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Abstract

In this paper we present four cases of minimal solutions
for two-view relative pose estimation by exploiting the affine
transformation between feature points and we demonstrate
efficient solvers for these cases. It is shown, that under the
planar motion assumption or with knowledge of a vertical
direction, a single affine correspondence is sufficient to re-
cover the relative camera pose. The four cases considered
are two-view planar relative motion for calibrated cameras
as a closed-form and a least-squares solution, a closed-
form solution for unknown focal length and the case of a
known vertical direction. These algorithms can be used ef-
ficiently for outlier detection within a RANSAC loop and for
initial motion estimation. All the methods are evaluated on
both synthetic data and real-world datasets from the KITTI
benchmark. The experimental results demonstrate that our
methods outperform comparable state-of-the-art methods in
accuracy with the benefit of a reduced number of needed
RANSAC iterations.

1. Introduction
Simultaneous localization and mapping (SLAM), vi-

sual odometry (VO) and Structure-from-Motion (SfM)
have been active research topics in computer vision for
decades [34, 36]. These technologies have been used suc-
cessfully in a wide variety of applications and they play an
important role in future technologies like autonomous driv-
ing. Relative pose estimation from two views is regarded
as a fundamental algorithm, which is an essential part of
SLAM and SfM pipelines. Thus, improving the accuracy,
efficiency and robustness of relative pose estimation algo-
rithms is still of relevant interest [1, 2, 37, 41].

Most of the SLAM and SfM pipelines follow the scheme
where 2D-2D putative correspondences between subse-
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Figure 1. An affine correspondence between two cameras. The
local affine transformation A transforms the patches surrounding
of point correspondence (pi, pj).

quent views are established by feature matching. Then a
robust motion estimation framework such as the Random
Sample Consensus (RANSAC) [13] is typically adopted to
identify and remove matching outliers. Finally, only inlier
matches between subsequent views are used to estimate the
final relative pose [34]. This outlier removal step is criti-
cal for the robustness and reliability of the pose estimation
step. Besides, the efficiency of the outlier removal process
affects the real-time performance of SLAM and SfM di-
rectly, in particular, as the computational complexity of the
RANSAC estimator increases exponentially with respect to
the number of data points needed. Thus minimal case so-
lutions for relative pose estimation are still of significant
importance [5, 2, 42, 11].

The idea of minimal solutions for relative pose estima-
tion ranges back to the work of Hartley and Zisserman with
the seven-point method [20]. Other classical works are
the five-point method [30] and the homography estimation
method [20]. By exploiting motion constraints on camera
movements or utilizing an additional sensor like an inertial
measurement unit (IMU), the minimal number of point cor-
respondences needed can be further reduced, which makes
the outlier removal more efficient and numerically more sta-
ble. For instance, two points are sufficient to recover camera
motion under the planar motion assumption since the pose
only has two degrees of freedom (DOF) [31, 8, 9]. Another



example is to make use of the Ackermann steering princi-
ple which allows us to parameterize the camera motion with
only one point correspondence [35, 21]. These scenarios are
typical for self-driving vehicles and ground robots. For un-
manned aerial vehicles (UAV) and smartphones, a camera
is often used in combination with an IMU [17]. The partial
IMU measurements can be used to provide a known gravity
direction for the camera images. In this case relative pose
estimation is thus possible with only three point correspon-
dences. [14, 29, 40, 33].

It is now possible to replace simple point correspon-
dences with affine-covariant feature detectors, such as
ASIFT [27] and MODS [26]. Such an affine correspon-
dence (AC) consists of a point correspondence and a 2 × 2
affine transformation, see Figure 1. It has been proven that
1 AC yields three constraints on the geometric model es-
timation [7, 32, 3]. In this paper we exploit these addi-
tional affine parameters in the process of relative pose es-
timation which allows to reduce the number of correspon-
dences needed. We propose the following 4 novel minimal
solutions for relative pose estimation using a single affine
correspondence:

• Three solvers under the planar motion constraint are
proposed. We prove that a single affine correspon-
dence is sufficient to recover the planar motion of a
calibrated camera (2DOF) and a partially uncalibrated
camera for which only the focal length is unknown
(3DOF).

• A fourth solver for the case of a known vertical di-
rection is proposed. The egomotion estimation of cali-
brated camera with a common direction has 3DOF, and
we will show that only a single affine correspondence
is required to estimate the relative pose for this case.

