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Abstract 

Penetration impact resistance is one of the key advantages of self-reinforced 
composites. This is typically measured using the same setup as for brittle fibre 
composites. However, issues with the test configuration for falling weight impact tests 
are reported. Similar issues have been found in literature for other composites 
incorporating ductile fibres. If the dimensions of the test samples are too small relative 
to the clamping device, then the test samples can heavily deform by wrinkling and 
necking. These unwanted mechanisms should be avoided as they absorb additional 
energy compared to properly tested samples. Furthermore, these mechanisms are found 
to occur more easily at lower compaction temperatures due to the lower interlayer 
bonding. In conclusions, the sample dimensions of ductile fibre composites should be 
carefully selected for penetration impact testing. If wrinkling or necking is observed, 
then the sample dimensions need to be increased. 

1. Introduction 

The number of applications for synthetic polymers continues to grow, because of their 
low density and generally low cost. They have replaced natural materials and metals in 
numerous applications. Their use is currently limited to non-structural applications due 
to their relatively low strength and stiffness. By adding a reinforcing fibre, these 
disadvantages can be mitigated. Glass, carbon and aramid fibres have been established 
as polymer reinforcements for several decades. However, these high performance fibres 
lead to composite failure strains ranging from 1 to 3%.  

The mechanical properties of polymers can also be increased by inducing molecular 
orientation [1]. Polymers can for example be drawn into fibres or tapes [2-4]. These 
fibres and tapes can then be used to make self-reinforced composites (SRCs), where 
fibre and matrix are made of the same polymer. This type of composite with only one 
constituent was first investigated by Capiati and Porter [5]. Different production 
processes for self-reinforced composites were developed, such as hot compaction [6, 7], 
film stacking [8] and bicomponent tape technology [9, 10]. In the hot compaction 
technology, pressure and heat are applied to stacks of polymeric tapes. By selecting the 
optimal processing conditions, only the outer skin of the tapes melts, which forms the 
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matrix upon cooling. In the bicomponent tape technology, the polymeric tapes are 
coated with a copolymer, with a lower melting temperature. Upon compaction, only the 
copolymer is melted and subsequently forms the matrix cooling. Film stacking consists 
of adding polymer films in between layers of oriented polymer tapes or fibres. The films 
have a lower melting temperature than the oriented tape or fibre. The consolidation 
temperature is chosen between the melting temperature of the film and the oriented tape 
or fibre. 

Extensive reviews of the production and mechanical properties of self-reinforced 
composites from different polymers can be found in [11, 12]. The mechanical properties 
of self-reinforced polypropylene (SRPP) depend on process parameters such as 
temperature, pressure and dwell time, and on material specific parameters such as 
weave architecture and tape draw ratio [13, 14]. The process temperature has a strong 
influence on the tensile properties of hot compacted SRPP: in a 12 °C temperature 
window, the strength increases from 55 MPa to 140 MPa and then falls back to 27 MPa 
[13]. Furthermore, higher temperatures increase the interlayer bonding [13, 15-17], 
which is typically quantified by the peel strength.  

In addition to low density and recyclability, SRCs are attractive materials because of 
their excellent impact resistance. For characterization of the impact resistance, 
instrumented falling weight impact (IFWI) tests are common practice. IFWI tests are 
commonly used in literature to characterize the impact properties of SRPP [9, 18-23], 
but are actually only standardized for rigid plastics and brittle textile composites in 
ASTM 5628-96 [24] and ISO 6603-2 [25]. SRPP is more ductile and impact resistant 
than conventional glass or carbon fibre composites [6], and hence it is questionable 
whether SRPP can be properly tested using these standards. 

Many authors published data for the penetration impact energy of SRPP. It is common 
practice to report values normalized by the thickness of the samples. However, Alcock 
et al. find a non-linear relation between the penetration impact energy and the thickness 
[9], so this normalization will induce an error on the following values. For hot 
compacted SRPP, penetration impact energies of 21 J/mm [20], 52-75 J/mm [19], and 
26 J/mm [14] are reported. Bicomponent tape SRPP has an impact resistance of 20-44 
J/mm [9], and finally for film stacked SRPP, values of 16-21 J/mm are reported [23].  

Swolfs et al. [14] and Aurrekoetxea et al. [21] find that hot compacted SRPP primarily 
fails due to tape fracture, while delamination also significantly contributes to the energy 
absorption for the bicomponent tape SRPP [9]. For bicomponent tape SRPP, 
delaminations are more likely to occur according to Alcock et al. [9]. It is stated in [9] 
and [21] that increasing the consolidation temperature improves the interlayer bonding. 
A high interlayer bonding impedes the development of delaminations and therefore 
leads to more localized impact damage.  

