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Abstract—In this paper, a sequential probing method for
interference constraint learning is proposed to allow a centralized
Cognitive Radio Network (CRN) accessing the frequency band
of a Primary User (PU) in an underlay cognitive scenario with a
designed PU protection specification. The main idea is that the
CRN probes the PU and subsequently eavesdrops the reverse PU
link to acquire the binary ACK/NACK packet. This feedback
indicates whether the probing-induced interference is harmful or
not and can be used to learn the PU interference constraint. The
cognitive part of this sequential probing process is the selection
of the power levels of the Secondary Users (SUs) which aims to
learn the PU interference constraint with a minimum number of
probing attempts while setting a limit on the number of harmful
probing-induced interference events or equivalently of NACK
packet observations over a time window. This constrained design
problem is studied within the Active Learning (AL) framework
and an optimal solution is derived and implemented with a
sophisticated, accurate and fast Bayesian Learning method, the
Expectation Propagation (EP). The performance of this solution is
also demonstrated through numerical simulations and compared
with modified versions of AL techniques we developed in earlier
work.

Keywords—Cognitive Radio Networks, Expectation Propagation,
Active Learning, Constrained Dynamic Programming

I. INTRODUCTION

U nderlay communication scenarios [1] allow the coexis-
tence of a PU and an SU system where SUs may transmit

in a PU frequency band as long as the induced interference
at the PU is under a certain threshold. This strategy requires
intelligence on the SU side such as cognitive sensing and
decision making abilities. These functions transform the SU
transceivers into powerful and intelligent radio devices which
in the telecommunication literature are described as Cognitive
Radios (CRs) [2], [3]. In general, the underlay approach is
related to constrained Power Control (PC) or Beamforming
(BF) problems where the CR users must intelligently select
their transmit power levels or beamforming vectors in order
to optimize an operation metric and at the same time satisfy a
PU interference constraint. Usually, an important piece of these
problems, the constraint, is unknown to the CRs, since Channel
State Information (CSI) of the interference channels is unavail-
able at the CRs. Additionally, due to lack of communication
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between the PU and SU systems, the CRN cannot directly infer
the aforementioned parameters, but it must somehow learn
these interference channel gains. A common approach for the
CRs to overcome this is to use the PU reverse link feedback,
check how this changes because of the CR operation and thus
calculate the SU-to-PU channel gains in a sequential manner.
This iterative procedure is a probing scheme which combines
selecting the CR transmitting parameters and eavesdropping
the PU reverse link feedback. Capturing and exploiting this
feedback bridges the gap between the PU and SU systems and
enables learning in the CRN.

In the CR literature, the binary ACK/NACK packet of the
reverse PU link has been utilized extensively as feedback
information. In [4], it is employed to estimate PU receiver
maps and in [5] to approximate the Lagrange multiplier of the
interference constraint in decentralized PC schemes. Moreover,
its use has been successful for maximizing or minimizing the
power delivered respectively to the SU or PU receiver by
adapting the transmit antenna weights in BF scenarios [6]. In
this paper though, this rudimentary piece of feedback is consid-
ered only to facilitate learning on the CRN side. Furthermore,
a practical and convenient architecture for most CRN scenarios
is the CR users to be coordinated by a Cognitive Base Station
(CBS) using a dedicated control channel. This structure is also
chosen here and implicates a centralized network setting which
is more applicable than a decentralized CRN where CR users
are partially independent and pass messages among each other.

A. Contributions
Herein, a Constrained Bayesian AL (CBAL) probing method

suitable for centrally organized CRNs is demonstrated which
rapidly estimates the interference channel gains from multiple
SU transmitters to a PU receiver while setting a limit on the
number of harmful probing power vectors over a certain time
window. This case study assumes that the PU link is operating
under a communications protocol where the receiver sends an
ACK/NACK packet to the transmitter to acknowledge or not
the receipt of messages. A common practice in the CR regime
which is adopted here as well is the CRN to capture this packet
from the PU feedback link and exploit it to learn the SU-to-
PU channel gains. In this scenario, this piece of information is
utilized to implement a sequential probing technique where the
SUs constantly adjust their transmit power levels according to
CBS directives and monitor whether the ACK/NACK packet
changes state.

This intelligent probing design aims to minimize the number
of probing attempts which are needed for learning the SU-to-
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PU channel gains over a time window subject to maintaining
the ratio of the harmful probing attempts under a limit. Hence,
once the CRN is deployed in the PU system’s environment, it
may quickly learn the interference channels without severely
degrading the PU communication system and then optimize
its operation while satisfying the PU interference constraint
which depends on the SU-to-PU channel gains. The introduced
constraint in this AL process is of practical significance,
because it represents the time ratio during which the PU system
cannot efficiently operate which is basically an average over
time outage constraint, a well defined specification in practical
systems. This problem setting is tackled using the Constrained
Dynamic Programming (DP) framework. Additionally, exactly
because this probing process is sequential, the probing design
must be implemented fast and accurately at each time step. To
achieve this, an advanced Bayesian Learning, the Expectation
Propagation (EP) [7], is implemented analytically for the first
time to facilitate the AL goal.

In summary, this paper delivers specifically the following
major contributions:

• The novel construction of a provenly optimal CBAL
method designed for probing the PU and learning fast
interference channel gains while maintaining the ratio of
harmful probing attempts under a limit.

• The analytical and fast implementation of a sophisticated
and accurate Bayesian Learning technique, the EP, suit-
able for the sequential probing design of our problem
and capable of competing with the accurate but slow
Markov Chain Monte Carlo (MCMC) sampling method
of [8].

• Simulations show fast learning convergence rates for our
CBAL method, low required computational burden and
most importantly acceptable satisfaction of the harmful
interference constraint compared to constrained versions
of the Bayesian AL schemes designed in [8].

B. Structure

The remainder of this paper is structured as follows: Section
II reviews in detail prior work related to cognitive learning
scenarios using the ACK/NACK feedback of the PU reverse
link. Section III provides the system model and the problem
formulation. Section IV presents a fast and accurate Bayesian
Learning method, the EP, for interference channel gain learn-
ing. Section V elaborates on the optimal CBAL probing
technique for interference channel gain learning. In Section
VI, the simulation results obtained from the application of the
proposed technique are shown and compared with the perfor-
mance of existing methods. Section VII gives the concluding
remarks and future work in this topic. Finally, to improve the
readability of the paper, we provide the descriptions of the
most frequent abbreviations in Table I.

TABLE I: Definitions of Abbreviations

Abbreviation Description
PU Primary User
SU Secondary User

CBS Cognitive Base Station
CRN Cognitive Radio Network

CBAL Constrained Bayesian Active Learning
DP Dynamic Programming
EP Expectation Propagation

MCMC Markov Chain Monte Carlo

II. RELATED WORK

In the field of cognitive underlay methods, rudimentary PU
feedback has been used for learning purposes in PC and BF
scenarios with different assumptions, protocols, system models
and constraints. Most commonly, this is acquired by eaves-
dropping the PU reverse link channel and decoding the PU
ACK/NACK packet. The general form of these CR scenarios
is the optimization of an SU system metric, such as total CRN
throughput, worst SU throughput or SU SINR, subject to QoS
constraints for PUs, e.g. SINR, data rate or outage probability
[1] whose parameters the CRN needs to learn. Hence, these
study cases involve learning PU constraints which may be
tackled in a centralized manner by a central decision maker or
in a decentralized way by each SU individually. Most of the
learning techniques are based on a simple iterative scheme of
probing the PU system and acquiring the feedback indicating
how the PU operation is affected.