The remainder of the paper is organized as follows. First
we review related work in Section 2. We propose three min-
imal solutions for planar motion estimation in Section 3. In
Section 4, we propose a minimal solution for two-view rel-
ative motion estimation with known vertical direction. In
Section 5, we evaluate the performance of proposed meth-
ods using both synthetic and real-world dataset. Finally,
concluding remarks are given in Section 6.

2. Related Work
For non-calibrated cameras, a minimum of 7 point cor-

respondences is sufficient to estimate the fundamental ma-
trix [20]. If the camera is partially uncalibrated such that
only the common focal length is unknown, a minimum of
6 point correspondences is required to estimate the relative
pose [38, 23]. For calibrated cameras, at least 5 point corre-
spondences are needed to estimate the essential matrix [30].
If all the 3D points lie on a plane, the point correspondences
are related by a planar homography and the number of re-

quired point correspondences is reduced to 4 [20]. The rel-
ative pose of two views can be recovered by the decompo-
sition of the essential matrix or the homography.

To further improve the computational efficiency and re-
liability of relative pose estimation, assumptions about the
camera motion or additional information can help to reduce
the number of required point correspondences across views.
For example, if the camera is mounted on ground robots
and follows planar motion, the relative pose of two views
has only 2DOF and can be estimated by using 2 point cor-
respondences [31, 8, 9]. By taking into account the Acker-
mann motion model, only 1 point correspondence is suffi-
cient to recover the camera motion [35].

When additional information can be provided by an ad-
ditional sensor, such as an IMU, the DOF of relative pose
estimation can also be reduced. If the rotation of the cam-
era is fully provided by an IMU, only the translation of two
views is unknown and can easily be solved with 2 point cor-
respondences [22]. It is more often the case that a common
direction of rotation is assumed to be known. This common
direction can be determined from an IMU (which provides
the known pitch and roll angles of the camera), but as well
from vanishing points extracted across the two views. When
the common direction of rotation is known, a variety of al-
gorithms have been proposed to estimate the relative pose
utilizing this information [14, 29, 40, 33, 16, 10].

Recently, a number of methods have been proposed
which reduce the number of required points by exploit-
ing the additional affine parameters between two feature
matches. These additional information can come from the
feature’s rotation and scale estimates when SIFT [25] or
SURF [6] feature detectors are used. From five such point
correspondences extended by the rotational angles of the
features the fundamental matrix can be computed [2]. Sim-
ilarly, the homography can be estimated by using two cor-
respondences when including the corresponding rotational
angles and scales of the features [4]. Of high interest are
methods which use affine correspondences obtained by an
affine-covariant feature detector, such as ASIFT [27] and
MODS [26]. One AC yields three constraints on the geo-
metric model estimation. This allows the estimation of a
fundamental matrix from 3 ACs [7]. The estimation of a
homography and an essential matrix can be accomplished
from 2 ACs [32, 12, 3]. There is an independent work
which also uses a single AC to estimate relative planar mo-
tion [18]. Furthermore, it is shown in [32] that ACs have
benefits as compared to point correspondences for visual
odometry in the presence of many outliers.

3. Relative Pose Estimation Under Planar Mo-
tion

For planar motion shown in Figure 2, we derive three
minimal solvers by exploiting one affine correspondence



only. (1) We develop two minimal solvers for calibrated
cameras. Since one AC provides three independent equa-
tions and there are two unknowns for the pose, the equation
system is over-determined. We propose two variants for
this scenario including a closed-form solution and a least-
squares solution. (2) For uncalibrated cameras with un-
known focal length only, we propose a minimal solver for
this scenario as well.

Figure 2. Planar motion between two cameras in top-view. There
are two unknowns: yaw angle θ and translation direction φ.

3.1. Solver for Planar Motion with Calibrated Cam-
era

With known intrinsic camera parameters, the epipolar
constraint between views i to j is given as follows [20]:

pT
j Epi = 0, (1)

where pi = [ui, vi, 1]T and pj = [uj , vj , 1]T are the nor-
malized homogeneous image coordinates of a feature point
in views i and j, respectively. E = [t]×R is the essential
matrix, where R and t represent relative rotation and trans-
lation respectively.

