320,648 research outputs found

    First-Order Provenance Games

    Full text link
    We propose a new model of provenance, based on a game-theoretic approach to query evaluation. First, we study games G in their own right, and ask how to explain that a position x in G is won, lost, or drawn. The resulting notion of game provenance is closely related to winning strategies, and excludes from provenance all "bad moves", i.e., those which unnecessarily allow the opponent to improve the outcome of a play. In this way, the value of a position is determined by its game provenance. We then define provenance games by viewing the evaluation of a first-order query as a game between two players who argue whether a tuple is in the query answer. For RA+ queries, we show that game provenance is equivalent to the most general semiring of provenance polynomials N[X]. Variants of our game yield other known semirings. However, unlike semiring provenance, game provenance also provides a "built-in" way to handle negation and thus to answer why-not questions: In (provenance) games, the reason why x is not won, is the same as why x is lost or drawn (the latter is possible for games with draws). Since first-order provenance games are draw-free, they yield a new provenance model that combines how- and why-not provenance

    Security Issues in a SOA-based Provenance System

    No full text
    Recent work has begun exploring the characterization and utilization of provenance in systems based on the Service Oriented Architecture (such as Web Services and Grid based environments). One of the salient issues related to provenance use within any given system is its security. Provenance presents some unique security requirements of its own, which are additionally dependent on the architectural and environmental context that a provenance system operates in. We discuss the security considerations pertaining to a Service Oriented Architecture based provenance system. Concurrently, we outline possible approaches to address them

    Towards Automatic Capturing of Manual Data Processing Provenance

    Get PDF
    Often data processing is not implemented by a work ow system or an integration application but is performed manually by humans along the lines of a more or less specified procedure. Collecting provenance information during manual data processing can not be automated. Further, manual collection of provenance information is error prone and time consuming. Therefore, we propose to infer provenance information based on the read and write access of users. The derived provenance information is complete, but has a low precision. Therefore, we propose further to introducing organizational guidelines in order to improve the precision of the inferred provenance information

    Provenance Circuits for Trees and Treelike Instances (Extended Version)

    Full text link
    Query evaluation in monadic second-order logic (MSO) is tractable on trees and treelike instances, even though it is hard for arbitrary instances. This tractability result has been extended to several tasks related to query evaluation, such as counting query results [3] or performing query evaluation on probabilistic trees [10]. These are two examples of the more general problem of computing augmented query output, that is referred to as provenance. This article presents a provenance framework for trees and treelike instances, by describing a linear-time construction of a circuit provenance representation for MSO queries. We show how this provenance can be connected to the usual definitions of semiring provenance on relational instances [20], even though we compute it in an unusual way, using tree automata; we do so via intrinsic definitions of provenance for general semirings, independent of the operational details of query evaluation. We show applications of this provenance to capture existing counting and probabilistic results on trees and treelike instances, and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1

    Using a Model-driven Approach in Building a Provenance Framework for Tracking Policy-making Processes in Smart Cities

    Full text link
    The significance of provenance in various settings has emphasised its potential in the policy-making process for analytics in Smart Cities. At present, there exists no framework that can capture the provenance in a policy-making setting. This research therefore aims at defining a novel framework, namely, the Policy Cycle Provenance (PCP) Framework, to capture the provenance of the policy-making process. However, it is not straightforward to design the provenance framework due to a number of associated policy design challenges. The design challenges revealed the need for an adaptive system for tracking policies therefore a model-driven approach has been considered in designing the PCP framework. Also, suitability of a networking approach is proposed for designing workflows for tracking the policy-making process.Comment: 15 pages, 5 figures, 2 tables, Proc of the 21st International Database Engineering & Applications Symposium (IDEAS 2017

    Provenance for Aggregate Queries

    Get PDF
    We study in this paper provenance information for queries with aggregation. Provenance information was studied in the context of various query languages that do not allow for aggregation, and recent work has suggested to capture provenance by annotating the different database tuples with elements of a commutative semiring and propagating the annotations through query evaluation. We show that aggregate queries pose novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we annotate with provenance information not just tuples but also the individual values within tuples, using provenance to describe the values computation. We realize this approach in a concrete construction, first for "simple" queries where the aggregation operator is the last one applied, and then for arbitrary (positive) relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context. Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such queries on provenance annotated databases

    Data Provenance Inference in Logic Programming: Reducing Effort of Instance-driven Debugging

    Get PDF
    Data provenance allows scientists in different domains validating their models and algorithms to find out anomalies and unexpected behaviors. In previous works, we described on-the-fly interpretation of (Python) scripts to build workflow provenance graph automatically and then infer fine-grained provenance information based on the workflow provenance graph and the availability of data. To broaden the scope of our approach and demonstrate its viability, in this paper we extend it beyond procedural languages, to be used for purely declarative languages such as logic programming under the stable model semantics. For experiments and validation, we use the Answer Set Programming solver oClingo, which makes it possible to formulate and solve stream reasoning problems in a purely declarative fashion. We demonstrate how the benefits of the provenance inference over the explicit provenance still holds in a declarative setting, and we briefly discuss the potential impact for declarative programming, in particular for instance-driven debugging of the model in declarative problem solving
    corecore