7 research outputs found

    Dimensionality reduction methods for machine translation quality estimation

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10590-013-9139-3[EN] Quality estimation (QE) for machine translation is usually addressed as a regression problem where a learning model is used to predict a quality score from a (usually highly-redundant) set of features that represent the translation. This redundancy hinders model learning, and thus penalizes the performance of quality estimation systems. We propose different dimensionality reduction methods based on partial least squares regression to overcome this problem, and compare them against several reduction methods previously used in the QE literature. Moreover, we study how the use of such methods influence the performance of different learning models. Experiments carried out on the English-Spanish WMT12 QE task showed that it is possible to improve prediction accuracy while significantly reducing the size of the feature sets.This work supported by the European Union Seventh Framework Program (FP7/2007-2013) under the CasMaCat project (grants agreement no. 287576), by Spanish MICINN under TIASA (TIN2009-14205-C04-02) project, and by the Generalitat Valenciana under grant ALMPR (Prometeo/2009/014).González Rubio, J.; Navarro Cerdán, JR.; Casacuberta Nolla, F. (2013). Dimensionality reduction methods for machine translation quality estimation. Machine Translation. 27(3-4):281-301. https://doi.org/10.1007/s10590-013-9139-3S281301273-4Amaldi E, Kann V (1998) On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor Comput Sci 209(1–2):237–260Anderson TW (1958) An introduction to multivariate statistical analysis. Wiley, New YorkAvramidis E (2012) Quality estimation for machine translation output using linguistic analysis and decoding features. In: Proceedings of the seventh workshop on statistical machine translation, pp 84–90Bellman RE (1961) Adaptive control processes: a guided tour. Rand Corporation research studies. Princeton University Press, PrincetonBisani M, Ney H (2004) Bootstrap estimates for confidence intervals in asr performance evaluation. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, vol 1, pp 409–412Blatz J, Fitzgerald E, Foster G, Gandrabur S, Goutte C, Kulesza A, Sanchis A, Ueffing N (2004) Confidence estimation for machine translation. In: Proceedings of the international conference on Computational Linguistics, pp 315–321Callison-Burch C, Koehn P, Monz C, Post M, Soricut R, Specia L (2012) Findings of the 2012 workshop on statistical machine translation. In: Proceedings of the seventh workshop on statistical machine translation, pp 10–51Chong I, Jun C (2005) Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst 78(1–2):103–112Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297Gamon M, Aue A, Smets M (2005) Sentence-Level MT evaluation without reference translations: beyond language modeling. In: Proceedings of the conference of the European Association for Machine TranslationGandrabur S, Foster G (2003) Confidence estimation for text prediction. In: Proceedings of the conference on computational natural language learning, pp 315–321Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185(1):1–17González-Rubio J, Ortiz-Martínez D, Casacuberta F (2010) Balancing user effort and translation error in interactive machine translation via confidence measures. In: Proceedinss of the meeting of the association for computational linguistics, pp 173–177González-Rubio J, Sanchís A, Casacuberta F (2012) Prhlt submission to the wmt12 quality estimation task. In: Proceedings of the seventh workshop on statistical machine translation, pp 104–108Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Machine Learning Research 3:1157–1182Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18Hotelling H (1931) The generalization of Student’s ratio. Ann Math Stat 2(3):360–378Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the association for computational linguistics, demonstration sessionKohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572Platt JC (1999) Using analytic QP and sparseness to speed training of support vector machines. In: Proceedings of the conference on advances in neural information processing systems II, pp 557–563Quinlan RJ (1992) Learning with continuous classes. In: Proceedings of the Australian joint conference on artificial intelligence, pp 343–348Quirk C (2004) Training a sentence-level machine translation confidence measure. In: Proceedings of conference on language resources and evaluation, pp 825–828Sanchis A, Juan A, Vidal E (2007) Estimation of confidence measures for machine translation. In: Proceedings of the machine translation summit XI, pp 407–412Scott DW, Thompson JR (1983) Probability density estimation in higher dimensions. In: Proceedings of the fifteenth symposium on the interface, computer science and statistics, pp 173–179Soricut R, Echihabi A (2010) TrustRank: inducing trust in automatic translations via ranking. In: Proceedings of the meeting of the association for computational linguistics, pp 612–621Soricut R, Bach N, Wang Z (2012) The SDL language weaver systems in the WMT12 quality estimation shared task. In: Proceedings of the seventh workshop on statistical machine translation. Montreal, Canada, pp 145–151Specia L, Saunders C, Wang Z, Shawe-Taylor J, Turchi M (2009a) Improving the confidence of machine translation quality estimates. In: Proceedings of the machine translation summit XIISpecia L, Turchi M, Cancedda N, Dymetman M, Cristianini N (2009b) Estimating the sentence-level quality of machine translation systems. In: Proceedings of the meeting of the European Association for Machine Translation, pp 28–35Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267–288Ueffing N, Ney H (2007) Word-level confidence estimation for machine translation. Comput Ling 33:9–40Ueffing N, Macherey K, Ney H (2003) Confidence measures for statistical machine translation. In: Proceedings of the MT summit IX, pp 394–401Wold H (1966) Estimation of principal components and related models by iterative least squares. Academic Press, New Yor