For planar motion, we assume that the image plane of
the camera is vertical to the ground plane without loss of
generality, see Figure 2. There are only a Y-axis rotation
and 2D translation between two different views, so the ro-
tation R = Ry and the translation t from views i to j can
be written as:

Ry =

cos (θ) 0 − sin (θ)
0 1 0

sin (θ) 0 cos (θ)

 , t = −Ry

ρ sin (φ)0
ρ cos (φ)

 . (2)

where ρ is the distance between views i and j. Based on
Eq. (2), the essential matrix E = [t]×Ry under planar mo-
tion is reformulated:

E = ρ

 0 cos (θ − φ) 0
− cos (φ) 0 sin (φ)

0 sin (θ − φ) 0

 . (3)

By substituting the above equation into Eq. (1), the
epipolar constraint can be written as:

visin(θ − φ)+viujcos(θ − φ)+vjsin(φ)−uivjcos(φ) = 0.
(4)

Moreover, the widely-used affine-covariant feature de-
tectors, e.g. ASIFT [27], provide affine correspondences
between two views directly. Here, we exploit the affine
transformation in the relative pose estimation under planar
motion, to further reduce the number of required point cor-
respondences. Firstly, we introduce the affine correspon-
dence, which is considered as a triplet: (pi,pj ,A). The
local affine transformation A which relates the patches sur-
rounding pi and pj is defined as follows [2]:

A =

[
a11 a12
a21 a22

]
. (5)

The relationship of essential matrix E and local affine
transformation A can be described as follows [3]

(ETpj)(1:2) = −(ÂTEpi)(1:2), (6)

where ni , ETpj and nj , Epi are the epipolar lines in
the views i and j, respectively. Â is a 3× 3 matrix:

Â =

[
A 0
0 0

]
. (7)

By substituting Eq. (3) into Eq. (6), two equations which
relate the affine transformation to the relative pose are ob-
tained
a11vicos(θ − φ) + a21sin(φ)− (a21ui + vj)cos(φ) = 0, (8)

sin(θ − φ) + (a12vi + uj)cos(θ − φ) + a22sin(φ)−
a22uicos(φ) = 0. (9)

3.1.1 Closed-Form Solution

For an affine correspondence, the combination of Eqs. (4),
(8) and (9) can be expressed as Cx = 0, where x =
[sin(θ − φ), cos(θ − φ), sin(φ), cos(φ)]T . To facilitate
the description of the following method, we denote{

x1 , sin(θ − φ), x2 , cos(θ − φ)

x3 , sin(φ), x4 , cos(φ)
(10)

By ignoring the implicit constraints between the entries
of x, i.e., x21 + x22 = 1 and x23 + x24 = 1, x should lie in the
null space of C. Thus the solution of the system x can be
obtained directly based on the eigenvector of CTC corre-
sponding to the least eigenvalue. Once x has been obtained,
the angles φ and θ are{

φ = arctan2(x3, x4),

θ = arctan2(x1, x2) + φ.
(11)

3.1.2 Least-Squares Solution

Eqs. (4), (8) and (9) together with the implicit constraints of
the trigonometric functions can be reformulated as:

aix1 + bix2 + cix3 + dix4 = 0, i = 1, 2, 3

x21 + x22 = 1

x23 + x24 = 1

(12)

The coefficients ai, bi, ci and di denote the problem co-
efficients in Eqs. (4), (8) and (9). This equation system has



4 unknowns and 5 independent constraints, thus it is over-
constrained. We find the least-squared solution by

min
{xi}4i=1

3∑
i=1

(aix1 + bix2 + cix3 + dix4)2 (13)

s.t. x21 + x22 = 1, x23 + x24 = 1.

The Lagrange multiplier method is used to find all sta-
tionary points in problem (13). The Lagrange multiplier is

L(x1, x2, x3, x4, λ1, λ2)

=

3∑
i=1

(aix1 + bix2 + cix3 + dix4)2

+ λ1(x21 + x22 − 1) + λ2(x23 + x24 − 1). (14)

By taking the partial derivatives with {xi}4i=1 and
{λi}2i=1 and setting them to be zeros, we obtain an equa-
tion system with unknowns {xi}4i=1 and {λi}2i=1, see the
supplementary material. This equation system contains 6
unknowns {x1, x2, x3, x4, λ1, λ2}, and the order is 2. A
Gröbner basis solver with template size 42× 50 can be ob-
tained by an automatic solver generator [24]. It also shows
that there are at most 8 solutions.

3.2. Solver for Planar Motion and Unknown Focal
Length

In this subsection, we assume that there is a camera with
known intrinsic parameters except for an unknown focal
length. This case is typical to be encounter in practice.
For most cameras, it is often reasonable to assume that the
cameras have square-shaped pixels and the principal point
is well approximated by the image center [19]. By assuming
that the only unknown calibration parameter of the camera
is the focal length f , the intrinsic matrix of the camera is
simplified to K = diag(f, f, 1).

