327,842 research outputs found

    Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Get PDF
    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.Comment: 14 pages, 6 figures, submitted to IEEE JSTSP Special Issue on Machine Learning for Cognition in Radio Communications and Rada

    Generative Adversarial Positive-Unlabelled Learning

    Full text link
    In this work, we consider the task of classifying binary positive-unlabeled (PU) data. The existing discriminative learning based PU models attempt to seek an optimal reweighting strategy for U data, so that a decent decision boundary can be found. However, given limited P data, the conventional PU models tend to suffer from overfitting when adapted to very flexible deep neural networks. In contrast, we are the first to innovate a totally new paradigm to attack the binary PU task, from perspective of generative learning by leveraging the powerful generative adversarial networks (GAN). Our generative positive-unlabeled (GenPU) framework incorporates an array of discriminators and generators that are endowed with different roles in simultaneously producing positive and negative realistic samples. We provide theoretical analysis to justify that, at equilibrium, GenPU is capable of recovering both positive and negative data distributions. Moreover, we show GenPU is generalizable and closely related to the semi-supervised classification. Given rather limited P data, experiments on both synthetic and real-world dataset demonstrate the effectiveness of our proposed framework. With infinite realistic and diverse sample streams generated from GenPU, a very flexible classifier can then be trained using deep neural networks.Comment: 8 page

    Principled analytic classifier for positive-unlabeled learning via weighted integral probability metric

    Full text link
    We consider the problem of learning a binary classifier from only positive and unlabeled observations (called PU learning). Recent studies in PU learning have shown superior performance theoretically and empirically. However, most existing algorithms may not be suitable for large-scale datasets because they face repeated computations of a large Gram matrix or require massive hyperparameter optimization. In this paper, we propose a computationally efficient and theoretically grounded PU learning algorithm. The proposed PU learning algorithm produces a closed-form classifier when the hypothesis space is a closed ball in reproducing kernel Hilbert space. In addition, we establish upper bounds of the estimation error and the excess risk. The obtained estimation error bound is sharper than existing results and the derived excess risk bound has an explicit form, which vanishes as sample sizes increase. Finally, we conduct extensive numerical experiments using both synthetic and real datasets, demonstrating improved accuracy, scalability, and robustness of the proposed algorithm.Comment: 32 pages; Accepted for ACML 201
    corecore