862 research outputs found

    85 km Long Reach PON System Using a Reflective SOA-EA Modulator and Distributed Raman Fiber Amplification

    Get PDF
    We report on a bidirectional 85 km long reach PON system supported by distributed fiber Raman amplification with a record 7.5 Gb/s remote carrier modulated upstream signal by employing a reflective SOA-EA monolithically integrated circuit

    Coherent PON system with high-sensitivity polarization-independent receiver and no ADC/DSP

    Get PDF
    A 1.25 Gb/s ASK PON system with -51dBm sensitivity (at BER=2-103) is enabled by a polarization-independent coherent receiver that needs no DSP (nor ADC). The system just uses common DFBs and commercial electronic devices and has 52 dB dynamic range

    Enhanced WDM-OFDM-PON System Based on Higher Data Transmitted with Modulation Technique

    Get PDF
    ABSTRACT:- Studies among the field communication system existing technique and proposes and by experimentation demonstrate a multiuser wavelengthdivision-multiplexing passive optical network (WDM-PON) system combining with orthogonal frequency division multiple (OFDM) technique. A tunable multiwavelength optical comb is intended to provide flat optical lines for helping the configuration of the multiple source-free optical network units WDM-OFDM-PON system supported normal single-mode fiber (SSMF). In WDM based on fiber, optical network communications using wavelength with multiplex or demultiplex may be a technology that multiplexes a variety of optical carrier signals onto one fiber by victimization completely different wavelengths of optical device lightweight. this system allows bidirectional communications over one strand of fiber, also as multiplication of capability and calculate BER (Bit Error Rate) and OSNR (optical signal noise ratio) finally; a comparison of by experimentation achieved receiver sensitivities and transmission distances victimization these receivers is given. The very best spectral potency and longest transmission distance at the very best bit rate. WDM based applications like transmission data, medical imaging data, and digital audio data and video conferencing data are information measure-intensive with the Advance in optical technology providing verdant bandwidth, it's natural to increase the multicast construct to optical networks so as to realize increased performance. Our projected scheme (PGA) based on information load transmitted capability improve supported higher information transmitted over these channels and high data up to develop in Matlab tool and using optical Interleaved the OFDM model and analysis the performance of the WDM-PON system

    An FPGA implementation of a sleep enabled PON system

    Get PDF
    Owing to the growing demand for bandwidth-hungry video-on-demand applications, Passive Optical Network (PON) has been widely considered as one of the most promising solutions for broadband access. Environmental concerns motivated network designers to lower energy consumption of optical access networks. A well-known approach to reduce energy consumption is to allow network elements to switch to the sleep mode. In this framework, an improved Optical network Unit (ONU) architecture in TDM-PON is proposed to reduce the handover time of status switching. Energy-saving performances of current and improved architectures are compared in different scenarios. The simulation results show that by applying a proper sleep mode mechanism, the improved architecture can effectively reduce the ONU energy consumption. We further implement the cycle sleep scheme on a multi-ONU testbed based on the improved ONU architecture. The experimental results have substantiated the viability of the improved ONU architecture

    2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    Get PDF
    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free ( We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10−5) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10−2 are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively

    Current Trends towards PON systems at 50+ Gbps

    Get PDF
    Next generation PON targeting 50 Gbit/s/lambda (50G-PON) based on intensity modulation and direct detection (IM-DD) will likely be under strong bandwidth limitations. We present a PAM-2 and Electrical DuoBinary performance analysis of 50 Gbps PON system by using 25G and 50G transceivers technology with several optical receiver architectures and study of the adaptive equalization impact

    Raman Based Reach Extender for Application in XG-PON System

    Get PDF
    Raman amplification is proposed as a solution to extend the reach of XG-PON, using 1210nm quantum dot lasers to amplify the upstream transmission. The reach extender provides 759mW of maximum power and shows high temperature stability. Measured Raman on/off gain of 14 dB accommodates transmission of a 1270nm signal over 50 km single mode fibre with a supported split ratio of 1:64. Transmission performed in burst mode shows no gain transients arising from stimulated Raman scattering.ope

    REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture

    Get PDF
    Reflective electro-absorption modulation-intensity modulators (REAM-IMs) are utilized, for the first time, to experimentally demonstrate colorless ONUs in single-fiber-based, bidirectional, intensity-modulation and direct-detection (IMDD), optical OFDM PONs (OOFDM-PONs) incorporating 25km SSMFs and OLT-side-seeded CW optical signals. The colorlessness of the REAM-IMs is characterized, based on which optimum REAM-IM operating conditions are identified. In the aforementioned PON architecture, 10Gb/s colorless upstream transmissions of end-to-end realtime OOFDM signals are successfully achieved for various wavelengths within the entire C-band. Over such a wavelength window, corresponding minimum received optical powers at the FEC limit vary in a range as small as <0.5dB. In addition, experimental measurements also indicate that Rayleigh backscattering imposes a 2.8dB optical power penalty on the 10Gb/s over 25km upstream OOFDM signal transmission. Furthermore, making use of on-line adaptive bit and power loading, a linear trade-off between aggregated signal line rate and optical power budget is observed, which shows that, for the present PON system, a 10% reduction in signal line rate can improve the optical power budget by 2.6dB. © 2012 Optical Society of America
    corecore