In this group of CR works, learning the null space of the
interference channel matrix in a MIMO underlay cognitive
scenario has been tackled by the one-bit null space learning
algorithm [9], which essentially is a blind realization of the
Cyclic Jacobi Technique. Furthermore, in [10], a binary Spec-
trum Sensing feedback has been used to enable CRs to apply a
Reinforcement Learning procedure to regulate the aggregated
interference to the PU. Additionally, in [11], the centralized
weighted sum-rate maximization under average SU power and
probabilistic PU interference constraints has been considered.
In this study, the optimization objective is achieved only after
the interference channel gain learning process is terminated, a
very common tactic for handling the aforementioned learning
and optimization general structure of these problems. In its
learning part, the recursive Bayesian estimation is employed
by using imperfect CSI feedback which may be as elementary
as the binary ACK/NACK packet.

Next, we describe CR learning problems using PU feedback
which aim at intelligently designing the SU probing attempt in
order to learn as fast as possible the unknown constraints of the
CR operation. This design rationale is called Active Learning
(AL) in ML and has been approached in many different
ways. An important factor in AL is introducing exploration
into the SU probing which takes advantage of the degrees
of freedom of the AL design to search more efficiently in
the space of the unknown parameters. This is being tackled
differently in the following CR AL scenarios. Initially, the
authors of [12] proposed a Cutting Plane Method (CPM) based
learning algorithm using binary PU feedback where probing
the PU system aims at both learning interference channel
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matrices and maximizing the SNR at the SU receiver side
in an underlay cognitive BF scenario. In [13], we managed
to enhance this CPM AL approach by implementing a faster
CPM, improving the exploration/exploitation strategy and tak-
ing advantage of a more informative PU feedback, the change
of the PU Modulation and Coding Scheme which is detected
by a Modulation and Coding Classification module. Similarly
to [12], this resulted in an AL mechanism which is able to
simultaneously learn the unknown interference channel gains
and pursue the CRN throughput maximization. In [8], we
focused only on learning the unknown interference channel
gains based on binary PU feedback without optimizing any SU
system metric. We proposed an optimal multivariate Bayesian
AL method for intelligent probing which incorporates the
probability of each feedback being correct and a suboptimal
AL method ideal for CRNs with many SUs.

At this point, we need to specify the broader connections of
the AL problem setting which led us to the methodology used
in this work. AL is connected to a framework called Bayesian
Experimental Design [14] which in its turn is related to the
theory of optimal Decision Making. Therefore, researchers
from the Decision Making field have exploited a DP approach
to sequentially design experiments [15]. In [16], the problem
of state tracking with active observation control is also tackled
in a similar fashion where a Kalman-Like state estimator is
developed. Next, AL problems with constraints were developed
by the research community which exploited Constrained DP
[17], [18] to actively classify human body states with biometric
device sensing costs [19] and to operate a sensor network
with communication costs [20]. In this paper, we combine
this Constrained DP framework with a sophisticated Bayesian
Learning tool, the EP. Moreover, we enhance the accuracy and
the speed of the EP by utilizing recent advances in statistics
from the econometrics research community [21].

III. SYSTEM MODEL AND PROBLEM FORMULATION

At first, we describe the system model of our scenario which
considers a PU link and N SU links existing in the same
frequency band as shown in Fig. 1. A Frequency Division Mul-
tiple Access (FDMA) method allows SUs to operate in separate
sub-bands of the PU frequency band and without interfering
with each other, but still aggregately inducing interference to
the PU receiver. The structure of the CRN is a centralized
one where the SUs are dictated their power control levels
by the CBS using a dedicated control channel. The examined
scenarios in this study are considering the PU, the sensing and
the unknown interference channels to follow the quasi static
block fading model which applies for fixed telecommunication
links such as the satellite or the backhauling ones, but not for
mobile ones where channels change rapidly. Here, we focus
on channel power gains g, which are defined as g = ‖c‖2,
where c is the complex channel gain. From this point, we will
refer to channel power gains as channel gains.

The interference to the PU link is caused by the transmitter
part of each SU link to the receiver of the PU link. Taking into
account that the SU links transmit solely in the PU frequency
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Fig. 1: The PU system and the CRN

band, the aggregated interference on the PU side is defined as:

IPU = g pᵀ (1)

where g is the unknown interference channel gain vector
[g1, ..., gN ] with gi being the SUi-to-PU interference channel
gain and p is the SU power vector [p1, ..., pN ] with pi being
the SUi transmit power. These power levels [p1, ..., pN ] are
communicated from the CBS to the SUs through the CRN
control channel. Additionally, the SINR of the PU is defined
as:

SINRPU = 10 log10

(
g
PU
p
PU

IPU +NPU

)
dB (2)

where g
PU

is the PU link channel gain, p
PU

is the PU transmit
power and NPU is the PU receiver noise power.

In this study, the CBS is equipped with a secondary om-
nidirectional antenna only for sensing the signal of the PU
reverse link and a module for decoding the binary ACK/NACK
feedback. Extracting this binary information Z enables the
CRN to detect whether the induced interference to the PU,
IPU , is harmful or not for the PU data packet reception by
the PU receiver. Assuming that NPU and the received power
remain the same at the PU receiver side, the minimum required
SINRPU , γ, corresponds to a specific unknown maximum
allowed IPU value, Ith, below which an ACK is sent and
over which an NACK is transmitted to the PU transmitter.
Subsequently, the observed feedback Z is defined as:

Z =

{
+1 if g pᵀ ≤ Ith
−1 if g pᵀ > Ith

. (3)
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This piece of information will be exploited in the next sections
to learn the PU interference constraint determined as:

g pᵀ ≤ Ith. (4)

A necessary simplification of the information gained by (3)
is that the gi gains normalized to Ith are adequate for defining
the interference constraint (4). Therefore, if h = g

Ith
, the

observed feedback can also be written as:

Z =

{
+1 if h pᵀ ≤ 1
−1 if h pᵀ > 1

(5)

while the normalized version of (4) is expressed as:

h pᵀ ≤ 1. (6)

IV. BAYESIAN LEARNING USING EXPECTATION
PROPAGATION

In this section, we present a probabilistic way to learn the
unknown normalized interference channel gain vector, h, given
a set of SU probing power vectors and the corresponding
ACK/NACK pieces of feedback. The true value of the un-
known normalized interference channel gain vector will be
denoted as h∗ from here on. These unknown parameters define
the constraints (4) and (6) which constitute the PU interference
constraint in underlay cognitive scenarios and are also referred
to as the interference hyperplane in this work. The data sets of
the SU probing power vectors and the ACK/NACK pieces of
feedback basically represent the feature vector set and the label
set respectively in the ML sense and we demonstrate how to
learn the linear classifier, or else the interference hyperplane,
denoted by (4) and (6) in the Bayesian way.

To describe Bayesian Learning in detail, first we need to
define the feedback, or label, conditional likelihood in this
process as the probability of Z conditioned on the unknown
parameter h∗:

Pr[Z|h = h∗,pᵀ] =


1 if Z = +1 and h pᵀ ≤ 1
0 if Z = +1 and h pᵀ > 1
1 if Z = −1 and h pᵀ > 1
0 if Z = −1 and h pᵀ ≤ 1

. (7)

This expression is actually a threshold likelihood metric deter-
mined by the feedback observation, Z, and the power vector
p. We may also describe the likelihood function form based on
the version space duality introduced by Vapnik [22]. According
to this, when we deal with learning linear classifiers, feature
vectors are hyperplanes in the parameter or version space and
vice versa. Hence, when a learning procedure tries to estimate
the parameters of a hyperplane, the version, it actually tries
to localize a point in the parameter or version space. In our
problem, the feature space corresponds to the power vector
space and the version space to the h space. In addition, by
combining a power vector, or feature vector, and its respective
piece of ACK/NACK feedback, or label, an inequality is
obtained which in the h space, or version space, represents a
linear inequality. Therefore, the likelihood function may also
be thought of as a halfspace defined by p and Z in the version
space.

