20,978 research outputs found
Estimation of Saturation of Permanent-Magnet Synchronous Motors Through an Energy-Based Model
We propose a parametric model of the saturated Permanent-Magnet Synchronous
Motor (PMSM) together with an estimation method of the magnetic parameters. The
model is based on an energy function which simply encompasses the saturation
effects. Injection of fast-varying pulsating voltages and measurements of the
resulting current ripples then permit to identify the magnetic parameters by
linear least squares. Experimental results on a surface-mounted PMSM and an
interoir magnet PMSM illustrate the relevance of the approach.Comment: IEMDC-2011 (preliminary version
Sensorless control of deep-sea ROVs PMSMs excited by matrix converters
The paper reports the development of model-based sensorless control methodologies for driving PMSMs using matrix converters. In particular, experimental results show that observer-based state-estimation techniques normally employed for sensorless control of PMSMs using voltage source inverters (VSIs), can be readily exported to matrix converter counterparts with minimal additional computational overhead. Furthermore, zero speed start-up and speed reversal are experimentally demonstrated. Finally, the observer is designed to be fault tolerant such that upon detection of a broken terminal (phase fault), the PMSM remains operational and could be utilized to provide a limp-home capabilit
Detection of partial demagnetization fault in PMSMs operating under nonstationary conditions
Demagnetization fault detection of in-service permanent magnet synchronous machines (PMSMs) is a challenging task, because most PMSMs operate under nonstationary circumstances in industrial applications. A novel approach based on tracking characteristic orders of stator current using Vold-Kalman filter is proposed to detect the partial demagnetization fault in PMSMs running at nonstationary conditions. The amplitude of envelope of the fault characteristic orders is used as fault indictor. Experimental results verify the superiority of the proposed method on the partial demagnetization online fault detection of PMSMs under various speed and load conditions.Postprint (author's final draft
Conversion of standard induction machines to permanent magnet synchronous machines with higher efficiency
A quantitative comparison between BLDC, PMSM, brushed DC and stepping motor technologies
Brushless DC machines (BLDC), Permanent Magnet Synchronous Machines (PMSM), Stepping Motors and Brushed DC machines (BDC) usage is ubiquitous in the power range below 1,5kW. There is a lot of common knowledge on these technologies. Stepping Motors are ideally suited for open loop positioning, BLDC machines are the most obvious candidate for high-speed applications, etc. However, literature lacks comprehensive research comparing these machines over a large range of applications. In this paper, more than 100 motors are considered. Their characteristics are compared and presented in a comprehensive way. These results support the common knowledge concerning the field of application of each technology and new insights follow from this quantitative comparison
Implementing SVPWM Technique to an Axial Flux Permanent Magnet Synchronous Motor Drive with Internal Model Current Controller
This paper presents a study of axial flux permanent magnet synchronous motor (AFPMSM) drive system. An internal model control (IMC) strategy is introduced to control the AFPMSM drive through currents, leading to an extension of PI control with integrators added in the off-diagonal elements to remove the cross-coupling effects between the applied voltages and stator currents in a feed-forward manner. The reference voltage is applied through a space vector pulse width modulation (SVPWM) unit. A diverse set of test scenarios has been realized to comparatively evaluate the state estimation of the sensor-less AFPMSM drive performances under the implemented IMCbased control regime using a SVPWM inverter. The resulting MATLAB simulation outcomes in the face of no-load, nominal load and speed reversal clearly illustrate the well-behaved performances of IMC controller and SVPWM technique to an Axial Flux PM Motor Drive system
An improved two-vector model predictive torque control based on RMS duty ratio optimization for pmsm
This paper proposes an improved two-vector model-predictive torque control (MPTC) strategy to reduce the average torque ripple and improve the flux tracking performance. When determining the duty ratio of vector combination, this method aims at restricting the root mean square (RMS) error of both torque and flux during the whole control period. Every vector combination and corresponding time duration are evaluated in the cost function, which leads to global restriction of torque ripple and flux ripple. In order to avoid increasing switching frequency and computational burden, a restriction is added on the second vector. The three candidates of the second vector are the two adjacent vectors of the first one and zero vector. Simulation results are provided to show the effectiveness of the proposed strategy
An Improved Sideband Current Harmonic Model of Interior PMSM Drive by Considering Magnetic Saturation and Cross-Coupling Effects
The sideband current harmonics, as parasitic characteristics in permanent-magnet synchronous machine (PMSM) drives with space vector pulsewidth modulation technique, will increase the corresponding electromagnetic loss, torque ripple, vibration, and acoustic noises. Therefore, fast yet accurate evaluation of the resultant sideband current harmonic components is of particular importance during the design stage of the drive system. However, the inevitable magnetic saturation and cross-coupling effects in interior PMSM drives would have a significant impact on the current components, while the existing analytical sideband current harmonic model neglects those effects. This paper introduces a significant improvement on the analytical model by taking into account these effects with corresponding nonlinear factors. Experimental results are carried out to underpin the accuracy improvements of the predictions from the proposed model over the existing analytical one. The proposed model can offer a very detailed and insightful revelation of impacts of the magnetic saturation and cross-coupling effects on the corresponding sideband current harmonics
A Novel PMSM Hybrid Sensorless Control Strategy for EV Applications Based on PLL and HFI
In this paper, a novel hybrid sensorless control strategy for Permanent Magnet Synchronous Machine (PMSM) drives applied to Electric Vehicles (EV) is presented. This sensorless strategy covers the EV full speed range and also has speed reversal capability. It combines a High Frequency Injection (HFI) technique for low and zero speeds, and a Phase-Locked Loop (PLL) for the medium and high speed regions. A solution to achieve smooth transitions between the PLL and the HFI strategies is also proposed, allowing to correctly detect the rotor position polarity when HFI takes part. Wide speed and torque four-quadrant simulation results are provided, which validate the proposed sensorless strategy for being further implemented in EV.Peer ReviewedPostprint (author's final draft
- …
