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Abstract

To increase the efficiency of cheap and robust commercial induction machines, especially at
part load and speed, these machines are converted into synchronous machines in a fast, cheap and
easy way. The stators are not changed at all; only the rotors are modified. The appropriate size
of the rotor iron and the magnets is found by using finite element software. The robustness and
reliability are unchanged because the stators, the shafts and the bearings are not modified. The
resulting synchronous machines still have a rather low torque to weight ratio, but they have low rotor
losses, a good power factor and high efficiency.

Two induction machines with approximately the same outer dimensions (a 2-pole 3 kW machine
and a 6-pole 1.5 kW machine) were converted into synchronousmachines by different production
techniques for the rotor. The efficiency maps were simulatedand measured for sinusoidal waveforms
and for pulse width modulation supply. For both machines, the peak efficiency increases by 2%
and 11% respectively, and the average efficiency (between 0.5 and 1 times nominal torque, and 0.5
and 1 times nominal speed) by 2% and 15%. Conversion of induction machines with many poles
to synchronous machines improves the efficiency much more than conversion of two-pole induction
machines.

Keywords: Permanent magnet machines, Induction motors, Asynchronous machines,Losses

1 Introduction

Standard induction machines (IM) are produced in huge quantities, causing their price to be very low. The

efficiency of very large induction machines is high, but the efficiency of smaller machines is much lower.

Especially at low speed and power, the efficiency is significantly lower thanin the optimal operating

point. Efforts are done to increase the efficiency of induction machines onthe market: in 2008, the IEC

60034-30 standard was approved [1]. In this standard, efficiency classes IE1, IE2 and IE3 are defined

for direct-on-line induction motors up to 375 kW. This standard defines minimumefficiency values for

the machine directly connected to the grid. The difference between the several classes is obtained by

amongst others better magnetic material and optimized geometry of stator and rotor. To understand the

difference between the classes, [2] shows iso efficiency contours for three induction machines of 11 kW

and 1500 rpm, having class IE1, IE2 and IE3 respectively. The iso efficiency contours show the efficiency
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in a wide speed and torque range, not only in direct on line operation. Thisis useful because more and

more machines are operated by a variable speed drive. It is found that IE3 has a 2% efficiency increase

compared to IE1 in a wide speed and torque operating range. However, the magnetizing current – which

causes extra copper losses in the stator – and the Joule losses in the rotor bars cannot be avoided.

Permanent magnet synchronous machines (PMSM) have almost no Joule losses in the rotor: the cur-

rents induced in the magnets and the back iron can be small if the machine is well designed (small slot

openings, several slots per pole per phase to obtain a nearly sinusoidalmmf (magneto motive force) dis-

tribution along the air gap, segmented magnets, ...). Furthermore, a synchronous machine does not need

magnetizing current in the stator, so that for the same voltage, the same activepower can be produced

with a lower stator current. It is expected that converting an IE1 induction machine to a synchronous

machine can increase the efficiency even more than replacing it by an IE3 machine.

In literature, the energy efficiency of permanent magnet synchronousmotors and induction motors has

been compared. In [2], an IE3 induction motor of 4 kW is compared with a PMSM in the same power

range. The efficiency improvement turned out to be at least 4.5%, even much more for low speed and

low torque. In [3], a self-starting PMSM for compressor drives is designed. The authors found for the

PMSM – compared with an isometric induction motor – efficiency improvements of 9%and 7% for rated

operation under 50 Hz and 60 Hz, respectively. The power factors also increased by 17% and 10% for the

same rated operations. This reduces also the losses in the converter. In [4], two water-cooled machines

with the same nominal power (85 kW) and dimensions are compared regardingtheir energy efficiency:

an induction motor with efficiencyη = 92.6% and an interior permanent magnet synchronous motor with

efficiencyη = 95.8%. From the presented calculation results, the efficiency of the synchronous machine

turns out to be significantly higher.