Now, let us assume that following t probing attempts,
p0:(t−1) = {p(0), ..,p(t−1)}, the CBS has observed t pieces
of ACK/NACK feedback, Z0:(t−1) = {Z0, .., Z(t−1)}, which
all together constitute the data known until the (t− 1) power
vector and ACK/NACK feedback pair, Dt−1. After a new
probing power vector p(t) and a piece of feedback, Zt, the
h posterior pdf according to the recursive form of the Bayes
rule is expressed as:

ft+1(h) = Pr[h = h∗|Z0:t,p0:t] = Pr[h = h∗|Dt] =

Pr[Zt|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]

Pr[Zt|p(t), Dt−1]
(8)

which indicates the probability of where h∗ lies in the h
space given Dt. In (8), we also show the equivalence of
the ft+1(h) pdf with the condition Dt which represents the
knowledge gained until the t step. Here, a necessary remark
about the first term of the numerator in (8) must be made
which simplifies (8) and which will also help us later. The
observation Zt is conditionally independent of the previous
observations Z0:(t−1) and probing power vectors p0:(t−1) given
h = h∗ and p(t) and therefore Pr[Zt|h = h∗,p(t), Dt−1]
can be written as Pr[Zt|h = h∗,p(t)] which is basically
the likelihood expression in (7). Moreover, the second term
of the numerator, Pr[h = h∗|p(t), Dt−1], can be written as
Pr[h = h∗|Dt−1] which is basically the pdf of the previous
step, ft(h). This happens because our knowledge about h∗

given Z0:(t−1) and p0:(t−1) does not change by additionally
knowing p(t). After these simplifications the following form
of (8) is delivered:

ft+1(h) =
Pr[Zt|h = h∗,p(t)] ft(h)

Pr[Zt|p(t), Dt−1]
. (9)

The denominator term is called the marginal likelihood and
even though it is difficult to calculate, it is actually a normaliza-
tion constant which guarantees that the posterior pdf integrates
to 1. A general assumption in Bayesian ML is the prior pdf
f0(h) to be a uniform non informative pdf [23], which is the
maximum entropy pdf for random variables within a bounded
domain and therefore guarantees that no specific value of h is
favored in the beginning of this learning process.

Alternatively, the posterior pdf expressed in (9) can be
written in a non-recursive form as:

ft+1(h) =

t∏
i=0

Pr[Zi|h = h∗,p(i)]

t∏
i=0

Pr[Zi|p(i), Di−1]

f0(h) (10)

where again the denominator term is a normalization factor
whose computation will be shown unnecessary. The reason
we first expressed the posterior pdf in a recursive form is
that it will be proven useful in the next section due to the
sequential nature of the AL process. Moreover, in Bayesian
ML, we should not always take for granted that the posterior
pdf is proportional to the likelihood function product times the
prior pdf which indeed holds for conditionally independent
samples. This is the reason why we start from decomposing
probabilistically our data set in the Bayes rule expression and
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first derive its recursive form. More importantly, it is necessary
for our AL setting, which relates to Bayesian Experimental
Design, to show in detail the conditional independences occur-
ring even when the training samples, here our power probing
vectors, are judiciously designed based on previous training
samples and their labels.

Now, let us rewrite (10) in a more compact way in order
to focus solely on the likelihood function product and thus
approximate it using EP [7]. Each likelihood function can
be expressed as li(h) = Pr[Zi|h = h∗,p(i)] and hence

the likelihood function product of (10) is now
t∏
i=0

li(h). This

product is basically a product of halfspace indicator functions
and it defines along with f0(h) and the denominator term of
(10), the marginal likelihood, a uniform pdf with a polyhedral
support region. This pdf is not easy to be handled and its
statistical properties, like its mean or covariance, are not easily
computed. In our previous work [8], this was tackled by using
an MCMC sampling method, which performs many Markov
chain random walks in the version space in order to sample
this pdf and therefore approximate its statistical features. Even
though MCMC sampling schemes are accurate, they become
computationally expensive as the dimensions of the version
space grow, because the required number of random walks to
cover this space increases as well.

A. The Expectation Propagation algorithm

In this subsection, we show how to approximate
t∏
i=0

li(h)

and thus the deriving posterior pdf using EP. The rationale of
the EP is to approximate this product by finding an approx-
imation l̃i(h) for each li(h). This is done by initializing ar-
bitrarily the likelihood function approximations and iteratively
filtering each one of them considering the rest approximations
stable. This filtration process is based on minimizing the

Kullback-Leibler (KL) divergence of lj(h)
t∏

i=0,i6=j
li(h) and

l̃j(h)
t∏

i=0,i6=j
li(h) and it is performed enough times to ensure

that all l̃i(h) have been corrected sufficiently so that
t∏
i=0

l̃i(h)

approximates
t∏
i=0

li(h) well enough. A detailed algorithmic

description of EP is presented in Algo. 1.

Algorithm 1 The Expectation Propagation algorithm

Initialize arbitrarily {l̃0(h), l̃1(h), ..., l̃t(h)}
for k = 1 : NEP do

for j = 0 : t do
l̃j(h) :=

arg min
l̃j(h)

KL

(
lj(h)

t∏
i=0,i6=j

l̃i(h) ‖ l̃j(h)
t∏

i=0,i6=j
l̃i(h)

)
end for

end for

Usually, the outer loop iterations of EP, NEP , are chosen to
be maximum 5, which is also used in this work. In Bayesian
ML, this sophisticated iterative filtration for likelihood function
approximations has proven to be a very accurate method for ap-
proximate inference. However, all the existing EP approaches
rely on numerical quadratures or independence assumptions
between the latent variables to facilitate the computations.
Next, we describe in more detail the EP implementation
and we show how to tackle analytically the KL divergence
minimization, the critical step of the EP algorithm, without
independence assumptions between the latent variables. This
will lead to greater accuracy and faster implementation of this
sophisticated tool.

Most commonly, each approximation in the EP algorithm is
considered to have the form of a multivariate normal (MVN)
pdf, a strategy which is also followed here. Consequently, the
product of MVN pdf’s, which appears in the KL divergence
minimization step, based on Gaussian identities is also an
MVN pdf. More specifically, if l̃i(h) = N (h;µi,Σi) for
i = 0, ..., t, where µi are the mean row vectors and Σi

are the covariance matrices, then their product,
t∏
i=0

l̃i(h), is

an un-normalized MVN pdf proportional to an MVN pdf,
N (h;µtot,Σtot), where assuming vectors are row vectors:

Σ−1
tot =

t∑
i=0

Σ−1
i (11)

and

µtot =

(
t∑
i=0

µiΣ
−1
i

)
Σtot. (12)

Hence, the second part of the KL divergence in the core

stage of the EP method, l̃j(h)
t∏

i=0,i6=j
l̃i(h), and the ap-

proximation product in the first part,
t∏

i=0,i6=j
l̃i(h), are basi-

cally un-normalized MVN pdf’s. For notation simplification,
t∏

i=0,i6=j
l̃i(h), which is called the cavity function, will be

symbolized from now on as l̃−j(h). Now, as far as the KL
divergence minimization is concerned, when approximations
within the exponential family are used, then this is achieved
by moment matching [23]. Moment matching means that the
two functions whose KL divergence needs to be minimized
must have the same moments and since the second function is
an un-normalized MVN one, this results to matching the 0th,
1st and 2nd moments of the two parts. This basically indicates
that the function to be refined in each EP step, l̃j(h), must be
adjusted so that the moments of l̃j(h) l̃−j(h) are equal to the
ones of lj(h) l̃−j(h).

