95,533 research outputs found
Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography
Photoplethysmography (PPG) is a non-invasive photometric technique that measures the volume changes in arterial blood. Recent studies have reported limitations in developing and optimising PPG-based sensing technologies due to unavailability of the fundamental information such as PPG-pathlength and penetration depth in a certain region of interest (ROI) in the human body. In this paper, a robust computational model of a dual wavelength PPG system was developed using Monte Carlo technique. A three-dimensional heterogeneous volume of a specific ROI (i.e., human finger) was exposed at the red (660 nm) and infrared (940 nm) wavelengths in the reflectance and transmittance modalities of PPG. The optical interactions with the individual pulsatile and non-pulsatile tissue-components were demonstrated and the optical parameters (e.g., pathlength, penetration depth, absorbance, reflectance and transmittance) were investigated. Results optimised the source-detector separation for a reflectance finger-PPG sensor. The analysis with the recorded absorbance, reflectance and transmittance confirmed the maximum and minimum impact of the dermis and bone tissue-layers, respectively, in the formation of a PPG signal. The results presented in the paper provide the necessary information to develop PPG-based transcutaneous sensors and to understand the origin of the ac and dc components of the PPG signal
Exocytosis from permeabilized bovine adrenal chromaffin cells is differently modulated by guanosine 5'-[gamma-thio]triphosphate and guanosine 5'-[beta gamma-imido]triphosphate
1. In bovine adrenal chromaffin cells made permeable either to molecules less than or equal to 3 kDa with alphatoxin or to proteins less than or equal to 150 kDa with streptolysin O, the GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) differently modulated Ca(2+)-stimulated exocytosis. 2. In alphatoxin-permeabilized cells, p[NH]ppG up to 20 microM activated Ca(2+)-stimulated exocytosis. Higher concentrations had little or no effect. At a free Ca2+ concentration of 5 microM, 7 microM-p[NH]ppG stimulated exocytosis 6-fold. Increasing the free Ca2+ concentration reduced the effect of p[NH]ppG. Pretreatment of the cells with pertussis toxin prevented the activation of the Ca(2+)-stimulated exocytosis by p[NH]ppG. 3. In streptolysin O-permeabilized cells, p[NH]ppG did not activate, but rather inhibited Ca(2+)-dependent catecholamine release under all conditions studied. In the soluble cytoplasmic material that escaped during permeabilization with streptolysin O, different G-protein alpha-subunits were detected using an appropriate antibody. Around 15% of the cellular alpha-subunits were detected in the supernatant of permeabilized control cells. p[NH]ppG or GTP[S] stimulated the release of alpha-subunits 2-fold, causing a loss of about 30% of the cellular G-protein alpha-subunits under these conditions. Two of the alpha-subunits in the supernatant belonged to the G(o) type, as revealed by an antibody specific for G(o) alpha. 4. GTP[S], when present alone during stimulation with Ca2+, activated exocytosis in a similar manner to p[NH]ppG. Upon prolonged incubation, GTP[S], in contrast to p[NH]ppG, inhibited Ca(2+)-induced exocytosis from cells permeabilized by either of the pore-forming toxins. This effect was resistant to pertussin toxin. 5. The p[NH]ppG-induced activation of Ca(2+)-stimulated release from alphatoxin-permeabilized chromaffin cells may be attributed to one of the heterotrimeric G-proteins lost during permeabilization with streptolysin O. The inhibitory effect of GTP[S] on exocytosis is apparently not mediated by G-protein alpha-subunits, but by another GTP-dependent process still occurring after permeabilization with streptolysin O
Recommended from our members
Real-world heart rate norms in the Health eHeart study.