Another example shows that a PMSM is not always better than an IM. In [5], the performances of 4-pole

and 2-pole solid-rotor induction machines for high speed (29100 rpm) arecompared with the measured

performance of a PMSM of the same active volume. The simulation results showthat a 2-pole solid rotor

induction motor has a larger torque density and is a better candidate for high speed drives. At very high

speed, the induction motor can have a better performance than a PMSM.

In the speed range that most induction and synchronous machines operate (0-1500 rpm or 0-3000 rpm),

many examples from literature show that a PMSM may be more efficient than an induction machine.

However, the price of such a machine is much higher. Therefore, in this paper, we check if a conventional

IM can be converted to a PMSM, for almost no extra material cost except the price of the magnets and

with a minimum of effort. As rare earth magnets are expensive, the amount ofmagnets is chosen as low

as acceptable. The possibility to use cheaper ferrite magnets was investigated, but turned out to result

in a too low flux level in the machines. The stator is unchanged, and the rotor isreplaced by a modified
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one. For the rotor, different magnet assemblies can be implemented like in [6], but for the considered

machines, we choose a rectangular array of small block-shaped magnets. We study what the magnet

pole-arc to pole-pitch ratio and the air gap should be in order to have a properly designed machine, even

if the stator cannot be optimized.

Two induction machines are converted to synchronous machines, both numerically and experimentally: a

3 kW, 2-pole machine and a 1.5 kW, 6-pole machine. The original and converted machines are compared

regarding their efficiency. For each machine, a different production technique for the rotor was used.

Also a different control technique was used: the 3.0 kW machine was usedin open loop on a perfectly

sinusoidal three phase grid; the 1.5 kW machine was controlled in closed loop(with a position encoder)

by a frequency converter with pulse width modulation (PWM).

2 Converting an induction machine to a synchronous machine

2.1 New rotor back iron on the same shaft

A first possibility to make the PM rotor is to completely remove the rotor iron and the aluminium cage

by cutting with a lathe. Then, a new cylinder is made with a suitable diameter. The internal radius of the

cylinder is such that it fits on the original shaft of the machine. By using the original shaft, the risk of

misalignment or eccentricity of a new shaft is avoided. The cylinder can be fixed on the shaft by gluing

or via a wedge. Conventional and cheap block shaped NdFeB magnets are glued on the outside of the

cylinder: see Fig. 1.

Figure 1: The rotor of the two pole machine during construction, with one magnet pole (7×4 rectangular
magnets with dimensions 20×10×5 mm) glued.

The dimensions of the magnets should be carefully determined as explained in section 3. It is preferred

to use small pieces of magnets for three reasons. First, the small wedges between the flat magnet surface

and the curved cylinder are useful for gluing. The thickness of the gluelayer is somewhat thicker near the

edge of the magnets, which guarantees sufficient mechanical elasticity in case of temperature changes.

Secondly, the eddy currents in the magnets are smaller as the magnet is naturally segmented. Thirdly,

conventional rectangular magnets are easy to order and cheaper (in lowquantities) than complex shaped

magnets. After the magnets are fixed to the rotor, optionally a fibre glass tape can be added around the
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rotor. This protects the magnets from centrifugal forces, but increases the air gap thickness.

The above approach was chosen forthe 3 kW 2-pole machine. As this machine has two poles, it could be

made by two large curved magnets. However, it was preferred to realize each of the two magnet poles by

28 small block shaped magnets: 7 next to each other along the circumference, and 4 in axial direction:

see Fig. 2 and the photo in Fig. 1 where one magnet pole is glued.

2.2 Use the original rotor lamination as back iron

The PM rotor can also be made in a different way. The rotor iron is only partially removed by cutting

with a lathe: the thickness of the removed zone equals the magnet thickness, possibly slightly increased

to have a larger air gap. Usually, the magnet thickness is smaller than the slot depth in the rotor of

the IM. This means that the short-circuited rotor bars are not completely removed. They can be either

further removed in a mechanical way, or be kept. As the PMSM rotates at synchronous speed, the

short-circuited rotor bars will not cause much losses in the rotor. However, the bars are non-magnetic,

causing an additional reluctance and possibly local saturation of rotor teeth. The total magnetic flux in

the machine may be reduced if the cage is not entirely removed.