This is the breaking point of the EP algorithm. Calculating
the moments of the true likelihood function and the cavity
function product could not be implemented so far analytically
or in a computationally cheap way. Researchers have tried
numerical integration or independence assumptions to simplify
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the results, but no exact and analytical solution has ever been
delivered for basic likelihood function forms. Now, let us
examine the function lj(h) l̃−j(h). First, we have already
shown that l̃−j(h) is an un-normalized MVN function and
we have described lj(h) as a halfspace indicator function.
Thus, lj(h) l̃−j(h) is actually a one-side truncated multivariate
Gaussian and what we need is to calculate its 0th, 1st and
2nd moments, q, q and Q. To improve the continuity of this
manuscript, the analytical moment calculation of a one-side
truncated multivariate Gaussian can be found in Appendix A.

Once these moments are computed, l̃j(h) is defined using
(11) and (12) as an MVN pdf with covariance matrix Σ−1

j =

Q−1 − Σ−1
−j and mean µj =

(
q Q−1 − µ−j Σ

−1
−j
)
Σj . We

also need to highlight that matching the 0th moments does not
offer essentially better approximations, because multiplying
l̃j(h) with a constant may lead to unwanted results in this
iterative filtration process. Still, we mentioned this earlier
as part of the moment matching process for the sake of
completeness. The computational complexity of the proposed
EP algorithm implementation is basically determined by the
number of matrix inversions, a mathematical operation of
O(N3) complexity when using Gaussian elimination. The
number of matrix inversions in one Moment matching step
is of O(N2) order and their total number in Algo. 1 is of
O(NEP t N2) order. Thus, the overall EP computational
complexity for t likelihood functions is O(NEP t N

5).

V. CONSTRAINED BAYESIAN ACTIVE LEARNING OF
INTERFERENCE CHANNEL GAINS

The goal of this paper is to design SU probing power
vectors, p, using observations of ACK/NACK feedback, Z,
in order to learn as fast as possible the unknown normalized
interference channel gain vector, h∗, while ensuring that the
number of probing power vectors causing harmful interference
over a time horizon is always below a certain limit. These
harmful interference events are revealed by the NACK packets
which in their turn are indicated by the Z = −1 pieces
of feedback. This means that assuming a limited number of
NT probing attempts, {p(0), ...,p(NT − 1)} and their cor-
responding pieces of feedback, {Z0, ..., ZNT−1}, we wish to
minimize the uncertainty of our knowledge about h∗, formally
represented by the entropy of fNT (h), subject to maintaining
the sum of Zt = −1, where t = 0, ..., NT − 1, below a
threshold and which is equivalent to controlling the sum of
Zt = +1, where t = 0, ..., NT − 1, above a corresponding
limit. This practical constraint is essential for the PU system
operation, since the actual deterioration of its link does not
depend on the total or average amount of interference over
time caused by the CRN, but on the time ratio during which
harmful interference occurs because of SU probing attempts.

In the previous section, we showed the recursive Bayesian
update (9) which modifies our knowledge about h∗ step by
step. This will be our main tool for handling the iterative
nature of this proactive probing strategy. In Fig. 2, we may also
see how this repeated probe designing and probing scheme is
carried out in our cognitive scenario where the CRN designs
its probing power vector and probes the PU and subsequently

monitors the ACK/NACK feedback sent by the PU receiver in
order to infer the interference hyperplane and then repeats the
same process.
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Fig. 2: The Active Learning probing scheme

A. The DP formulation of the Constrained Bayesian AL prob-
lem

Next, we investigate the optimal design policy of a SU
probing power vector, which represents a hyperplane in the
h space, that should be chosen in each step of this recursive
Bayesian estimation process in order to optimally reduce
the posterior pdf entropy after NT probing power vectors,
{p(0), ...,p(NT − 1)}, with their corresponding pieces of

feedback, Z0:(NT−1), subject to 1
NT

NT−1∑
t=0

1{Zt=−1} ≤ α′ or

1
NT

NT−1∑
t=0

1{Zt=+1} ≥ α, where 1{..} is the indicator function,

α′ is the harmful interference time ratio, α is the harmless
interference or protection time ratio during which the PU
link operation must remain undisrupted and α = 1 − α′.
From here on, we employ the protection time ratio α for
the formulation of our problem. The constraint can also be

written as
NT−1∑
t=0

Zt ≥ (2α − 1)NT . This multistage con-

strained optimization problem can be expressed in the spirit
of DP [24] as finding the optimal probing rule that maps
{f0, .., fNT−1} to {p(0), ..,p(NT − 1)} in order to achieve
the maximum average entropy reduction from the f0(h) to
the fNT (h) pdf subject to the aforementioned constraint. In
a formal manner, we seek the optimal probing design policy
π∗0:(NT−1) = {p(0) = µ∗(f0), ..,p(NT − 1) = µ∗(fNT−1)}
which solves the following constrained optimization problem
over all possible feedback sequences derived by this policy:
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max
π

Eπ[H(f0)−H(fNT )|p(NT − 1), DNT−2] (13a)

s.t. Eπ

[
NT−1∑
t=0

Zt|p(NT − 1), DNT−2

]
≥ (2α− 1)NT

(13b)

where H is the entropy operator of a pdf and Eπ[.] is
the operator of the average value over all possible feedback
sequences derived by an abstract policy π. The objective
function of (13) which is the conditional expectation of the
information gain of an arbitrary policy π can also be expressed
in an additive form:

Eπ[H(f0)−H(fNT )|p(NT − 1), DNT−2] =

Eπ[H(f0)−H(f1)|p(0) + ...

+ Eπ[H(fk−1)−H(fk)|p(k − 1), Dk−2 + ...

+ Eπ[H(fNT−1)−H(fNT )|p(NT − 1), DNT−2]...] (14)

where we added and subtracted all the entropy terms of the
intermediate pdf’s to form an additive gain over time and
similarly the left part of the constraint of (13) can be written
as:

Eπ

[
NT−1∑
t=0

Zt|p(NT − 1), DNT−2

]
=

Eπ[Z0|p(0) + ...+ Eπ[Zk−1|p(k − 1), Dk−2 + ...

+ Eπ[ZNT−1|p(NT − 1), DNT−2]...]. (15)

After we invert the entropy subtractions, in order to reform
the optimization problem into a minimization one, and move
the left part of (13b) on the right side, we create the Lagrangian
of this multistage problem as:

Jλ0:(NT−1) = Eπ[H(f1)−H(f0)−λZ0|p(0)+...

+Eπ[H(fk)−H(fk−1)−λZk−1|p(k − 1), Dk−2+...

+Eπ[H(fNT )−H(fNT−1)−λZNT−1|p(NT−1), DNT−2]...]+

+λ(2α−1)NT (16)

where λ is the KKT multiplier related to (13b) and which
has to be non-negative. Now, we need to minimize Jλ0:(NT−1)
for an abstract λ and we can do so without including the last
term λ(2α − 1)NT , since it is independent of the policy π.
The new form of the Lagrangian will thus be Λλ0:(NT−1) =

Jλ0:(NT−1)−λ(2α− 1)NT . Additionally, to bring our problem
closer to the DP formulation, we define the subtail problem
Lagrangian or Lagrangian-to-go, Λλk:(NT−1), as:

Λλk:(NT−1) =

Eπ[H(fk+1)−H(fk)−λZk|p(k), Dk−1+...

