22 research outputs found

    PUMA2—grid-based high-throughput analysis of genomes and metabolic pathways

    Get PDF
    The PUMA2 system (available at ) is an interactive, integrated bioinformatics environment for high-throughput genetic sequence analysis and metabolic reconstructions from sequence data. PUMA2 provides a framework for comparative and evolutionary analysis of genomic data and metabolic networks in the context of taxonomic and phenotypic information. Grid infrastructure is used to perform computationally intensive tasks. PUMA2 currently contains precomputed analysis of 213 prokaryotic, 22 eukaryotic, 650 mitochondrial and 1493 viral genomes and automated metabolic reconstructions for >200 organisms. Genomic data is annotated with information integrated from >20 sequence, structural and metabolic databases and ontologies. PUMA2 supports both automated and interactive expert-driven annotation of genomes, using a variety of publicly available bioinformatics tools. It also contains a suite of unique PUMA2 tools for automated assignment of gene function, evolutionary analysis of protein families and comparative analysis of metabolic pathways. PUMA2 allows users to submit batch sequence data for automated functional analysis and construction of metabolic models. The results of these analyses are made available to the users in the PUMA2 environment for further interactive sequence analysis and annotation

    Sentra: a database of signal transduction proteins for comparative genome analysis

    Get PDF
    Sentra (), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentra's infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users

    metaSHARK: a WWW platform for interactive exploration of metabolic networks

    Get PDF
    The metaSHARK (metabolic search and reconstruction kit) web server offers users an intuitive, fully interactive way to explore the KEGG metabolic network via a WWW browser. Metabolic reconstruction information for specific organisms, produced by our automated SHARKhunt tool or from other programs or genome annotations, may be uploaded to the website and overlaid on the generic network. Additional data from gene expression experiments can also be incorporated, allowing the visualization of differential gene expression in the context of the predicted metabolic network. metaSHARK is available at

    Current trends in the bioinformatic sequence analysis of metabolic pathways in prokaryotes

    Get PDF
    The study of metabolic pathways is becoming increasingly important to exploit an integrated, systems-level approach for optimizing a desired cellular property or phenotype. In this context, the integration of genomics data with genetic, metabolic and regulatory models is essential because the systematic design of artificial, biological systems requires the identification of robust building blocks like gene promoters, metabolic pathways or genetic circuits taken from natural organisms, and manipulated to develop ad hoc features. Computational tools allowing precise descriptions of natural pathways might thus allow improving the performance of artificial routes. In this review, we introduce the most recent bioinformatics tools enabling detailed characterizations of metabolic pathways in bacteria from different perspectives

    Pathway Projector: Web-Based Zoomable Pathway Browser Using KEGG Atlas and Google Maps API

    Get PDF
    BACKGROUND: Biochemical pathways provide an essential context for understanding comprehensive experimental data and the systematic workings of a cell. Therefore, the availability of online pathway browsers will facilitate post-genomic research, just as genome browsers have contributed to genomics. Many pathway maps have been provided online as part of public pathway databases. Most of these maps, however, function as the gateway interface to a specific database, and the comprehensiveness of their represented entities, data mapping capabilities, and user interfaces are not always sufficient for generic usage. METHODOLOGY/PRINCIPAL FINDINGS: We have identified five central requirements for a pathway browser: (1) availability of large integrated maps showing genes, enzymes, and metabolites; (2) comprehensive search features and data access; (3) data mapping for transcriptomic, proteomic, and metabolomic experiments, as well as the ability to edit and annotate pathway maps; (4) easy exchange of pathway data; and (5) intuitive user experience without the requirement for installation and regular maintenance. According to these requirements, we have evaluated existing pathway databases and tools and implemented a web-based pathway browser named Pathway Projector as a solution. CONCLUSIONS/SIGNIFICANCE: Pathway Projector provides integrated pathway maps that are based upon the KEGG Atlas, with the addition of nodes for genes and enzymes, and is implemented as a scalable, zoomable map utilizing the Google Maps API. Users can search pathway-related data using keywords, molecular weights, nucleotide sequences, and amino acid sequences, or as possible routes between compounds. In addition, experimental data from transcriptomic, proteomic, and metabolomic analyses can be readily mapped. Pathway Projector is freely available for academic users at (http://www.g-language.org/PathwayProjector/)

    The Molecular Biology Database Collection: 2006 update

    Get PDF
    The NAR Molecular Biology Database Collection is a public online resource that contains links to all databases described in this issue of Nucleic Acids Research. In addition, this collection lists databases that have been featured in previous issues of NAR, as well as selected other databases that are freely available to the public and may be useful to the molecular biologist. The 2006 update includes 858 databases, 139 more than the previous one. The databases come with brief summaries, many of which have been updated recently. Each database is assigned a stable accession number that does not change if the database moves to a new location and its URL, authors' names or the contact person address are updated. The complete database list and summaries are available online at the Nucleic Acids Research website

    ModEnzA: Accurate Identification of Metabolic Enzymes Using Function Specific Profile HMMs with Optimised Discrimination Threshold and Modified Emission Probabilities

    Get PDF
    Various enzyme identification protocols involving homology transfer by sequence-sequence or profile-sequence comparisons have been devised which utilise Swiss-Prot sequences associated with EC numbers as the training set. A profile HMM constructed for a particular EC number might select sequences which perform a different enzymatic function due to the presence of certain fold-specific residues which are conserved in enzymes sharing a common fold. We describe a protocol, ModEnzA (HMM-ModE Enzyme Annotation), which generates profile HMMs highly specific at a functional level as defined by the EC numbers by incorporating information from negative training sequences. We enrich the training dataset by mining sequences from the NCBI Non-Redundant database for increased sensitivity. We compare our method with other enzyme identification methods, both for assigning EC numbers to a genome as well as identifying protein sequences associated with an enzymatic activity. We report a sensitivity of 88% and specificity of 95% in identifying EC numbers and annotating enzymatic sequences from the E. coli genome which is higher than any other method. With the next-generation sequencing methods producing a huge amount of sequence data, the development and use of fully automated yet accurate protocols such as ModEnzA is warranted for rapid annotation of newly sequenced genomes and metagenomic sequences

    Uncovering metabolic pathways relevant to phenotypic traits of microbial genomes

    Get PDF
    A new machine learning-based method is presented here for the identification of metabolic pathways related to specific phenotypes in multiple microbial genomes
    corecore