The above approach was chosen forthe 1.5 kW 6-pole machine. The 6 magnet poles consist of 16 small

rectangular magnets each: 4 next to each other along the circumference,and 4 in axial direction. The

cage was not completely removed.
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Figure 2: Geometry of (a) the 3 kW, 2-pole machine and (b) the 1.5 kW, 6-pole machine. Geometrical
dimensions and electromagnetic properties are in Table 1.
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3 Numerical model to predict the efficiency of the converted machine

3.1 Finite element model

The numerical model is a transient 2D Finite Element model (FEM) that uses themoving mesh technique.

The unknown is the magnetic vector potential. The torque is computed by the Maxwell stress tensor. For

the stator and rotor iron, the magnetic characteristic was experimentally determined as explained in the

next section. The geometry of both machines used in FEM is shown in Fig. 2, and the dimensions are

given in Table 1. The line in the air gap is the interface between the fixed mesh of the stator and the

rotating mesh of the rotor.

Table 1: Data and properties of the two induction and synchronous machines

Property 3.0 kW, 2-pole 1.5 kW, 6-pole

Performance Nominal speed IM 2870 rpm 910 rpm
Nom. phase current (400 V, Y) 5.96 A 3.90 A
Nom. power factor IM 0.87 0.73

Stator Outer diameter 160 mm 158.4 mm
Inner diameter 92.6 mm 109.9 mm
Copper resistance 2.10Ω 5.11Ω
Sheet thickness 0.5 mm 0.5 mm
Stack width 95.3 mm 80.7 mm
Number of slots 24 36
Turns per slot 43 60
Number of poles 2 6

Rotor IM Outer diameter 91.4 mm 109.4 mm
Shaft diameter 35 mm 30 mm
Number of slots 28 33
Radial height of slots 20 mm 15.3 mm
Air gap IM 0.6 mm 0.25 mm

Rotor PMSM Iron yoke diameter 77.6 mm 96.5 mm
Number of magnets per pole 7×4 4×4
Magnet pole angle 103◦ 142◦

Magnet (radial) thickness 5 mm 5 mm
Magnet width 10 mm 10 mm
Magnet permeability µ0 µ0

Magnet remanentB 1.05 T 1.05 T
Air gap PMSM 2.5 mm 1.7 mm

For the 3 kW 2-pole machine, we choose conventional rectangular magnets of 10 mm width, 20 mm

length and 5 mm thickness. The grade is 35 SH, with a remanence of 1.17 to 1.21T (ambient temper-

ature) and a maximal temperature of 150◦C. At steady state temperature, a remanence of 1.05 T was

used. To obtain the highest possible torque, it is common practice to glue magnets along for example

80% of the pole pitch, and to minimize the air gap. However, it was observed from FEM that the stator
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yoke – which is not designed for a PMSM – completely saturates, even in absence of stator current.

Furthermore, we prefer to use a rather low amount of magnets for economicreasons. Therefore, only

60 % of the pole pitch is covered with magnets (less than 110 electrical degrees). Even then, a quite

large air gap can be chosen, so that several layers of epoxy impregnated fibre glass tape can be added to

withstand the centrifugal forces at 3000 rpm. The typical induction in the yoke is now about 1.4 T, in

no-load conditions.

Forthe 1.5 kW 6-pole machine, we choose the same conventional rectangular NdFeB magnets. In contrast

with the other machine, we choose a higher magnet to pole pitch ratio of 142 electrical degrees resulting

in a rather high no-load induction level in the yoke (1.7 T). As the stator cannot be optimized, an optimal

design to achieve a maximum torque density like in [7] is not possible. Nevertheless, the torque density

increases compared to the induction machine – more torque per ampere stator current – and also the

efficiency increases significantly as shown in section 4.