Since the intrinsic matrix is unknown, we can not obtain
the coordinates of point features in the normalized image
plane. Recall that the normalized homogeneous image co-
ordinates of the points in views i and j are pi = [ui, vi, 1]T

and pj = [uj , vj , 1]T , respectively. Without loss of gener-
ality, we set the principle point as the centre of image plane.
Denote coordinates of a point in original image plane i and
j as p̄i = [ūi, v̄i, 1]T and p̄j = [ūj , v̄j , 1]T , respectively.
We also denote g = f−1 and obtain the following relations{

ui = f−1ūi = gūi, vi = f−1v̄i = gv̄i,

uj = f−1ūj = gūj , vj = f−1v̄j = gv̄j .
(15)

By substituting Eq. (15) into Eqs. (4), (8) and (9), we also
obtain three equations. To reduce the burden in notation, we
substitute Eq. (10) into the three equations. By combining
them with two trigonometric constraints, we have a polyno-
mial equation system as follows



v̄igx1 + v̄iūjg
2x2 + v̄jgx3 − ūiv̄jg2x4 = 0

a1v̄igx2 + a3x3 − (a3ūi + v̄j)gx4 = 0

x1 + (a2v̄i + ūj)gx2 + a4x3 − a4ūigx4 = 0

x21 + x22 = 1

x23 + x24 = 1

(16)

The above equation system contains 5 unknowns
{x1, x2, x3, x4, g}, and the order is 3. The Gröbner basis
solver with template size 20 × 23 can be obtained by an
automatic solver generator [24]. It also shows that there
are at most 6 solutions. Note that one trivial solution
(g = x1 = x3 = 0, x2 = x4 = 1) can be safely removed
considering g = f−1 must be greater than 0.

4. Relative Pose Estimation with Known Verti-
cal Direction

Figure 3. Camera motion with known vertical direction. The un-
knowns include yaw angle θ and translation [tx, ty, tz]

T .

In this section we present a minimal solution for two-
view relative motion estimation with known vertical direc-
tion, which uses only one affine correspondence, see Fig-
ure 3. In this case, we have an IMU coupled with the cam-
era. Assuming the roll and pitch angles of the camera can
be obtained directly from the IMU, we can align every cam-
era coordinate system with the measured gravity direction.
The Y-axis of the camera is parallel to the gravity direction
and the X-Z-plane of the camera is orthogonal to the gravity
direction. The rotation matrix Rimu for aligning the camera
coordinate system to the aligned camera coordinate system
can be expressed:

Rimu = RxRz

=

1 0 0
0 cos(θx) sin(θx)
0 − sin(θx) cos(θx)

 cos(θz) sin(θz) 0
− sin(θz) cos(θz) 0

0 0 1


where θx and θz represent pitch and roll angle, respectively.

Furthermore, denote Ri
imu and Rj

imu as the orientation
information delivered by the IMU for views i and j, respec-
tively. Then the aligned image coordinates in views i and j
can be expressed by

p̃i = Ri
imupi, p̃j = Rj

imupj . (17)

By leveraging IMU measurement, the relative pose be-
tween original views i and j can be written as



{
R = (Rj

imu)TRyR
i
imu,

t = (Rj
imu)T t̃.

(18)

where Ry is the rotation matrix between the aligned views
i and j, and t̃ is the translation between the aligned views i
and j. Then the essential matrix between the original views
i and j can be described as follows

E = [t]×R = [(Rj
imu)T t̃]×(Rj

imu)TRyR
i
imu

= (Rj
imu)T ẼRi

imu.
(19)

Note that Ẽ = [̃t]×Ry denotes the simplified essential
matrix between the aligned views i and j. Now, we substi-
tute Eq. (19) into Eq. (6):

((Ri
imu)T ẼTRj

imupj)(1:2) = −(ÂT (Rj
imu)T ẼRi

imupi)(1:2).
(20)

The above equation can be reformulated based on
Eq. (17):

((Ri
imu)T ẼT p̃j)(1:2) = −(ÂT (Rj

imu)T Ẽp̃i)(1:2). (21)

For further derivation, we denote p̃i, p̃j , Ẽ and Ã as
follows
p̃i , [ũi, ṽi, w̃i]

T , p̃j , [ũj , ṽj , w̃j ]
T

Ẽ = [̃t]×Ry =

 0 −t̃z t̃y
t̃z 0 −t̃x
−t̃y t̃x 0

cos (θ) 0 − sin (θ)
0 1 0

sin (θ) 0 cos (θ)


