured with RSS=3) and is injected with
synthetic UDP traffic with average packet size of 300 Bytes
containing up to 4096 different flows. The input traffic rate
saturates the full 10 Gbps line speed, with an average packet
rate of 3.8 Mpps. The results are shown in Figure 10 and prove
that while the Linux socket catches up with the input traffic
speed, a single instance of the application does not, on our
hardware. However, by simply enabling packet fan–out, two
working instances of Tstat are sufficient to process all of the
received packets.
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Fig. 10. Tstat and Linux socket: 10 Gbps traffic analysis with 300 Bytes
average packet size
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Fig. 11. Tstat and PF RING: 10 Gbps traffic analysis with 300 Bytes average
packet size

When TPACKET is replaced by PF RING (Figure 11), the
overall performance is somewhat similar, with two application
instances capable of processing most of the offered traffic. The
figure also shows some fluctuations when using more than two
Tstat workers which may likely be due to contentions that
occur when the three capturing kernel threads push packets in
the application socket queues. Again, the results of PF RING
ZC are also reported and prove that, in spite of being able to
capture the full amount of traffic stream, the spare amount of
processing resources available on the core used to fetch data is
not enough to allow the application to process all the received
packets.

Figures 12 and 13 report the results of TPACKET and
PF RING when running the same experiment with average
packet size decreased to 128 Bytes (and corresponding average
packet rate pushed up to 8.2 Mpps). In both cases, the use of
fan–out allows two working instances of Tstat to effectively
process all of the packets received on the physical device.
However, nearly 40% and 50% of the input packets turns out
to be dropped at the network interface as the input traffic
rate exceeds the potential capture rates of the TPACKET
and “classic” PF RING, respectively. In addition, it can be
noticed that the fraction of data processed by the application
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Fig. 12. Tstat and Linux socket: 10 Gbps traffic analysis with 128 Bytes
average packet size
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Fig. 13. Tstat and PF RING: 10 Gbps traffic analysis with 128 Bytes average
packet size
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Fig. 14. Tstat and PFQ: 10 Gbps traffic analysis with 128 Bytes average
packet size

is even lower in case of using PF RING ZC, due to the
CPU consumption required by the underlying packet capturing
operations that run over the same CPU.

To further improve the performance of the application,
packet fan–out can be conveniently combined with underlying
socket acceleration. Indeed, as shown in Figure 14, the use of
PFQ allows to avoid packet drop at the lower level and packet
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Fig. 15. Tstat and Linux socket: live traffic analysis of a real VoIP trace
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Fig. 16. Tstat and PF RING: live traffic analysis of a real VoIP trace
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Fig. 17. Tstat and PFQ: live traffic analysis of a real VoIP trace

fan–out allows three instances of Tstat to successfully process
nearly all of the input traffic.

In order to test the new library performance in a more
realistic scenario, we run a further set of experiments in
which Tstat is called to live process a real traffic trace that
contains around 200K VoIP flows collected over a backbone
network. Performance was recorded by feeding a varying
number of Tstat instances with the VoIP packet data at around
5 Gbps speed. Figures 15, 16 and 17 show the results

of the experiments when using TPACKET, PF RING and
PFQ capture sockets, respectively. In the first two cases, the
underlying number of channels was set to four (RSS=4) in
order to get the best possible performance, whereas using
PFQ only two channels (RSS=2) were sufficient to fetch all
of the packets from the network device. Overall, the results
confirm the findings of the tests previously carried out with
synthetic traces. The fan–out feature provided by the pcap
library allows TPACKET to scale its performance and let four
Tstat instances process nearly all of the traffic. Notice that
the number of instances could not be further increased on our
architecture without colliding to the underlying IRQ affinity.
Conversely, PF RING still exhibits performance saturation up
to the second fetching cores, so as increasing the number of
Tstat instances beyond two does not increase the percentage of
packets processed by the application. Consistently, the single
instance of Tstat running on top of PF RING ZC does not
reach 60% of the overall amount of packets fetched by the
socket itself.

Finally, the PFQ socket allows the pcap library to ef-
fectively distribute traffic across the applications so as two
instances of Tstat are sufficient to process all the incoming
traffic with two CPUs (RSS = 2) set to run packet fetching
threads in the kernel space.

B. Bro

Analogous tests have been carried out to assess the perfor-
mance of the Bro network security monitor [6] running on top
of the new pcap library.

Bro is a single–threaded computation intensive application
that can be run in both standalone and cluster configuration.
In the second case, the total workload is spread out to
multiple instances (nodes) across many cores by a frontend.
Messages and logs generated by all nodes are then collected
and synchronized by the broctl manager to provide a unified
output.

To date, the classic pcap library could only be used in the
single node configuration. Indeed, to enable parallelism in the
cluster deployment, additional on–host load balancing plug–
ins are required (currently, available plug–ins are available for
PF RING and Netmap sockets). The introduction of packet
fan–out, instead, enables the use of the libpcap interfaces
even in the cluster configuration by only setting a few envi-
ronment variables with no need for extra plugins.