    Neural Models for Measuring Confidence on Interactive Machine Translation Systems

    Full text link
    [EN] Reducing the human effort performed with the use of interactive-predictive neural machine translation (IPNMT) systems is one of the main goals in this sub-field of machine translation (MT). Prior works have focused on changing the human¿machine interaction method and simplifying the feedback performed. Applying confidence measures (CM) to an IPNMT system helps decrease the number of words that the user has to check through the translation session, reducing the human effort needed, although this supposes losing a few points in the quality of the translations. The effort reduction comes from decreasing the number of words that the translator has to review¿it only has to check the ones with a score lower than the threshold set. In this paper, we studied the performance of four confidence measures based on the most used metrics on MT. We trained four recurrent neural network (RNN) models to approximate the scores from the metrics: Bleu, Meteor, Chr-f, and TER. In the experiments, we simulated the user interaction with the system to obtain and compare the quality of the translations generated with the effort reduction. We also compare the performance of the four models between them to see which of them obtains the best results. The results achieved showed a reduction of 48% with a Bleu score of 70 points¿a significant effort reduction to translations almost perfect.This work received funds from the Comunitat Valenciana under project EU-FEDER (ID-IFEDER/2018/025), Generalitat Valenciana under project ALMAMATER (PrometeoII/2014/030), and Ministerio de Ciencia e Investigacion/Agencia Estatal de Investigacion/10.13039/501100011033/and "FEDER Una manera de hacer Europa" under project MIRANDA-DocTIUM (RTI2018-095645-B-C22).Navarro-Martínez, Á.; Casacuberta Nolla, F. (2022). Neural Models for Measuring Confidence on Interactive Machine Translation Systems. Applied Sciences. 12(3):1-16. https://doi.org/10.3390/app1203110011612