=

 t̃y sin (θ) −t̃z t̃ycos (θ)
t̃zcos (θ)− t̃x sin (θ) 0 −t̃x cos (θ)− t̃zsin (θ)

−t̃ycos (θ) t̃x t̃ysin (θ)


,

 e1 e2 e3
e4 0 e5
−e3 e6 e1


Ã = ÂT (Rj

imu)
T ,

ã1 ã2 ã3
ã4 ã5 ã6
0 0 0


Ri

imu = Ri
xR

i
z ,

r̃1 r̃2 0
r̃3 r̃4 r̃5
r̃6 r̃7 r̃8


(22)

By substituting Eq. (22) into Eq. (21), we obtain two
equations
(ũiã1 + w̃iã3 + ũj r̃1 + w̃j r̃6)e1 + (ṽiã1 + ũj r̃3)e2+

(w̃iã1 + ũj r̃6 − ũiã3 − w̃j r̃1)e3 + (ũiã2 + ṽj r̃1)e4+

(w̃iã2 + ṽj r̃6)e5 + (ṽiã3 + w̃j r̃3)e6 = 0, (23)

(ũiã4 + w̃iã6 + ũj r̃2 + w̃j r̃7)e1 + (ṽiã4 + ũj r̃4)e2+

(w̃iã4 − ũiã6 + ũj r̃7 − w̃j r̃2)e3 + (ũiã5 + ṽj r̃2)e4+

(w̃iã5 + ṽj r̃7)e5 + (ṽiã6 + w̃j r̃4)e6 = 0. (24)

In addition, the epipolar constraint p̃T
j Ẽp̃i = 0 can be

written as:
(ũiũj + w̃iw̃j)e1 + ũj ṽie2 + (ũjw̃i − ũiw̃j)e3

+ ũiṽje4 + ṽjw̃ie5 + ṽiw̃je6 = 0.
(25)

For an affine correspondence (pi,pj ,A), the combi-
nation of equations Eqs. (23)∼(25) can be expressed as
Mx = 0 , where x = [e1, e2, e3, e4, e5, e6]T is the
vector of the unknown elements of the essential matrix. The
null space of M is 3-dimensional. The solution of the poly-
nomial equation system x, which is up to a common scale,
can be determined by the linear combination of three null
space basis vectors:

x = βm1 + γm2 + m3, (26)
where the null space basis vectors {mi}i=1,2,3 are com-
puted from the SVD of matrix M, and β and γ are the co-
efficients.

To determine the coefficients of β and γ, note that there
are two internal constraints for the essential matrix, i.e., the
singularity of the essential matrix and the trace constraint:

det(Ẽ) = 0, (27)

2ẼẼT Ẽ− trace(ẼẼT )Ẽ = 0. (28)
By substituting Eq. (26) into Eqs. (27) and (28), a poly-

nomial equation system with unknowns β and γ can be gen-
erated. A straightforward method to solve the equation sys-
tem is using a general automatic solver generator [24]. In-
spired by [14], we use a more simpler method to convert the
equation system to a univariate quartic equation, see supple-
mentary material for details. Once the coefficients β and γ
have been obtained, the simplified essential matrix Ẽ is de-
termined by Eq. (26) and can be decomposed into Ry and
t̃ by exploiting Eq. (22). Finally, the relative pose between
views i and j can be obtained by Eq. (18).

5. Experiments
The performance of the proposed methods is evaluated

using both synthetic and real scene data. To deal with out-
liers, the minimal solvers can be integrated into a robust es-
timator using RANSAC or used for histogram voting. For
the RANSAC, the relative pose which produces the highest
number of inliers is chosen. For the histogram voting, we
estimate the relative pose by selecting the peak of the his-
togram, which is formed by estimating poses from all the
affine correspondences.

For relative pose estimation under planar motion,
the proposed solvers in Section 3.1 are referred to as
1AC-Voting (which uses histogram voting with the
closed-form solution), 1AC-CS (which uses RANSAC
with the closed-form solution), and 1AC-LS (which
uses RANSAC with the least-squares solution). The
solver for planar motion with unknown focal length
in Section 3.2 is referred to as the 1AC-UnknownF,
which also uses RANSAC. The comparative methods
include 6pt-Kukelova1 [23], 5pt-Nister [30],
2AC-Barath [3] and 2pt-Choi [8]. All comparative
methods are integrated into a RANSAC scheme.

1f+E+f relative pose solver.