Alcock et al. [9], Crauwels [19]  and Tissington et al. [26] show images of samples with 
severe deformation, such as those in Figure 1. The former two show images of SRPP 
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samples, while the latter shows that polyethylene fibre/epoxy composites can suffer 
from the same problem. Under normal circumstances, the main energy absorption 
mechanisms for SRPP during IFWI tests are tape fracture, delamination and debonding 
of fibre and matrix [9, 21, 23]. It is expected that heavily deformed samples will have a 
higher impact energy absorption, as the energy absorption mechanisms should be 
limited to inside the clamped region.  

 
Figure 1: Heavily deformed impact samples: (a) Alcock et al., bicomponent tape SRPP (reprinted from [9], 
with permission from Elsevier), (b) Crauwels, hot compacted SRPP [19], (c) Tissington et al., polyethylene-
epoxy composite (reprinted from [26], with permission from Elsevier) 

The present work will investigate whether the standard IFWI test as performed in 
literature are applicable for ductile fibre composites. A number of assumptions made in 
literature need to be verified. Firstly, the compaction quality of the SRPP needs to be 
verified. Secondly, the linear relationship between penetration impact energy and 
sample thickness will be investigated, as Alcock et al. [9] indicate that this relationship 
is not linear. Thirdly, the influence of sample geometry and clamp size on the impact 
resistance is investigated and parameters for the evaluation of configuration-dependent 
behavior are proposed. Finally, when an adequate test setup is defined, the authors show 
the damage mechanisms change with the compaction temperature. 

2. Materials and methods 

2.1. Materials 

Drawn polypropylene tapes are woven in a twill 2/2 pattern by Propex Fabrics GmbH 
(Germany). The tapes have a linear density of 110 tex, a stiffness of 6.9 ± 1.2 GPa and a 
strength of 589 ± 24 MPa [20]. Isotropic PP films of the same PP grade and with a 
thickness of 20 µm were provided by Propex Fabrics GmbH. 

2.2. Hot compaction 

To produce samples for impact testing, layers of woven PP-tapes with dimensions of 
320x320 mm² were stacked between 1 mm thick aluminium plates. A Fontijne Grotnes 
LabPro400 hot press was pre-heated for 10 minutes at the compaction temperature to 
ensure a homogeneous temperature distribution. The stack was then inserted into the 
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press and kept at the compaction temperature and a pressure of 4 MPa for 5 minutes. 
During cooling to 40 °C in 5 minutes, the pressure was maintained to minimize 
shrinkage. To aid compaction, the woven PP tapes were interleaved with PP films for 
some layups. Unless otherwise mentioned, these films were not added. 

Unless otherwise stated, the impact tests will be performed on 16 layers of SRPP 
compacted at 188 °C, without PP films. These samples have a thickness of 2.48 mm. 

2.3. Compaction quality 

Ultrasonic C-scans were performed to investigate the compaction quality, compacted at 
different temperatures. An Olympus Panametrics V309SU transducer at 5 MHz and 100 
V and 13 mm nominal diameter was used for the scans. The step size was 2 mm and the 
plates were scanned at 0.2 mm/s. The histograms of the C-scans are processed with the 
signal processing algorithms by O’Haver [27] to differentiate between areas with a 
different compaction quality. 

2.4. Impact tests 

Instrumented falling weight impact (IFWI) tests are performed with different test 
setups, among which the ASTM D5628 and the ISO 6603-2 standards. A hemispherical 
striker with diameter 20 mm is used in combination with clamps with inner diameters of 
40 and 80 mm and outer diameters of 60 and 100 mm, respectively. The samples are 
clamped with a force of 2800 N, regardless of the size of the clamp. This corresponds to 
a clamping pressure of 1780 kPa and 557 kPa for respectively the 60 mm and the 100 
mm clamp. A striker with a weight of 26.17 kg is dropped from 1 m height, which is 
equivalent to an impact energy of 257 J. The penetration impact energy is calculated as 
the area underneath the force-displacement diagram until the force has dropped below 
half of its maximum value. 

Unless otherwise stated, the square impact samples have a length of 100 mm and the 
default clamp is the one with an outer diameter of 60 mm. The compaction quality of 
every impact sample was verified with C-scanning. At least 5 impact samples were 
tested for each configuration. 