3.2 Calculation of the losses

The losses in the stator ironare dependent on the inductionB(t) and its time derivative dB/dt in each

point of the stator iron. The waveformsB(t) in the stator iron are computed in the transient 2D FEM

computation for no-load and for several load conditions. A posteriori, a loss model is applied to compute

the iron losses in the stator. The following paragraphs explain the loss model.

Firstly, loss measurements of the stator iron were done. As cutting processes and mechanical stresses

have a strong influence on the behaviour of the magnetic material [8], hysteresis loops were measured on

the materialinside the machine. Therefore, the rotor was removed from the machine, and a measurement

winding and excitation winding were added around the stator yoke: see Fig.3.

Figure 3: The stators of the 3 kW (left) and 1.5 kW machines, with a distributed excitation winding
added around both stator yoke and housing, and a concentrated measurement winding around the stator
yoke only. The excitation winding is clearly visible on the picture.
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The measurement winding is a concentrated winding that contains the magnetic yoke but not the housing.

Then, an excitation winding was added, uniformly distributed along the circumference. The field was

obtained from Ampere’s law. Hysteresis loops were measured for many amplitudes and frequencies in

order to identify the parameters in the static and in the dynamic hysteresis model.

Secondly, from the quasi-static loops (0.5 Hz), the peakH andB values are used to determine the single

valued magnetic material characteristic of the stator iron in the FEM. Fig. 4a shows the single valued

BH-characteristic used in 2-D FEM.
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Figure 4: (a) Static single valued characteristic, based on measured hysteresis loops at 0.5 Hz; (b) Mea-
sured hysteresis loops at 50 Hz and 1.3 T. The measured loops are obtained by using an excitation and a
measurement winding around the stator yoke.

Thirdly, in order to determine the losses, the coefficientsa andα in the following equation for hysteresis

lossPh are fitted based on hysteresis loop measurements with peak inductionsBp between 0.05 T and

1.8 T and a frequency of 0.5 Hz:

Ph(Bp, f) = aBα
p f (1)

The correspondence between the fitted and the measured losses at 0.5 Hzis very good, with these two

parameters. The values ofa andα are shown in Table 2.

The dynamic loss model is based on [9]. The iron loss can be written as

P (t) = Ph(Bp) + b
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(2)

with Ph(Bp) obtained from (1),b, c, andd fitting parameters. If the electrical conductivityσ is known,

b can be explicitly computed:b = σd2lam/12 with dlam the lamination sheet thickness.
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Table 2: Coefficients in the loss equation for the stator iron

Coefficient 3.0 kW 1.5 kW
2-pole 6-pole

a 0.0328 0.0351
α 1.9992 1.6709
b 3.266×10−5 3.6758×10−5

c 0 0
d 0 0

The parametersb, c, andd were fitted based on many loops with amplitudes between 0.05 and 1.6 T,

and frequencies between 1 Hz and 15000 Hz in order to have an acceptable correspondence in a broad

amplitude and frequency range: see Fig. 5a and 5b. Fig. 4b shows a hysteresis loop at 50 Hz, for each

motor. As shown in Table 2, coefficientsc andd are zero, meaning that the excess loss is negligible.
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Figure 5: Measured loss on the stator of the machine (rotor removed), andcomputed loss for the same
sinusoidal waveforms. The hysteresis loss component at 50 Hz is shownand can be compared with the
total measured loss at 50 Hz.

The loss model to calculate the iron losses in the machine starts from the recorded waveformsB(t) of

the 2-D FEM in each considered point of the stator. The loss model integrates the loss function (2) over

the domain of the stator iron. In this equation, the hysteresis loss is computed per cycle by (1), based

on the peak valueBp of B(t) in each stator point. Minor loops cannot be modelled in this approach,

but the transient FEM simulations show that no significant minor loops occur.For the dynamic loss, the

loss model computesdB(t)
dt from the waveformsB(t). A non sinusoidalB(t) may result in much higher

dynamical losses than a sinusoidalB(t).