+Eπ[H(fNT )−H(fNT−1)−λZNT−1|p(NT−1), DNT−2]...].
(17)

and we denote its minimum value as Λ∗λk:(NT−1). By employing
the principle of optimality, we have:

Λ∗λk:(NT−1) =

min
π
Eπ
[
H(fk+1)−H(fk)−λZk|p(k), Dk−1+Λ∗λ(k+1):(NT−1)

]
(18)

and based on this, we may proceed with the backward induc-
tion logic of DP.

Before we continue though with the DP solution of our
constrained multistage problem, let us first redefine the multi-
variate cumulative distribution function (cdf) in a more ”nat-
ural” than the usual way. Assuming a multivariate pdf f in
S ⊆ RN and a vector x = [x1, ..., xN ], usually its cdf F
is defined as F (x) = Pr[X1 ≤ x1, ..., XN ≤ xN ] which is
the joint probability of its components X1, ..., XN , that are
scalar valued random variables, being less or equal than the
values x1, ..., xN respectively. Nevertheless, this definition is
not geometrically smooth and commonly used just because it
is easy to be computed in case of independent x components.
Here, we describe it more strictly and not just by using a
”box limit”-like definition. Assuming a hyperplane in Rn,
x wᵀ = 1, we alternatively determine the cdf C of a
multivariate pdf f as:

C(w) = Pr[x wᵀ ≤ 1] =

∫
x wᵀ≤1

f(x) dVx. (19)

For our case study, this means that the posterior cdf after
the (t− 1) step, Ct(p), is expressed as:

Ct(p) = Pr[h pᵀ ≤ 1|h = h∗, Dt−1] =

∫
h pᵀ≤1

ft(h) dVh

(20)
and the support region of ft(h) is limited to the positive orthant
of the h space, RN+ , because the interference channel gains can
only have non negative values.

Further on, we elaborate on the marginal likelihood of
(9). In the event of Zt = +1, the conditional probability
Pr[Zt|p(t), Dt−1] can also be written according to the Bayes
sum rule, the product rule and the conditional independences
from Section IV as in (21). A similar expression can also be
derived for the Zt = −1 event:

Pr[Zt = −1|p(t), Dt−1] = 1− Ct(p(t)). (22)

Moving on with our DP solution, we apply the backward in-
duction logic of DP and first solve min

π
Eπ
[
Λλ(NT−1):(NT−1)

]
which is equivalent to:

min
p(NT−1)

Eπ[H(fNT )−H(fNT−1)−λZNT−1|p(NT−1), DNT−2].

(23)
Now, let us first evaluate the term Eπ[H(fNT )−H(fNT−1)−
λZNT−1|p(NT − 1), DNT−2], where Eπ[.] is basically the
expectation over the two possible observations ZNT−1 = +1
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Pr[Zt = +1|p(t), Dt−1] =

∫
RN+

Pr[Zt = +1,h = h∗|p(t), Dt−1] dVh =

∫
RN+

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗,p(t), Dt−1]

Pr[p(t), Dt−1]
dVh =

∫
RN+

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|Dt−1]dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|Dt−1]dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Dt−1] ft(h)dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Dt−1] ft(h)dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t)] ft(h)dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t)] ft(h)dVh =

∫
h pᵀ≤1

ft(h)dVh = Ct(p(t)) (21)

and ZNT−1 = −1, by using (9) and the equivalence of the
conditions DNT−2 and fNT−1:

Eπ[H(fNT )−H(fNT−1)− λZNT−1|p(NT − 1), fNT−1] =

Eπ [Eh [− log(fNT−1)]]− Eπ [Eh [− log(fNT−1)]] +

+ Eπ[Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |
|p(NT − 1), fNT−1]−
− Eπ[Eh [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] |
|p(NT − 1), fNT−1]−
− λEπ[ZNT−1|p(NT − 1), fNT−1]. (24)

The last three remaining terms can be further processed. With
the help of (7) for Pr[ZNT−1|h = h∗,p(NT − 1)], the third
term can be analyzed as:

Eπ[Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |
|p(NT − 1), fNT−1] =

Eπ [Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |fNT−1] =

Eπ [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] = 0 (25)

where we exploited the fact that ZNT−1 does not depend
on fNT−1 given h = h∗ and p(NT − 1). Additionally, by
using (21) and (22) which again lead us to omit Eh, since
Pr[ZNT−1|p(NT − 1), fNT−1] is stable over the h domain,
the fourth term becomes:

Eπ[Eh [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] |
|p(NT − 1), fNT−1] =

Eπ [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] =

− CNT−1(p(NT − 1)) log(CNT−1(p(NT − 1)))−
− (1− CNT−1(p(NT − 1))) log((1− CNT−1(p(NT − 1)))).

(26)

Finally, we elaborate on the fifth term:

λEπ[ZNT−1|p(NT − 1), fNT−1] =

λ[(+1) Pr[ZNT−1 = +1|p(NT − 1), fNT−1]+

+ (−1) Pr[ZNT−1 = −1|p(NT − 1), fNT−1]] =

λ[CNT−1(p(NT − 1))− (1− CNT−1(p(NT − 1)))]. (27)

We observe that minimizing (24) using (25), (26) and (27)
over p(NT −1) is equivalent to minimizing (24) over CNT−1,
since the term p(NT − 1) appears only inside CNT−1(.).
Consequently, this results to the following problem where we
include (25), (26) and (27) in (24) and simplify the notation for
the sake of space with the help of C = CNT−1(p(NT − 1)):

Λλ(NT−1):(NT−1) =

C log(C) + (1− C) log(1− C)− λ(2C − 1) (28)

and thus (23) becomes:

min
C

[C log(C) + (1− C) log(1− C)− λ(2C − 1)]. (29)

Solving (29) by imposing
∂Λλ(NT−1):(NT−1)

∂C = 0 results to
the value of C = e2λ

1+e2λ
which delivers Λ∗λ(NT−1):(NT−1) =

λ − log(1 + e2λ). We notice that this minimum value of
the Lagrangian-to-go Λλ(NT−1):(NT−1) is a constant value and
independent of the time step. This allows us to state that
by moving backwards in time at the (k + 1) time step, the
accumulated constant values of the of the Lagrangian’s-to-go
yield:

Λ∗λ(k+1):(NT−1) = ((NT−1)−(k+1)+1)
(
λ− log(1+e2λ)

)
.
(30)
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Proceeding with our DP solution, we now solve (18) using the
same procedure as before and we obtain that:

Λ∗λk:(NT−1) = (NT − k)
(
λ− log(1 + e2λ)

)
(31)

which for k = 0 gives Λ∗λ0:(NT−1) = NT
(
λ− log(1 + e2λ)

)
.