For relative pose estimation with known vertical di-
rection, our solver proposed in Section 4 is referred to
as the 1AC method. The proposed solver is compared
against 5pt-Nister [30], 3pt-Sweeney [40],
3pt-Saurer [33], 2pt-Saurer [33] and
2AC-Barath [3]. All of these minimal solvers are
integrated into a RANSAC scheme.

Due to space limit, the efficiency comparison is provided
in supplementary material. To demonstrate the suitability
of our methods in real scenarios, the KITTI dataset [15] is
used to validate the performance.

5.1. Experiments on Synthetic Data

The synthetic scene consists of a ground plane and 50
random planes, which are randomly distributed in the range
of -5 to 5 meters (X-axis direction), -5 to 5 meters (Y-axis
direction), and 10 to 20 meters (Z-axis direction). 50 points
are randomly generated in the ground plane. We choose
a point in each random plane randomly, so there are also
50 points in the random planes. The corresponding affine
transformation related to each point correspondence is cal-
culated from the homography, which is estimated by using
four projected image points from the same plane [4]. The
baseline between two views is set to be 2 meters. The reso-
lution of the camera is 640× 480 pixels. The focal length is
set to 400 pixels and the principal point is set to (320, 240).

The rotation and translation error are assessed by the root
mean square error (RMSE) of the errors. We report the re-
sults on the data points within the first two intervals of a 5-
quantile partitioning2 (Quintile) of 1000 trials. The relative
rotation and translation between views i and j are compared
separately in the synthetic experiments. The rotation error
compares the angular difference between the ground truth
rotation and the estimated rotation. The translation error
also compares the angular difference between the ground
truth translation and the estimated translation since the esti-
mated translation between views i and j is only known up
to scale. Specifically, we define:

• Rotation error: εR = arccos((trace(RgtR
T )− 1)/2)

• Translation error: εt = arccos((tTgtt)/(‖tgt‖ · ‖t‖))

where Rgt and tgt denote the ground truth rotation and
translation, respectively. R and t denote the corresponding
estimated rotation and translation, respectively.

5.1.1 Planar Motion Estimation

In this scenario the motion of the camera is described by
(θ, φ), see Figure 2. Both angles vary from −10◦ to
10◦. Figure 4(a) and (b) show the performance of the pro-
posed methods with respect to the magnitude of added im-
age noise. All of our proposed methods for planar mo-

2k-quantiles divide an ordered dataset into k regular intervals
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(a) εR with image noise
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(c) εR with non-planar motion noise
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Figure 4. Rotation and translation error with planar motion estima-
tion (unit: degree). (a)(b): vary image noise under perfect planar
motion. (c)(d): vary non-planar motion noise and fix the image
noise as 1.0 pixel standard deviation. The left column reports the
rotation error. The right column reports the translation error.

tion provide better results than comparative methods un-
der perfect planar motion. It is worth to mention that our
1AC-UnknownFmethod performs better than comparative
methods even when the ground truth of the focal length is
not used.

To test the performance of our method under non-planar
motion, we generate the non-planar components of a 6DOF
relative pose randomly and add them to the camera motion,
which include X-axis rotation, Z-axis rotation, and direc-
tion of YZ-plane translation [8]. The magnitude of non-
planar motion noise is set to Gaussian noise with a stan-
dard deviation ranging from 0◦ to 1◦. The image noise
is set to 1.0 pixel standard deviation. Figure 4(c) and (d)
show the performance of the proposed methods with respect
to the magnitude of non-planar motion noise. The meth-
ods 6pt-Kukelova, 5pt-Nister and 2AC-Barath
do not have an obvious trend with non-planar motion noise
levels, because these methods estimate 6DOF relative pose
of two views. The proposed four methods perform bet-
ter than the methods 6pt-Kukelova, 5pt-Nister and
2pt-Choi at the maximum magnitude for the non-planar
motion noise up to 1.0◦. Meanwhile, the accuracy of these
four methods is also better than the 2AC-Barath method
when the non-planar motion noise is less than 0.3◦.

5.1.2 Motion with Known Vertical Direction
In this set of experiments the directions of the camera
motion are set to forward, sideways and random mo-
tions, respectively. The second view is rotated around
every axis, three rotation angles vary from −10◦ to
10◦. The roll angle and pitch angle are known and
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Figure 5. Rotation and translation error under random motion
(unit: degree). (a)(b): vary image noise with perfect IMU data.
(c)∼(f): vary IMU angle noise and fix the image noise as 1.0 pixel
standard deviation. The left column reports the rotation error. The
right column reports the translation error.

used to align the camera coordinate system with the
gravity direction. The proposed 1AC method is com-
pared with 5pt-Nister [30], 3pt-Sweeney [40],
3pt-Saurer [33], 2pt-Saurer [33] and
2AC-Barath [3]. Due to space limitations, we only
show the results under random motion. The results un-
der forward and sideways motions are available in the
supplementary material. Figure 5(a) and (b) show the
performance of the proposed method with respect to the
magnitude of image noise with perfect IMU data. Our
method is robust to the increasing image noise and provides
obviously better results than the previous methods.