Therotor lossesconsist of losses in the magnets and the rotor yoke. The losses originate from space and

time harmonics. As the magnets are segmented, the simulations do not take into account the rotor losses.

The losses in the copper stator windingscan be quite easily computed from the enforced stator current

and the (measured) resistance.

8

Page 8 of 14

IET Review Copy Only

IET Electric Power Applications



Conversion of standard induction machines to PMSM with higher efficiency Paper submitted for IET-EPA

4 Efficiency maps

4.1 Experimental setup

The general purpose of this study is to set up an efficiency map of the induction motors and synchronous

motors. The test setup consists of the machine under test coupled with a absorption Dynamometer

to measure how much torque, power, or speed it can produce. The electrical power of the motor is

measured by a Voltech PM6000 power analyzer and the rotation speed of the motor is measured by

means of an optical tachometer and by a position encoder with 2500 pulses per revolution. In order to

have high accuracy, the efficiency is determined by a direct method – mechanical power on the shaft

divided by electrical input power –, and not by indirect methods as specified in IEC standard 60034-2

[10]. Evidently, the IM and PMSM version of the machine were tested using the same stator, and the

same setup with the same Foucault brake as load. Only the rotor of the machine was changed.

For the 3 kW IM and PMSM, a perfectly sinusoidal three phase voltage system was used. The voltage

waveforms were made by a power source consisting of three linear amplifiers. The frequency and voltage

are variable. This eliminates the effect of higher harmonics of e.g. PWM on the losses. For the induction

machine, the voltage was rescaled proportionally with the frequency (U/f -control), starting from the

nominal frequency and amplitude of the voltage. For the synchronous machine, the voltage was varied

in order to obtain the minimal electric power for a given mechanical power. Inthe measurements, the

torque range was 0 – 9 Nm and the speed range was 1200 – 3000 rpm.

For the 1.5 kW machine, a frequency converter was used. The mechanical torques that were applied

varied between 0 Nm and 14.5 Nm; the speed range was 0 – 1000 rpm.

4.2 Induction and synchronous machine 3 kW, 2-pole

Fig. 6 shows the measured efficiency map of the induction machine and the PMSM. The supply was a

perfect sinusoidal three phase system.

In all measured working points, the PMSM has a higher efficiency than the IM. The average efficiency in

the range 0.5Tnom – Tnom and 0.5Nnom – Nnom is 83.24% and 85.47% for the induction machine and

PMSM respectively, whereTnom denotes the nominal torque of 9 Nm andNnom denotes the nominal

speed of 3000 rpm.

At low speed and low torque (less than 30% of nominal torque), the efficiency of the converted syn-

chronous machine is much higher than the efficiency of the induction machine:up to 90% efficiency

while the induction machine has an efficiency between 70 and 80%. The maximaldifference in effi-

ciency is 18% around 1800 rpm and low torque (<2 Nm). For increasing speed and low torque, the

difference in efficiency becomes smaller but the PMSM has always at least 6% higher efficiency than the
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Figure 6: Measured efficiency map of (a) the original commercial 3.0 kW 2-pole induction machine,
and (b) the machine converted to PMSM. Note that for clarity of the figure, the contour lines are not
equidistant forη < 0.8.

IM. At high speed and high torque, the difference in efficiency is small (typically 87% for the PMSM,

85% for the IM).