Consequently, the dual function q(λ) of (13), which is always
concave, is defined as:

q(λ) = J∗λ0:(NT−1) = Λ∗λ0:(NT−1) + λ(2α− 1)NT =

= NT
(
λ− log(1 + e2λ)

)
+ λ(2α− 1)NT (32)

which enables us to rewrite (13) as:

max
λ

q(λ) (33a)

s.t. λ ≥ 0 (33b)

and solve this by imposing ∂q(λ)
∂λ = 0 which delivers λ∗ =

0.5 log( α
1−α ). For α ≥ 0.5, which is the lower reasonable limit

of the time ratio during which the CRN probes protectively
to the PU system, we always have λ∗ > 0 and therefore
the constraint (13b) is active because of the complementary
slackness condition. Finally, we conclude by using λ∗ that the
optimal probing design policy must satisfy Ct(p(t)) = α or
equivalently p(t) = µ∗(ft(h)) = C−1

t (α) for every time step
and for this reason p(0) = C−1

0 (α).
Now, let us take a closer look to the optimal policy at some

arbitrary time step k. The multistage optimization problem in
time step k has a form similar to the one of (13), only that this
time we are interested in maximizing the information gain in
the remaining steps and still maintaining the overall violation
constraint:

max
π

Eπ[H(fk)−H(fNT )|p(NT − 1), DNT−2] (34a)

s.t. Eπ

[
NT−1∑
t=0

Zt|p(NT − 1), DNT−2

]
≥ (2α− 1)NT

(34b)

We observe that the constraint (34b) can also be written as:

Eπ

[
NT−1∑
t=k

Zt|p(NT − 1), DNT−2

]
≥ (2α− 1)NT −

k−1∑
t=0

Zt

(35)
since the pieces of feedback {Z0, ..., Zk−1} already happened.
If we manage to reformulate the left hand side of (35) in the
fashion of (13b), then the problem defined by (34a) and (35)
is solved with the same optimal policy derived for (13), but
with a different α. Specifically, we wish the left hand side of
(35) to have the form (2αk − 1)(NT − k) which by equating
the two expressions generates the following αk value:

αk =

2αNT − k −
k−1∑
t=0

Zt

2(NT − k)
(36)

Therefore, the overall optimal adaptive policy can now be
expressed as π∗0:(NT−1) = {p(0) = C−1

0 (α0), ..,p(NT − 1) =

C−1
NT−1(αNT−1)} where α0 = α.

B. The Necessity of Exploration
Here, we need to point out an important issue in AL which

was emphasized in our previous work [8], [13], the necessity
of exploration. Reducing the uncertainty of our knowledge
about h∗ must be performed by approaching this exact value
uniformly from all directions. This means that the training
samples in an AL process, in this case the power probing
vectors, must be diversified and this can be accomplished
by choosing hyperplanes in the version space of random
direction uniformly. Therefore, we need first to define how
to uniformly sample a random direction θ, where θ is a unit
vector. This problem is related to the uniform unit hypersphere
point picking which has been thoroughly described in [8], [13].
Hence, in order to produce a power vector which represents
a hyperplane of random direction, p(t) must be parallel to a
randomly generated θ, p(t) = βθ where β ∈ R, and it must
also satisfy Ct(p(t)) = αt according to our previous analysis.
Essentially, we exploit the degrees of freedom of the design
rule in order to introduce exploration into the AL process. In
a formal manner, this is expressed using (19) as:∫

h βθᵀ≤1

ft(h) dVh = Ct(βθ) = αt. (37)

At this point, we make use of the Gaussian approximation of
each step’s posterior pdf which we developed in Section IV
with the help of EP. In accordance with that result, ft(h) can

be approximated by the normalized version of
t−1∏
i=0

l̃i(h) which

we denote as f̃t(h). So, (37) now becomes:∫
h βθᵀ≤1

f̃t(h) dVh = αt (38)

With the help of the transformation scheme described in
Appendix A and after some processing, we obtain that β =

1
F−1(αt;c1,c2) where F−1(.) is the inverse cdf of the univari-
ate normal pdf with mean c1 and variance c2. Furthermore,
c1 = θ µ̃ᵀ(t), where µ̃(t) is the mean row vector of f̃t(h),

and c2 =
N∑
i=1

θiθ(Σ̃:,i(t))
ᵀ , where Σ̃:,i(t) is the ith column of

the covariance matrix of f̃t(h). Moreover, all the coordinates
of p(t), which represent power levels, must be non negative,
otherwise a new θ has to be generated until a valid power
vector is produced.

VI. RESULTS

In this section, we provide simulation results to compare
the performance of the CBAL method presented in this work
and the constrained versions of the Bayesian AL techniques
suggested in [8], the MCMC based Median CPM and the
Minimum Volume Ellipsoid (MVE) CPM. The reason we do
not examine other AL techniques from the CR literature, such
as [12], [25], is that they have been proven to be slower
than the MCMC based Median CPM and the MVE CPM
AL schemes [8]. The purpose of examining these techniques
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is to test how fast the analytical and computationally cheap
EP based CBAL (EP CBAL) scheme of this paper learns in
comparison with the also analytical and computationally cheap
MVE CPM, but most importantly compared to the accurate but
computationally expensive MCMC based Median CPM. For
abbreviation purposes, the two last methods are denoted from
here on as MVE CBAL and MCMC CBAL respectively.

The figures of this section show for each AL method the
channel estimation error depending on the number of time
flops where each time flop is the time period necessary for the
CBS to decode the ACK/NACK packet, design the SU probing
power vector and probe the PU system. The interference
channel gain vector estimation error metric at each time flop
is defined as the normalized root-square error ‖ĥ(t)−h∗‖

‖h∗‖ and
basically demonstrates the learning efficiency of each method.
The estimated interference channel gain vector at each step,
ĥ(t), is considered as the µ̃(t) for the EP CBAL method, the
center of the MVE ellipsoid given by every step of the MVE
CBAL and the mean calculated at each stage of the MCMC
CBAL. The error figure results are obtained as the average of
the error metric defined earlier over 100 SU random topologies,
which deliver 100 random draws of interference channel gain
vectors h∗.

Moreover, each figure of subsection VI.B is followed by a
metric which examines the protection of the PU link quality
as the proposed method progresses in time. This can be mea-
sured by the time ratio during which the induced interference
caused to the PU system is harmless. This is actually the
time ratio during which pieces of feedback Zt = +1 occur,
NT−1∑
t=0

1{Zt=+1}

NT
. This parameter of harmless interference is also

averaged over the 100 SU random topologies to deliver the
corresponding average protection metric αsim.

A. Simulation Parameters

As far as the technical parameters of the simulations are
concerned, the PU receiver is chosen to normally operate
and acknowledge with ACK packets when interference is
below Ith = −97dBm, a limit unknown to the CRN. The
examined scenarios consider N = 5 and N = 10 SUs which
are dispersed uniformly within a 3km range around the PU
receiver. The interference channel gains that are unknown to
the CRN are assumed to follow an exponential path loss model
gi = 1

d4i
, where di is the distance of the SUi from the PU

receiver in meters. Additionally, the protection time ratio α
takes the following values {0.5, 0.7, 0.9} where α = 0.5
basically means that the unconstrained Bayesian AL problem
is considered and thus protecting the PU is of no interest. The
remaining scenario parameter is the ”budget” of NT probing
attempts which can also be considered as the pilot time window
and it is assumed to be NT = 100 for the N = 5 SU case and
NT = 200 for the N = 10 SU case.

Additionally, a practical consideration which must be taken
into account is the number of samples for the MCMC CBAL
method, which for N = 5 dimensions is Nr = 20000 and
for N = 10 dimensions is Nr = 150000. Choosing these Nr

values for N = 5 and N = 10 delivers an estimation error of
0.8% for the multivariate cdf hyperplane in each cutting step
of the MCMC based CBAL procedure. This sample number
appears to increase exponentially depending on the learning
problem dimensions and it is the great disadvantage of this
numerical tool. Our proposed EP based solution tackles exactly
this issue and produces posterior pdf approximations of high
accuracy with low computational burden exactly because it is
analytical and not numerical.