In the presented experiments, a cluster of Bro nodes using
the new pcap library is fed with a real packet trace played
at 2.4 Mpps, corresponding to full 10 Gbps line speed. The
trace was collected over a multi-gigabit link and contained
an aggregate of a few thousand of TCP and UDP flows.
However, given the lower PF RING scaling capability, only
the TPACKETS and the PFQ sockets were used.

Due to the high computation demand requested by each
node, CPU hyper–threading technology was enabled when the
number of Bro instances exceeded the number of physical
cores.

Figure 18 shows the cluster performance when the standard
Linux socket was used with two underlying capturing cores



13

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
a
c
k
e
t 
F

ra
c
ti
o
n
 (

%
)

Number of Bro Instances

Link received
App. received

Fig. 18. Bro: real traffic analysis with standard Linux socket
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Fig. 19. Bro: real traffic analysis with PFQ

(RSS=2). The beneficial effect of fan–out is clearly visible
as the fraction of packets received by the application scales
up to the whole amount of packets received by the socket.
However, the fraction of packet dropped at the interface is
quite significant (up to 40%) and raises the need for socket
acceleration.

Indeed, Figure 19 shows the results obtained when the
standard socket is replaced by PFQ under the same number
(RSS=2) of two capturing cores. The use of the accelerated
socket dramatically reduces the packet drop rate at the in-
terface up to negligible values. This, in turn, significantly
increases the number of packets available to the working nodes
whose performance, indeed, scales linearly up to seven Bro
instances. With more than seven sockets the fraction of packets
received by the application still increases linearly, but the slope
is reduced as the additional cores available through the hyper–
threading technology do not have the same computational
power of physical CPUs. Finally, notice that the number of
physical cores of the PCs used in the experimental setup
limits the maximum cluster cardinality to 14 nodes, as two
of the overall 16 available cores were dedicated to underlying
capturing/steering operations.

Fig. 20. The Fan–out Abstraction Layer

X. TOWARDS THE INTEGRATION OF PASSIVE SOCKETS:
THE FAN–OUT ABSTRACTION LAYER

In Section IV we have discussed the complexity of pro-
viding the pcap library with the packet fan–out support for
passive sockets, such as Netmap and DPDK. This section is
meant to further elaborate upon this topic and to provide a
possible unified architecture to include passive sockets in the
family of fan–out enabled socket supported by the new pcap
library. Figure 20 depicts the complete scheme of the pcap
library as we envision it. The pcap interface still stands
in the top part as it is made of a set of functions that are
invoked by user–space applications to manage sockets and
receive/injects packets to the network. In fact, such functions
are indeed virtual functions (i.e., function pointers), and their
actual implementations are provided by the underlying blocks.
Under the hood, the two families of passive and active of
sockets require a different management. Since passive sockets
lack active threads that fetch packets from the NIC, it is
necessary to build an abstract layer that can handle data
packets and apply the fan–out algorithms. We named this layer
as Fan–out Abstraction Layer (FAL). Currently, the blocks
on the left hand side of the figure (i.e., the ones associated
with the active sockets PFQ, PF RING, and TPACKET) are
fully implemented. On the right hand side, instead, the fan–out
abstraction layer is still under development and its design is
presented here as ongoing research.

In short, the role of the FAL is to hide the underlying
machinery of passive sockets by exposing to the upper layer
an abstract active socket (the fal socket itself) that can
be accessed and managed by applications through the pcap
library with no specific modification to their source code. As
such, the FAL layer is responsible of translating the virtual
directives of the FAL socket into real operations made onto
actual sockets (Netmap, DPDK, etc.). Hence, the FAL must
implement a set of active pollers that fetch packets from
the network interfaces, apply the requested packet fan–out
algorithm, and finally deliver packets to the sockets.

Under the above assumptions, the minimal set of APIs
exposed by the FAL includes four basic classes of functions for
opening/closing the FAL socket, managing fan–out groups and
algorithms, attaching/detaching the FAL socket to physical
network devices and implementing classical I/O primitives for
receiving and transmitting packets.
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Finally, as the system is intended to support both threads
and processes, the implementation of the FAL is designed to
store the configuration data in a shared memory that could
conveniently be accommodated in Linux HugePages [38] for
performance reasons.

XI. CONCLUSION

In spite of its widely common use in network applications,
the current implementation of the pcap library lacks of work-
load splitting capabilities, thus preventing multi–core traffic
processing schemes in legacy applications. This paper presents
an extension of the libpcap interface for the Linux operating
system that integrates packet fan–out support. The new library
enables both native application multi–threading through the
extended API as well as transparent multi–core acceleration
for legacy applications by means of suitable environment
variables and configuration files. The experimental validation
has been extensively carried out in several scenarios by using
standard and accelerated capture engines from the family of
active sockets.
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