Emerging technology allows patients to measure and record their heart rate (HR) remotely by photoplethysmography (PPG) using smart devices like smartphones. However, the validity and expected distribution of such measurements are unclear, making it difficult for physicians to help patients interpret real-world, remote and on-demand HR measurements. Our goal was to validate HR-PPG, measured using a smartphone app, against HR-electrocardiogram (ECG) measurements and describe out-of-clinic, real-world, HR-PPG values according to age, demographics, body mass index, physical activity level, and disease. To validate the measurements, we obtained simultaneous HR-PPG and HR-ECG in 50 consecutive patients at our cardiology clinic. We then used data from participants enrolled in the Health eHeart cohort between 1 April 2014 and 30 April 2018 to derive real-world norms of HR-PPG according to demographics and medical conditions. HR-PPG and HR-ECG were highly correlated (Intraclass correlation = 0.90). A total of 66,788 Health eHeart Study participants contributed 3,144,332 HR-PPG measurements. The mean real-world HR was 79.1 bpm ± 14.5. The 95th percentile of real-world HR was ≤110 in individuals aged 18-45, ≤100 in those aged 45-60 and ≤95 bpm in individuals older than 60 years old. In multivariable linear regression, the number of medical conditions, female gender, increasing body mass index, and being Hispanic was associated with an increased HR, whereas increasing age was associated with a reduced HR. Our study provides the largest real-world norms for remotely obtained, real-world HR according to various strata and they may help physicians interpret and engage with patients presenting such data
Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction
Goal: A new method for heart rate monitoring using photoplethysmography (PPG)
during physical activities is proposed. Methods: It jointly estimates spectra
of PPG signals and simultaneous acceleration signals, utilizing the multiple
measurement vector model in sparse signal recovery. Due to a common sparsity
constraint on spectral coefficients, the method can easily identify and remove
spectral peaks of motion artifact (MA) in PPG spectra. Thus, it does not need
any extra signal processing modular to remove MA as in some other algorithms.
Furthermore, seeking spectral peaks associated with heart rate is simplified.
Results: Experimental results on 12 PPG datasets sampled at 25 Hz and recorded
during subjects' fast running showed that it had high performance. The average
absolute estimation error was 1.28 beat per minute and the standard deviation
was 2.61 beat per minute. Conclusion and Significance: These results show that
the method has great potential to be used for PPG-based heart rate monitoring
in wearable devices for fitness tracking and health monitoring.Comment: Published in IEEE Transactions on Biomedical Engineering, Vol. 62,
No. 8, PP. 1902-1910, August 201
Predictors of Post Prandial Glucose Level in Diabetic Elderly
Post prandial glucose (PPG) level describes the speed of glucose absorption after 2 hours of macronutrient consumption. By knowing this, we could get the big picture of insulin regulation function and macronutrient metabolism in our body. In elderly, age-related slower glucose metabolism leads to diabetes mellitus (DM) in older age. This study aimed to analyze the predictors of PPG level in diabetics elderly which consist of functional status, self-care activity, sleep quality, and stress level. Cross-sectional study design was applied in this study. There were 45 diabetic elderly participated by filling in study instruments. Pearson and Spearman Rank correlation test were used in data analysis (α<.05). Results showed that most respondents were female elderly, 60-74 years old, had DM for 1-5 years with no family history, and only 33.33% respondents reported regular consumption of oral anti diabetes (OAD). Hypertension was found to be frequent comorbidity. Statistical analysis results showed that functional status, self-care activity, sleep quality, and stress level were not significantly correlated with PPG level in diabetic elderly (all p>α), therefore these variables could not be PPG level predictors. Other factors may play a more important role in predicting PPG level in diabetic elderly
A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure
Hypertension or high blood pressure is a leading cause of death throughout the world and a critical factor for increasing the risk of serious diseases, including cardiovascular diseases such as stroke and heart failure. Blood pressure is a primary vital sign that must be monitored regularly for the early detection, prevention and treatment of cardiovascular diseases. Traditional blood pressure measurement techniques are either invasive or cuff-based, which are impractical, intermittent, and uncomfortable for patients. Over the past few decades, several indirect approaches using photoplethysmogram (PPG) have been investigated, namely, pulse transit time, pulse wave velocity, pulse arrival time and pulse wave analysis, in an effort to utilise PPG for estimating blood pressure. Recent advancements in signal processing techniques, including machine learning and artificial intelligence, have also opened up exciting new horizons for PPG-based cuff less and continuous monitoring of blood pressure. Such a device will have a significant and transformative impact in monitoring patients’ vital signs, especially those at risk of cardiovascular disease. This paper provides a comprehensive review for non-invasive cuff-less blood pressure estimation using the PPG approach along with their challenges and limitations
Supervised Release, Sex-Offender Treatment Programs, and Substantive Due Process
This Note argues that mandated PPG testing should be eliminated as a condition of federal supervised release. The test infringes on a constitutionally protected liberty interest against unwanted bodily intrusions and, as only the Second Circuit has held, any condition of supervised release that infringes on a constitutionally protected right may be mandated only where it is narrowly tailored to serve a compelling government interest. Because there are a number of viable, less intrusive alternatives, PPG testing as it stands today is not narrowly tailored enough to serve a compelling government interest
- …