B. Estimation Performance of the Constrained Bayesian AL
Method

Initially, let us see in Fig. 3, 4 and 5 the performance of
all the considered CBAL techniques for N = 5 SUs. At first,
it can be clearly seen that as α is increased, more probing
attempts are required to correctly estimate h∗. Furthermore, the
MCMC CBAL scheme outperforms in speed both EP CBAL
and MVE CBAL. More specifically, in the case of α = 0.5,
Fig. 3, for an estimation error 1%, the MCMC CBAL and
the EP CBAL schemes converge in 51 and 72 time flops
respectively, while the MVC CBAL hardly reaches a 20%
error at 100 time flops. For α = 0.7, as it can be seen in
Fig. 4, the corresponding required time flops for an estimation
error 1% are 65 and 88 for the MCMC CBAL and the EP
CBAL techniques, whereas the MVE CBAL scheme exhibits
a severely deteriorated convergence. For α = 0.9, convergence
worsens even further for all schemes as shown in Fig. 5, where
after 100 probing attempts, the estimation errors are 1.7% and
6% for the MCMC CBAL and the EP CBAL techniques. These
results prove that as the design parameter of PU protection α
increases, the CBS designs less harmful for the PU system
probing power vectors, but also less informative about h∗.
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Fig. 3: Interference channel gain vector estimation error
progress vs time of the CBAL methods for α = 0.5 and N = 5
SUs
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Fig. 4: Interference channel gain vector estimation error
progress vs time of the CBAL methods for α = 0.7 and N = 5
SUs
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Fig. 5: Interference channel gain vector estimation error
progress vs time of the CBAL methods for α = 0.9 and N = 5
SUs

As far as the αsim metric for these three cases is concerned,
for α = 0.5, α = 0.7 and α = 0.9, the resulting αsim
values for the MCMC CBAL technique are αsim = 0.5,
αsim = 0.72 and αsim = 0.91 respectively and for the
EP CBAL scheme are αsim = 0.49, αsim = 0.68 and
αsim = 0.87 respectively. The small differences between the
target values of the protection time ratio, α, and the simulated
ones, αsim, appear because of the inaccurate estimation of the

each step posterior pdf using either MCMC’s or the EP. Even
though EP is a very accurate, sophisticated and fast method for
density estimation, the approximated posterior pdf’s still have
some deviation from the real ones. This results in computing
power vectors which satisfy (38) but not its exact version,
(37). Similar but slightly smaller deviations are observed for
the αsim values of the MCMC CBAL technique. As far as the
corresponding αsim of the MVE CBAL method are concerned,
these are αsim = 0.56, αsim = 0.63 and αsim = 0.8 and
cannot be considered adequately close to the design α values.

Next, we examine for N = 10 SUs and designed protection
time ratio α = 0.7 the performance of all the techniques which
is illustrated in Fig. 6. After NT = 186 time flops, the h∗

estimation error for the MCMC CBAL method is 1%, while
after NT = 200 time flops the estimation error for the EP
CBAL scheme is 2.5% and for the MVE CBAL technique it is
again beyond comparison. The respective simulated protection
time ratios are αsim = 0.7, αsim = 0.67 and αsim = 0.78.
The reason for checking the learning efficiencies for N = 10
SUs is first to observe their behavior when the learning prob-
lem dimensions grow. We observe by comparing the results
of Fig. 4 and 6 that the convergence time for all methods
increases which is reasonable, because a greater number of
parameters, the interference channel gains, is being sought
which demands more probing attempts. Second, we wish to
show that the learning performance of the EP CBAL scheme
does not diverge from the one of the MCMC CBAL as the
problem dimensions grow. Subsequently, this proves that the
EP posterior pdf approximation does not deteriorate as N , or
the number of SUs, increases. More specifically, we observe
by comparing the results of Fig. 4 and 6 that the convergence
time of the EP CBAL method for an estimation error of 2.5%
increases from 72 time flops in Fig. 4 to 200 in Fig. 6. Hence,
we could empirically claim that the convergence rate of the
proposed method in this paper depending on the number of
SUs, N , is of slightly higher order than O(N log2N).

As mentioned earlier, the main purpose for comparing the
EP CBAL method with the MCMC CBAL and the MVE
CBAL ones is to compare their learning convergence rates.
Obviously, the MCMC CBAL technique outperforms the pro-
posed method of this paper. Nevertheless, this comes with a
heavy penalty. The MCMC tool requires the generation of
exhaustively many random samples in the h space at each
time step. The number of these samples grows exponentially
with the problem dimensions, N , and this makes the MCMC
CBAL scheme an unrealistic choice for a CBS where all
these computations take place in order to design the SU
probing power vectors. This problem worsens if the CBS
has limited computational capabilities. Our proposed analytical
scheme, the EP CBAL, tackles exactly this issue. It offers a
computationally cheap and accurate alternative to the MCMC
based AL scheme which exhibits slightly slower convergence.
Thus, the EP CBAL manages to combine the benefits of the
previously developed methods in [8], a high accuracy of the
posterior pdf computation comparable to that of the MCMC
tool which subsequently delivers fast learning convergence
rates and the analytical and therefore fast computation of the
posterior pdf at each time step which similarly to the MVE
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Fig. 6: Interference channel gain vector estimation error
progress vs time of the CBAL methods for α = 0.7 and
N = 10 SUs

CBAL does not burden the CBS.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a sequential probing method
in order for a centralized CRN to learn fast the PU inter-
ference constraint using the ACK/NACK PU feedback while
constraining the number of PU outage events. This problem
was formulated within the Constrained DP framework and
its optimal solution policy was implemented with the help of
an advanced, fast and accurate Bayesian Learning technique,
the EP, which was for the first time developed analytically
without independence assumptions about the latent variables.
The performance of this method was demonstrated through
numerical simulations in static channel scenarios for inter-
ference channel gain learning and compared to constrained
versions of Bayesian AL schemes we earlier developed in [8].
Additionally, we confirmed that the simulated PU protection
metric αsim, which is basically the complementary of the
induced PU outage time ratio, is satisfactorily close to the
target, or design, PU protection time ratio α.

As part of our future work, the learning convergence rate of
the proposed CBAL method will be studied, since theoretical
guarantees for the number of iterations needed to approach
the learning solution within some error bound are an essential
part of the AL setting. Moreover, the same idea of CBAL for
interference channel gain learning will be studied in the case
of uncertain ACK/NACK feedback which occurs under low
SINR conditions of the sensed PU signal on the CRN side. In
addition, CBAL will be applied in PU fading channel scenarios
with known or unknown statistics, where moving between the
states ACK and NACK can be described as a 1st order Markov
model and incorporated into the probing design. Within the AL

framework, we also plan to develop variations of our current
methods which will be suitable for a decentralized CRN
structure with a message passing mechanism between the SUs.
This subject has been studied in collaborative cognitive radar
scenarios but without using sophisticated learning mechanisms.
Such AL methods are closely related to decentralized learning
schemes and could tackle issues like scalability. Additionally,
asynchronous decentralized learning schemes could be inves-
tigated which are of great practical importance especially in
communication systems.

APPENDIX A
MOMENTS OF A ONE SIDE TRUNCATED MVN PDF

Assuming an MVN pdf N (x;µx,Σx) of N dimensions and
a halfspace indicator function:

g(x) =

{
1 if a xᵀ ≤ b
0 if a xᵀ > b

(39)

where a xᵀ = b is the hyperplane limit of this halfspace and
a and x are row vectors, then h(x) = g(x) N (x;µx,Σx)
is an un-normalized one side truncated MVN pdf. Next, we
determine the 0th, 1st and 2nd moments of h(x), q, q and Q,
based on the moment related integrals, c, c and C:

c =

∫
RN

h(x) dVx =

∫
a xᵀ≤b

N (x;µx,Σx) dVx (40)

c =

∫
RN

x h(x) dVx =

∫
a xᵀ≤b

x N (x;µx,Σx) dVx (41)

C =

∫
RN

xᵀx h(x) dVx =

∫
a xᵀ≤b

xᵀx N (x;µx,Σx) dVx.

(42)
Note that c is a constant which represents the mass or the
normalization factor of h(x), c is a vector of integrals and C
is a matrix of integrals. The moments can be written as q = c,
q = c

c and Q = C
c − qᵀq. The problem of computing these

moments lies on the computation of the integrals in (40), (41)
and (42).