Figure 5(c)∼(f) show the performance of the proposed
method for increasing noise on the IMU data, while
the image noise is set to 1.0 pixel standard deviation.
The 1AC method basically outperforms the methods
3pt-Sweeney, 3pt-Saurer and 2pt-Saurer. The
methods 5pt-Nister and 2AC-Barath are not influ-
enced by the pitch error and the roll error, because their
calculation does not utilize the known vertical direction as
prior. It is interesting to see that our method performs bet-

ter than the methods 5pt-Nister and 2AC-Barath in
the random motion case, even though the rotation noise
is around 1.0◦. Under forward and sideways motion, the
accuracy of our method is also better than the methods
5pt-Nister and 2AC-Barath, when the rotation noise
stays below 0.3◦.

5.2. Experiments on Real Data

The performance of our methods on real image data is
evaluated on the KITTI dataset [15]. All the sequences
which provide ground truth data are utilized in this experi-
ments. There are about 23000 images in total and are avail-
able as sequence 0 to 10.

5.2.1 Pose Estimation from Pairwise Image Pairs

Two settings of experiments are performed with the KITTI
dataset, including planar motion estimation and relative
pose estimation with known vertical direction. The ASIFT
feature extraction and matching [27] is performed to obtain
the affine correspondences between consecutive frames.
Both the histogram voting and the RANSAC schemes are
tested in this experiment. An inlier threshold of 2 pixels
and a fixed number of 100 iterations are set in RANSAC.

In the first experiment, we test the relative pose esti-
mation algorithms under planar motion. The motion esti-
mation results between two consecutive images (θ, φ) are
compared to the corresponding ground truth. The median
error for each individual sequence is used to evaluate the
performance. The proposed methods are compared with
2pt-Choi [8]. The results of the rotation and translation
error under planar motion assumption are shown in Table 1.
Table 1 demonstrates that all of our planar motion meth-
ods provide better results than the 2pt-Choi method. The
overall performance of the 1AC-Voting method is best
among all the methods, particularly the rotation accuracy of
the 1AC-Voting method is significantly high than other
methods.

Seq.
2pt-Choi [8] 1AC-CS 1AC-LS 1AC-Voting
εR εt εR εt εR εt εR εt

00 0.203 5.169 0.133 1.335 0.155 1.345 0.016 1.493
01 0.150 3.617 0.117 1.135 0.134 1.149 0.010 1.165
02 0.154 3.364 0.062 1.152 0.082 1.191 0.017 1.029
03 0.177 6.441 0.084 1.157 0.100 1.152 0.013 1.225
04 0.115 2.871 0.029 1.132 0.041 1.155 0.012 1.018
05 0.143 4.407 0.071 1.276 0.085 1.304 0.011 1.614
06 0.152 3.379 0.051 1.302 0.068 1.340 0.008 1.655
07 0.127 4.764 0.059 1.487 0.074 1.462 0.014 1.769
08 0.137 4.312 0.064 1.428 0.081 1.427 0.014 1.591
09 0.141 3.508 0.062 1.215 0.081 1.218 0.021 1.221
10 0.145 3.829 0.067 1.299 0.090 1.299 0.018 1.464

Table 1. Rotation and translation error for KITTI sequences under
planar motion assumption (unit: degree).



Seq.
5pt-Nister [30] 3pt-Sweeney [40] 3pt-Saurer [33] 2pt-Saurer [33] 2AC-Barath [3] 1AC method
εR εt εR εt εR εt εR εt εR εt εR εt