    On the effective deployment of current machine translation technology

    Full text link
    Machine translation is a fundamental technology that is gaining more importance each day in our multilingual society. Companies and particulars are turning their attention to machine translation since it dramatically cuts down their expenses on translation and interpreting. However, the output of current machine translation systems is still far from the quality of translations generated by human experts. The overall goal of this thesis is to narrow down this quality gap by developing new methodologies and tools that improve the broader and more efficient deployment of machine translation technology. We start by proposing a new technique to improve the quality of the translations generated by fully-automatic machine translation systems. The key insight of our approach is that different translation systems, implementing different approaches and technologies, can exhibit different strengths and limitations. Therefore, a proper combination of the outputs of such different systems has the potential to produce translations of improved quality. We present minimum Bayes¿ risk system combination, an automatic approach that detects the best parts of the candidate translations and combines them to generate a consensus translation that is optimal with respect to a particular performance metric. We thoroughly describe the formalization of our approach as a weighted ensemble of probability distributions and provide efficient algorithms to obtain the optimal consensus translation according to the widespread BLEU score. Empirical results show that the proposed approach is indeed able to generate statistically better translations than the provided candidates. Compared to other state-of-the-art systems combination methods, our approach reports similar performance not requiring any additional data but the candidate translations. Then, we focus our attention on how to improve the utility of automatic translations for the end-user of the system. Since automatic translations are not perfect, a desirable feature of machine translation systems is the ability to predict at run-time the quality of the generated translations. Quality estimation is usually addressed as a regression problem where a quality score is predicted from a set of features that represents the translation. However, although the concept of translation quality is intuitively clear, there is no consensus on which are the features that actually account for it. As a consequence, quality estimation systems for machine translation have to utilize a large number of weak features to predict translation quality. This involves several learning problems related to feature collinearity and ambiguity, and due to the ¿curse¿ of dimensionality. We address these challenges by adopting a two-step training methodology. First, a dimensionality reduction method computes, from the original features, the reduced set of features that better explains translation quality. Then, a prediction model is built from this reduced set to finally predict the quality score. We study various reduction methods previously used in the literature and propose two new ones based on statistical multivariate analysis techniques. More specifically, the proposed dimensionality reduction methods are based on partial least squares regression. The results of a thorough experimentation show that the quality estimation systems estimated following the proposed two-step methodology obtain better prediction accuracy that systems estimated using all the original features. Moreover, one of the proposed dimensionality reduction methods obtained the best prediction accuracy with only a fraction of the original features. This feature reduction ratio is important because it implies a dramatic reduction of the operating times of the quality estimation system. An alternative use of current machine translation systems is to embed them within an interactive editing environment where the system and a human expert collaborate to generate error-free translations. This interactive machine translation approach have shown to reduce supervision effort of the user in comparison to the conventional decoupled post-edition approach. However, interactive machine translation considers the translation system as a passive agent in the interaction process. In other words, the system only suggests translations to the user, who then makes the necessary supervision decisions. As a result, the user is bound to exhaustively supervise every suggested translation. This passive approach ensures error-free translations but it also demands a large amount of supervision effort from the user. Finally, we study different techniques to improve the productivity of current interactive machine translation systems. Specifically, we focus on the development of alternative approaches where the system becomes an active agent in the interaction process. We propose two different active approaches. On the one hand, we describe an active interaction approach where the system informs the user about the reliability of the suggested translations. The hope is that this information may help the user to locate translation errors thus improving the overall translation productivity. We propose different scores to measure translation reliability at the word and sentence levels and study the influence of such information in the productivity of an interactive machine translation system. Empirical results show that the proposed active interaction protocol is able to achieve a large reduction in supervision effort while still generating translations of very high quality. On the other hand, we study an active learning framework for interactive machine translation. In this case, the system is not only able to inform the user of which suggested translations should be supervised, but it is also able to learn from the user-supervised translations to improve its future suggestions. We develop a value-of-information criterion to select which automatic translations undergo user supervision. However, given its high computational complexity, in practice we study different selection strategies that approximate this optimal criterion. Results of a large scale experimentation show that the proposed active learning framework is able to obtain better compromises between the quality of the generated translations and the human effort required to obtain them. Moreover, in comparison to a conventional interactive machine translation system, our proposal obtained translations of twice the quality with the same supervision effort.González Rubio, J. (2014). On the effective deployment of current machine translation technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37888TESI

    Low-Resource Unsupervised NMT:Diagnosing the Problem and Providing a Linguistically Motivated Solution

    Get PDF
    Unsupervised Machine Translation hasbeen advancing our ability to translatewithout parallel data, but state-of-the-artmethods assume an abundance of mono-lingual data. This paper investigates thescenario where monolingual data is lim-ited as well, finding that current unsuper-vised methods suffer in performance un-der this stricter setting. We find that theperformance loss originates from the poorquality of the pretrained monolingual em-beddings, and we propose using linguis-tic information in the embedding train-ing scheme. To support this, we look attwo linguistic features that may help im-prove alignment quality: dependency in-formation and sub-word information. Us-ing dependency-based embeddings resultsin a complementary word representationwhich offers a boost in performance ofaround 1.5 BLEU points compared to stan-dardWORD2VECwhen monolingual datais limited to 1 million sentences per lan-guage. We also find that the inclusion ofsub-word information is crucial to improv-ing the quality of the embedding
    corecore