8 research outputs found

    Holistically-Attracted Wireframe Parsing

    Full text link
    This paper presents a fast and parsimonious parsing method to accurately and robustly detect a vectorized wireframe in an input image with a single forward pass. The proposed method is end-to-end trainable, consisting of three components: (i) line segment and junction proposal generation, (ii) line segment and junction matching, and (iii) line segment and junction verification. For computing line segment proposals, a novel exact dual representation is proposed which exploits a parsimonious geometric reparameterization for line segments and forms a holistic 4-dimensional attraction field map for an input image. Junctions can be treated as the "basins" in the attraction field. The proposed method is thus called Holistically-Attracted Wireframe Parser (HAWP). In experiments, the proposed method is tested on two benchmarks, the Wireframe dataset, and the YorkUrban dataset. On both benchmarks, it obtains state-of-the-art performance in terms of accuracy and efficiency. For example, on the Wireframe dataset, compared to the previous state-of-the-art method L-CNN, it improves the challenging mean structural average precision (msAP) by a large margin (2.8%2.8\% absolute improvements) and achieves 29.5 FPS on single GPU (89%89\% relative improvement). A systematic ablation study is performed to further justify the proposed method.Comment: Accepted by CVPR 202

    Efficient solutions to the relative pose of three calibrated cameras from four points using virtual correspondences

    Full text link
    We study the challenging problem of estimating the relative pose of three calibrated cameras. We propose two novel solutions to the notoriously difficult configuration of four points in three views, known as the 4p3v problem. Our solutions are based on the simple idea of generating one additional virtual point correspondence in two views by using the information from the locations of the four input correspondences in the three views. For the first solver, we train a network to predict this point correspondence. The second solver uses a much simpler and more efficient strategy based on the mean points of three corresponding input points. The new solvers are efficient and easy to implement since they are based on the existing efficient minimal solvers, i.e., the well-known 5-point relative pose and the P3P solvers. The solvers achieve state-of-the-art results on real data. The idea of solving minimal problems using virtual correspondences is general and can be applied to other problems, e.g., the 5-point relative pose problem. In this way, minimal problems can be solved using simpler non-minimal solvers or even using sub-minimal samples inside RANSAC. In addition, we compare different variants of 4p3v solvers with the baseline solver for the minimal configuration consisting of three triplets of points and two points visible in two views. We discuss which configuration of points is potentially the most practical in real applications

    Minimal Solutions for Relative Pose with a Single Affine Correspondence

    Get PDF
    In this paper we present four cases of minimal solutions for two-view relative pose estimation by exploiting the affine transformation between feature points and we demonstrate efficient solvers for these cases. It is shown, that under the planar motion assumption or with knowledge of a vertical direction, a single affine correspondence is sufficient to recover the relative camera pose. The four cases considered are two-view planar relative motion for calibrated cameras as a closed-form and a least-squares solution, a closedform solution for unknown focal length and the case of a known vertical direction. These algorithms can be used efficiently for outlier detection within a RANSAC loop and for initial motion estimation. All the methods are evaluated on both synthetic data and real-world datasets from the KITTI benchmark. The experimental results demonstrate that our methods outperform comparable state-of-the-art methods in accuracy with the benefit of a reduced number of needed RANSAC iterations

    Minimal Solutions for Relative Pose with a Single Affine Correspondence

    Get PDF
    In this paper we present four cases of minimal solutions for two-view relative pose estimation by exploiting the affine transformation between feature points and we demonstrate efficient solvers for these cases. It is shown, that under the planar motion assumption or with knowledge of a vertical direction, a single affine correspondence is sufficient to recover the relative camera pose. The four cases considered are two-view planar relative motion for calibrated cameras as a closed-form and a least-squares solution, a closed-form solution for unknown focal length and the case of a known vertical direction. These algorithms can be used efficiently for outlier detection within a RANSAC loop and for initial motion estimation. All the methods are evaluated on both synthetic data and real-world datasets from the KITTI benchmark. The experimental results demonstrate that our methods outperform comparable state-of-the-art methods in accuracy with the benefit of a reduced number of needed RANSAC iterations.Comment: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 202
    corecore