00 .137 2.254 .065 2.165 .153 2.231 .336 7.675 .196 4.673 .038 2.006
01 .120 1.988 .082 2.342 .091 2.211 .186 9.806 .111 4.198 .050 1.507
02 .134 1.787 .059 1.658 .113 1.723 .293 6.034 .251 4.694 .039 1.861
03 .109 2.507 .067 2.723 .161 2.620 .316 9.249 .175 6.064 .041 2.143
04 .111 1.692 .048 1.558 .043 1.616 .141 4.816 .184 4.036 .033 1.538
05 .116 2.059 .054 1.895 .115 1.961 .253 7.238 .162 4.481 .031 1.725
06 .130 1.783 .068 1.615 .111 1.658 .232 5.750 .176 4.026 .046 1.538
07 .113 2.434 .052 2.183 .159 2.217 .378 8.293 .161 4.649 .033 2.009
08 .122 2.335 .053 2.216 .102 2.266 .241 7.556 .182 5.044 .036 2.201
09 .133 1.843 .059 1.701 .176 1.812 .409 6.606 .224 4.924 .045 1.799
10 .131 1.839 .059 1.750 .145 2.004 .308 7.324 .216 4.520 .037 1.935

Table 2. Rotation and translation error for KITTI sequences with
known vertical direction (unit: degree).

In the second experiment, we test the relative pose esti-
mation algorithm with known vertical direction, i.e., 1AC
method. To simulate IMU measurements which provide a
known gravity vector for the views of the camera, the image
coordinates are pre-rotated by RxRz obtained from the
ground truth data. Table 2 lists the results of the rotation and
translation estimation. The proposed methods are also com-
pared against 5pt-Nister [30], 3pt-Sweeney [40],
3pt-Saurer [33], 2pt-Saurer [33] and
2AC-Barath [3]. Table 2 demonstrates that our method is
significantly more accurate than the other methods, except
for the translation error of sequences 02, 09 and 10.

5.2.2 Visual Odometry

We demonstrate the usage of the 1AC method in a
monocular visual odometry pipeline to evaluate its perfor-
mance in a real application. Our monocular visual odom-
etry is based on ORB-SLAM2 [28]. The affine correspon-
dences extracted by ASIFT feature matching are used to
replace the ORB features. The relative pose between two
consecutive frames is estimated based on the combination
of the 1AC method using RANSAC, and is used to re-
place the original map initialization and the constant veloc-
ity motion model. The estimated trajectories after align-
ment with ground truth are illustrated in Figure 6. The color
along the trajectory encodes the absolute trajectory error
(ATE) [39]. Due to space limit, we show the trajectories
of two sequences only. The results of other sequences can
be found in supplementary materials3. It can be seen that
the proposed 1AC method method has the smallest ATE
among the compared trajectories.

Moreover, we also evaluate the Relative Pose Error
(RPE) between the estimated trajectory and the ground truth
trajectory, which measures the relative accuracy of the tra-
jectory over fixed time intervals [39]. The RMSE for ro-
tation and translation using the RPE metric is illustrated
in Table. 3. Our monocular visual odometry generally has
smaller rotation and translational errors than ORB-SLAM2.

3Both ORB-SLAM2 and our monocular visual odometry fail to produce
a valid result for sequence 01, because it is a highway with few tractable
close objects.
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Figure 6. Estimated visual odometry trajectories. The left column
reports the results of ORB-SLAM2. The right column reports the
results of our monocular visual odometry. Colorful curves are es-
timated trajectories, and black curves with stars are ground truth
trajectories. Best viewed in color.

Seq.
ORB-SLAM2 [28] 1AC-SLAM

Seq.
ORB-SLAM2 [28] 1AC-SLAM

εR εt εR εt εR εt εR εt
00 0.821 0.923 0.803 0.421 06 0.142 1.478 0.126 0.995
02 0.200 1.052 0.156 0.686 07 0.149 0.879 0.137 0.330
03 0.113 0.244 0.118 0.185 08 0.177 1.778 0.159 0.659
04 0.151 0.417 0.097 0.307 09 0.221 0.777 0.172 0.502
05 0.264 0.681 0.254 0.306 10 0.129 0.633 0.238 1.008

Table 3. RMSE for rotation and translation using the RPE metric
for KITTI sequences. Rotation error unit: degree. Translation
error unit: meter.

6. Conclusion
In this paper, we showed that by exploiting the affine

parameters it is possible to estimate the relative pose of
a camera with only one affine correspondence under the
planar motion assumption. Three minimal case solutions
have been proposed to recover the planar motion of camera,
amongst which is a solver which can even deal with
an unknown focal length. In addition, a minimal case
solution has been proposed to estimate the relative pose
of a camera for the case of a known vertical direction.
The assumptions in these methods are common to scenes
in which self-driving cars and ground robots operate. By
evaluating our algorithms on synthetic data and real-world
image data sets, we demonstrate that our method can be
used efficiently for outlier removal and for initial motion
estimation in visual odometry.
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