Now, if we define an N ×N transformation matrix T such
as:

T =



a1 0 0 . . . 0 0
a2 1 0 . . . 0 0
a3 0 1 . . . 0 0
...

...
...

. . .
...

...
aN−1 0 0 . . . 1 0
aN 0 0 . . . 0 1

 (43)

and determine a new random variable y = x T , then y will
also be normally distributed, y ∼ N (y;µy,Σy), where µy =
µx T and Σy = T ᵀΣxT .

This helps us transform the integrals in (40), (41) and
(42) by using the change-of-variables technique. The Jacobian
matrix Jx→y is equal to T ᵀ, hence the infinitesimal volume
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dVx can be rewritten as dVy

|det(Tᵀ)| or dVy

|det(T )| . Using this and
changing the integral limits delivers the following for (40):

c =

∫
a xᵀ≤b

N (x;µx,Σx) dVx =

∫
y1≤b

∫ ∞
−∞

...

∫ ∞
−∞
N (x;µx,Σx)

dVy
|det(T )|

=

∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞

N (x;µx,Σx)

|det(T )|
dVy =∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞
N (y;µy,Σy) dVy (44)

where in the last line we used the relation of the two pdf’s
of the random variables x and y. Similarly, for c and C, we
have:

c =

(∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞

y N (y;µy,Σy) dVy

)
T−1 (45)

and

C =

(T−1)ᵀ

(∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞

yᵀy N (y;µy,Σy) dVy

)
T−1.

(46)

Consequently, the problem of calculating the moments of
a one side truncated MVN pdf has been transformed into
calculating the moments of another one side truncated MVN
pdf where the truncation occurs vertically to the axis y1y

′
1.

This is the study object of Appendix B.

APPENDIX B
MOMENTS OF A ONE VERTICAL SIDE TRUNCATED MVN

PDF

In this section, we elaborate on the moments of one vertical
side truncated MVN pdf’s. In the statistics literature, the trun-
cation subject has been extensively investigated using many
kinds of truncations, such as box-like and elliptical ones. Here,
we present a simplified case of calculating the moments of a
doubly truncated MVN pdf recently studied in [21] and which
actually concerns a hyper-rectangle truncation. The simplifica-
tion introduced here will lead us to computing the moments
of the one vertical side truncated MVN pdf. Assuming a
MVN pdf N (x;µ,Σ) in N dimensions and a hyper-rectangle
defined by the inequalities ai ≤ xi ≤ bi for i = 1, .., N ,
the authors of [21] managed to find simple recursive relations
for the moment related integrals and therefore allow the fast
computation of doubly truncated MVN pdf’s moments.

More specifically, if a = [a1, ..., aN ] and b = [b1, ..., bN ],
then Lk(a,b;µ,Σ) is the integral defined as:

Lk(a,b;µ,Σ) =

∫ b1

a1

...

∫ bN

aN

xk N (x;µ,Σ) dVx (47)

where xk stands for xk11 · ... · x
kN
N . For example, if we wish

to compute the integral
∫ b1
a1
...
∫ b4
a4
x1x3 N (x;µ,Σ) dVx for

N = 4, then k = [1, 0, 1, 0]. Additionally, we denote by r(i) a
row vector r with its ith element removed, by Ri,(j) the ith
row of a matrix R with its jth element removed, by R(i),j

the jth column of a matrix R with its ith element removed
and by R(i),(j) a matrix R with its ith row and jth column
removed. In [21], it is shown that if we let ei denote an N -
dimensional row vector with its ith element equal to one and
zeros otherwise, then:

Lk+ei(a,b;µ,Σ) = µiLk(a,b;µ,Σ) + eiΣcᵀk (48)

where ck is an N -dimensional row vector with its jth element
equal to:

ck,j = kj Lk−ej (a,b;µ,Σ)+

+ a
kj
j N (aj ;µj ,Σj,j) Lk(j)

(a(j),b(j); µ̃
a
j , Σ̃j)+

+ b
kj
j N (bj ;µj ,Σj,j) Lk(j)

(a(j),b(j); µ̃
b
j , Σ̃j) (49)

and

µ̃a
j = µ(j) + Σj,(j)

aj − µj
Σj,j

(50)

µ̃b
j = µ(j) + Σj,(j)

bj − µj
Σj,j

(51)

Σ̃j = Σ(j),(j) −
Σ(j),j Σj,(j)

Σj,j
. (52)

Hence, if we intend to obtain the integrals∫ b1
a1
...
∫ bN
aN

xm N (x;µ,Σ) dVx for m = 1, ..., N and
calculate the mean of a doubly truncated MVN pdf, then we
should set k = 0 and ei = em in (48). Next, we should
divide the results with the normalization constant of the
truncated Gaussian

∫ b1
a1
...
∫ bN
aN
N (x;µ,Σ) dVx, which in

[21] is calculated using the inclusion-exclusion principle,
a combinatorics technique. Similarly, for the 2nd order
moment, we are interested in computing integrals of the form∫ b1
a1
...
∫ bN
aN

xmxn N (x;µ,Σ) dVx for m = 1, ..., N and
n = 1, ..., N which can be acquired by setting k = em and
ei = en in (48).

Now, if we let a and b, which define the box-like truncation,
be respectively [−∞, ...,−∞] and [b1,∞, ...,∞], then the
aforementioned recursive relations concern the moments of
a one vertical side truncated MVN pdf, where the cutting
hyperplane is x1 = b1 and the hyper-rectangle is now the
halfspace x1 ≤ b1. The relations (48), (49), (50), (51) and
(52) are simplified and moreover we have the benefit of
not using the inclusion-exclusion principle, which for large
N can be computationally demanding, for the calculation
of the mass of the truncated N (x;µ,Σ). This happens be-
cause

∫ b1
−∞

∫∞
−∞ ...

∫∞
−∞N (x;µ,Σ) dVx is actually equal to∫ b1

−∞N (x1;µ1,Σ1,1) dx1.
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trical Engineering, Linköping University, the Infor-
mation Systems Laboratory, Stanford University, the
Katholieke Universiteit Leuven, Leuven, Belgium,
and the University of Luxembourg, Luxembourg.

From 1996 to 1997, he was the Director of Research at ArrayComm Inc,
a start-up in San Jose, CA, based on his patented technology. In 1991, he was
appointed a Professor of Signal Processing with the Royal Institute of Technol-
ogy (KTH), Stockholm, Sweden. From 1992 to 2004, he was the Head of the
Department for Signals, Sensors, and Systems, KTH, and from 2004 to 2008,
he was the Dean of the School of Electrical Engineering, KTH. Currently, he is
the Director for the Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg. As Digital Champion of Luxembourg, he acts as an
Adviser to the European Commission. His research interests include security
and trust, reliable wireless communications, and statistical signal processing.
He is a Fellow of the EURASIP and a Member of the IEEE Signal Processing
Society Board of Governors. He has served as an Associate Editor for the
IEEE TRANSACTIONS ON SIGNAL PROCESSING and on the Editorial
Board of IEEE Signal Processing Magazine. He is currently Editor-in-Chief of
EURASIP Signal Processing Journal and a Member of the Editorial Boards of
EURASIP Journal of Applied Signal Processing and Foundations and Trends
in Signal Processing. He has coauthored journal papers that received the IEEE
Signal Processing Society Best Paper Award in 1993, 2001, 2006, and 2013
and three IEEE conference papers receiving Best Paper Awards. He was the
recipient of the IEEE Signal Processing Society Technical Achievement Award
in 2011. He was the first recipient of the European Research Council Advanced
Research Grant.


