51,813 research outputs found
Interfaces and interfacial effects in glass reinforced thermoplastics - Keynote Presentation
Optimization of the fibre-matrix interphase region is critical to achieving the required performance level in thermoplastic matrix composites. Due to its initial location on the fibre surface, the sizing layer is an important component in the formation and properties of the composite interphase. Consequently, any attempt to understand the science of the composite interphase must encompass an understanding of the science of sizing. In this paper the role of sizings from fibre manufacture through to performance of composite parts is reviewed. In particular the role of organosilane coupling agents and how the formation of a polysiloxane interphase is influenced by the surface properties of the fibre is examined. The influence of the sizing film former in terms of its level of interaction with the silane coupling agent is also examined. The importance of residual stresses in thermoplastic composites in the values obtained for the apparent adhesion levels in these systems is highlighted. These residual stresses are shown to play a significant role in determining the level of interfacial strength in thermoplastic composites and in particular in polyolefin matrices. By applying some of the available models for this phenomenon this analysis is extended to explore the effect of the anisotropic fibre microstructure of carbon, aramid and natural fibres on the apparent interfacial strength in thermoplastic composites
Study on properties of composites reinforced by heat treated glass fibres simulating thermal recycling conditions
In the present study, commercial chopped glass fibres were heat treated at 300°C, 450°C, 500°C and 600°C to imitate a composite thermal recycling process. The heat treated fibres were extrusion compounded and injection moulded with polypropylene to form composites. The heat treatment increased the susceptibility of the fibres to length degradation during the melt processing particularly at higher conditioning temperatures. Comparison with the Cox model revealed that the stiffness of the composite was affected by the reduced fibre length. The reduced fibre length did not significantly contribute to the reduction of the tensile strength and the impact strength. These properties were deteriorated by other factors such as the strength degradation of the glass fibres and the reduced fibre matrix interaction. Thus a post treatment which recovers the fibre strength and optimizes the fibre-matrix interface will be essential to produce thermally recycled glass fibre composites with high mechanical properties
Development and characterisation of injection moulded, all-polypropylene composites
In this work, all-polypropylene composites (all-PP composites) were manufactured by injection moulding. Prior
to injection moulding, pre-impregnated pellets were prepared by a three-step process (filament winding, compression
moulding and pelletizing). A highly oriented polypropylene multifilament was used as the reinforcement material, and a
random polypropylene copolymer (with ethylene) was used as the matrix material. Plaque specimens were injection
moulded from the pellets with either a film gate or a fan gate. The compression moulded sheets and injection moulding
plaques were characterised by shrinkage tests, static tensile tests, dynamic mechanical analysis and falling weight impact
tests; the fibre distribution and fibre/matrix adhesion were analysed with light microscopy and scanning electron
microscopy. The results showed that with increasing fibre content, both the yield stress and the perforation energy significantly
increased. Of the two types of gates used, the fan gate caused the mechanical properties of the plaque specimens to
become more homogeneous (i.e., the differences in behaviour parallel and perpendicular to the flow direction became negligible)
The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene : 6. the properties of injection moulded long fibre PP at high fibre content
The results of an investigation of the mechanical performance of injection moulded long glass fibre reinforced polypropylene with a glass fibre content in the range 0-73 weight % are presented. The composite modulus exhibited a linear dependence on fibre content over the full range of the study. Composite strength and impact resistance exhibited a maximum in performance in the 40-50 weight % reinforcement content range. The residual fibre length and fibre orientation in the samples has also been characterised. These parameters were also found to be fibre concentration dependent. Modeling of the composite strength using the measured fibre length and orientation data did enable a maximum in strength to be predicted. However, the position and absolute level of the predicted maximum did not correlate well with the experimental data. Further analysis indicated that deeper investigation of the dependence of the interfacial shear strength and fibre stress at composite failure on the fibre content are required to fully elucidate these results
Wood polymer composites and their contribution to cascading utilisation