3. Results 

3.1. Compaction quality assessment 

Scanning acoustic microscopy C-scans yield information about the homogeneity and 
compaction quality of the sample. The compaction quality is investigated on plates 
compacted at 184, 188 and 192 °C. These plates are square with a width of 320 mm and 
a thickness of 2.48 ± 0.03 mm. The compaction quality will be evaluated by the 
histogram of reflected signal amplitude of the C-scan. A single, narrow peak at high 
greyscale value would indicate a homogeneous, high quality compaction. 
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The compaction quality is significantly higher at 188 °C. The absence of a tail in Figure 
2 implies that there are no large voids or dry areas in the material. Nevertheless, the 
histogram still shows a bimodal distribution, although both peaks have shifted to higher 
greyscales (better compaction quality). The C-scan image (see Figure 3b) indicates that 
the borders of the sample are whiter and thus better compacted than at 184 °C (see 
Figure 3a). This may have been caused by a higher shrinkage at the sample edges, 
causing more molecular relaxation and a local increase of the matrix fraction. This 
effect counteracts the lower temperature at the mould edge as observed for the 184 °C 
samples. The average greyscale is now 124 for the first peak and 142 for the second 
peak. 

At 192 °C, a single, high peak is found, indicating homogeneous compaction quality. 
The bimodality has disappeared. A larger fraction of the tapes have melted at this 
temperature, as evidenced by the decrease in tensile strength and modulus [22]. 

From the investigation of the compaction quality, it is observed that the compaction 
quality at 184 °C is low and variable within one plate. At 188 °C, the compaction 
quality is higher, but still not completely homogeneous. Only at 192 °C, a completely 
homogeneous compaction is achieved. Impact samples will be cut from the samples in 
various locations. It is therefore expected that the scatter on the impact properties is 
inversely proportional to the compaction temperature. 

3.2. Effect of specimen thickness  

For a fair comparison between samples with different thicknesses, the absolute 
penetration impact energy is often normalized by the sample thickness. Normalization 
of the penetration impact energy assumes that the penetration impact energy of SRPP 
depends linearly on the sample thickness. Figure 4 validates this assumption, for SRPP 
compacted at 188 °C. A univariate regression shows a linear relation between 
penetration impact energy Epen and thickness t with Epen (J)= 26.8(J/mm) * t(mm), with 
R² = 79.7%.  

It is also interesting to note that the penetration impact energy of a single layer follows 
this linear trend. Since a single layer cannot delaminate, most of the energy must be 
absorbed through tape fracture and perhaps some tape-matrix debonding. Tape fracture 
is hence the primary failure mechanism at 188 °C.  

Figure 5 shows the decrease of thickness of a compacted plate with increasing 
compaction temperature for the same amount of layers. The difference between 184 °C 
and 188 °C is 4.6% and between 188 °C and 192 °C is 7.5%. Adding a PP film with a 
thickness of 20 µm between each layer of woven PP tapes gives a significant (p = 
2.46%) increase in thickness of 5.0%. The film fills the remaining porosities in the 
composite, thus increasing the compaction quality. This is proven by the fact that the 
thickness only increases with 130 µm while the total added thickness of films is 300 
µm.  
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4. Conclusion 

This paper finds a procedure for adequate testing of the penetration impact behavior of 
self-reinforced polypropylene. After verification of an adequate compaction quality at 
188 °C, the assumption that the penetration impact energy can be normalized by the 
thickness, is validated. This is contrary to the behavior of bicomponent tape SRPP, 
where a non-linearity for the penetration impact energy as a function of the thickness is 
observed [9].  

This non-linearity is caused by heavy deformation of the test samples. It is found that 
the impact resistance of SRPP is dependent on the sample size and clamp size in an 
IFWI test. It is necessary to have sufficient material outside the clamp to prevent 
unwanted failure mechanisms caused by inadequate test configurations. A geometry 
ratio G was defined as the ratio of the sample size divided by the clamp size. The 
penetration impact energy tends toward a stable value with increasing geometry ratio.  

Some of the samples tested by Alcock et al. in [9], by Crauwels in [19] and by 
Tissington et al. in [26] have a geometry ratio close to 1, and the images in Figure 1 
suggest the presence of similar, unwanted energy absorption mechanisms. Some of the 
values reported by Crauwels are overestimations of the impact resistance of hot 
compacted SRPP. It is likely that some of the values presented by Alcock et al. and 
Tissington et al. may also be overestimations, but this was not verified experimentally. 

 In general, when testing composites with ductile fibres, the geometry ratio should be 
sufficiently large to impede necking and wrinkling as damage mechanisms. The 
reported minimal geometry ratio of 1.67 for SRPP hot compacted at 188 °C cannot be 
generalized to other ductile fibres straight away. The minimal geometry ratio depends 
on various production parameters such as compaction temperature and material 
characteristics such as interlayer bonding and stiffness. Because so many parameters 
have an effect on the minimal geometry ratio, a general minimal geometry ratio for 
ductile fibre composites cannot be defined. Instead, when wrinkling or necking is 
observed in a ductile fibre composite, the size of the samples should be increased and 
the tests repeated. Alternatively, the size of the clamp can be increased, but then the size 
of the samples should be increased proportionally.  
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