It is noted that the PMSM could even have a higher efficiency: the magnet poles consisting of many

rectangular blocks are not optimized for maximal efficiency: they producespace harmonics that are

visible in a ripple in the measured and computed EMF waveform – see Fig. 7a – and hence in cogging

torque. However, making a segmented magnet with sinusoidal flux distributionin space would increase

the cost significantly for a rather small efficiency improvement.
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Figure 7: (a) EMF and (b) computed efficiency map of the 3 kW 2-pole synchronous machine. The
dashed line shows the nominal torque, which is the maximum in the measured efficiency maps of Fig. 6.
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The region of high efficiency can also be tuned by the rotor design. The considered machine has a rather

low no-load induction in the iron (1.3-1.4 T), causing low iron losses and a high efficiency for very low

torque. This is an “economic” solution from point of view of magnets. Increasing the magnet flux by

adding one or two extra rows of magnet blocks per pole increases the ironlosses, but reduces the copper

losses. This results in a shift of the high efficiency region towards highertorque, especially at higher

speed.

Fig. 7b shows the computed efficiency map. The shape of the contour lines corresponds well to the

measured map of Fig. 6. The computed efficiency is a bit higher than the measured one, possibly due to

neglected rotor losses.

4.3 Induction and synchronous machine 1.5 kW, 6-pole

Fig. 8 shows the measured efficiency map of the induction machine and the PMSM version of the 1.5

kW machine. The supply was a PWM signal with 5 kHz switching frequency.
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Figure 8: Measured efficiency map of (a) the original commercial 1.5 kW 6-pole induction machine,
and (b) the machine converted to PMSM. Note that for clarity of the figure, the contour lines are not
equidistant forη < 0.6 in (a) andη < 0.8 in (b).

In all measured working points, the PMSM has a higher efficiency than the IM. The average efficiency

in the range 0.5Tnom – Tnom and 0.5Nnom – Nnom is 73.53% and 88.36% for the induction machine

and PMSM respectively, withTnom = 14.5 Nm andNnom = 1000 rpm. The peak efficiency of the PMSM

(91%) is about 11% higher than for the IM. The peak efficiency of the PMSM is reached for the nominal

working point, while the induction machine reaches its peak efficiency at nominal speed and about 2/3

of the nominal torque.

Fig. 9a shows the EMF. The simulations were done at steady state temperature(magnet remance 1.05 T),
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Figure 9: (a) Simulated EMF (at steady state temperature) and measured EMF(cold) and (b) computed
efficiency map of the 1.5 kW 6-pole synchronous machine. The dashed lineshows the nominal torque,
which is the maximum in the measured efficiency maps of Fig. 8.

causing a lower EMF than the measurement which was done at ambient temperature of 20◦C (magnet

remanence 1.17-1.21 T). The ripple caused by the segmented magnets is visible in both the measured and

the simulated waveform. The computed efficiency map for the PMSM in Fig. 9b can be compared with

the measured efficiency map of Fig. 8. The correspondence is very good for this machine, which indicates

that the remaining part of the rotor cage – which was not modelled in FEM – does not deteriorate the

performance.

It is clear that the magnetic circuit is not optimized for the considered machine.Using a low loss material

would reduce the iron losses and increase the efficiency in particular at part load. As the rather thin stator

yoke saturates even with 1.05 T magnets, a magnet pole angle of only 142◦ and a rather big air gap of

1.7 mm, it is clear that a new geometry of the induction motor’s stator yoke would allow to increase the

performance: a thicker stator yoke would allow to use stronger magnets, a higher magnet pole angle and

a smaller air gap. It would result in more flux and hence more torque for the same stator current. A design

of the lamination for an induction motor has been done in [11], in order to obtainbetter performance.

Future work may include the investigation of changes in geometry and material of the stator.

5 Conclusion

Converting a commercial induction machine to a synchronous machine is a rather cheap and easy con-

version. Although it is possible to make an entirely new rotor, experiments show that it is sufficient to

reduce the diameter of the rotor without removing the remaining of the rotor cage.

For a 2-pole machine, the average efficiency increases by about 2% in awide operating range. For the
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6-pole machine however, the average efficiency increases by about 15% in a wide operating range. The

conclusion is that more efficiency gain is achieved when converting multipole machines. The reason is

that small induction machines with many poles are not efficient, so that a lot of improvement is possible.
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