Due to a shortage of resources and a growing competition of land use, sustainable and efficient resource utilisation becomes increasingly important. The application and multiple, cascading utilisation of renewable resources is aimed at to ensure an allocation and future availability of resources. Wood polymer composites (WPCs) are a group of innovative materials consisting of mainly renewable resources. By means of summarizing recent research, it is shown how WPC can potentially contribute to an enhanced cascading utilisation. For the production of WPC, waste materials and by-products from wood and agricultural industry, e.g. offcuts, sawdust, residues from board manufacturing, pulping sludge, can serve as a raw material. Furthermore, the cited literature presents the use of recycled polymers and biopolymers as a potential alternative for the polymer component of WPC. By using biodegradable polymers, a fully biodegradable composite can be formed. In addition to using recycled materials and potentially being biodegradable, it is pointed out that WPC furthermore offers the possibility of being recycled itself, therefore being considered as a “green composite”. Although the influence of contaminated waste streams and mixed filler and polymer types on the properties of WPC made with such recyclates is yet not fully understood and no collection systems exist for post-consumer WPC, in-house recycling on the production sites is identified as a promising option as it reduces production costs and enhances resource efficiency and cascading utilisation. On the basis of cited life cycle assessments, the eco friendliness of WPC is assessed resulting in the conclusion that WPC cannot compete with solid wood with respect to environmental impact but is an environmentally friendly alternative to neat plastics in several applications
Penetration impact testing of self-reinforced composites
Penetration impact resistance is one of the key advantages of self-reinforced composites. This is typically measured using the same setup as for brittle fibre composites. However, issues with the test configuration for falling weight impact tests are reported. Similar issues have been found in literature for other composites incorporating ductile fibres. If the dimensions of the test samples are too small relative to the clamping device, then the test samples can heavily deform by wrinkling and necking. These unwanted mechanisms should be avoided as they absorb additional energy compared to properly tested samples. Furthermore, these mechanisms are found to occur more easily at lower compaction temperatures due to the lower interlayer bonding. In conclusions, the sample dimensions of ductile fibre composites should be carefully selected for penetration impact testing. If wrinkling or necking is observed, then the sample dimensions need to be increased.publisher: Elsevier
articletitle: Penetration impact testing of self-reinforced composites
journaltitle: Composites Part A: Applied Science and Manufacturing
articlelink: http://dx.doi.org/10.1016/j.compositesa.2014.10.012
content_type: article
copyright: Copyright © 2014 Elsevier Ltd. All rights reserved.status: publishe
Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder
We present a novel method of manufacturing rigid and robust short natural fiber preforms using a papermaking process. Bacterial cellulose acts simultaneously as the binder for the loose fibers and provides rigidity to the fiber preforms. These preforms can be infused with a resin to produce truly green hierarchical composites
The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP
We present results of a step by step comparison of the mechanical performance of injection moulded 'long' (LF-PP) and 'short' (SF-PP) previous termglass fibre-polypropylenenext term compounds. The study allows direct comparison of the mechanical performance of long and short previous termfibrenext term systems in the same resin at the same previous termfibrenext term diameter, and the effect of previous termfibrenext term diameter in short previous termfibrenext term compounds. Furthermore, the comparison of these three systems has been made over the 0-40 wt% previous termfibrenext term content range. At the same previous termfibrenext term diameter and previous termfibrenext term content LF-PP gives significant improvements in room temperature tensile and flexural strength, notched and unnotched impact resistance. The improvement in impact resistance is higher still at lower test temperature. LF-PP also gives increasingly higher modulus over SF-PP as the strain is increased. The effect of lowering the previous termfibrenext term diameter in SF-PP has been shown to increase both strength and unnotched impact, but not to the levels obtained with LF-PP at higher previous termfibrenext term diameter. Notched impact and modulus of SF-PP were relatively unaffected by reduction of the previous termfibrenext term diameter. The relative mechanical data are shown to conform well to available models. The results are discussed in terms of the relevant micro-mechanical parameters of these materials
The role of residual thermal stress in interfacial strength of polymer composites by a novel single fibre technique
The temperature dependence of the interfacial properties of glass fibre reinforced polypropylene and epoxy composites was investigated using a novel microbond test in the temperature controlled environment of a thermo-mechanical analyser. Highly significant inverse dependence of IFSS on testing temperature was observed in both systems. The temperature dependence of the GF-PP IFSS was accounted for by the variation of residual radial compressive stresses at the interface with the test temperature. On the other hand, it was found that the residual thermal stress did not seem to fully account for the temperature dependence of IFSS in GF-Epoxy. Nevertheless, the results clearly showed that GF-Epoxy IFSS had a strong correlation with the modulus of the epoxy matrix
- …
