193,775 research outputs found

    Macaca sylvanus Linnaeus 1758 from the Middle Pleistocene of Quecchia Quarry (Brescia, Northern Italy)

    Get PDF
    During the Plio-Pleistocene the Barbary macaque, Macaca sylvanus Linnaeus, 1758 was widely distributed throughout Europe and North Africa (Szalay and Delson, 1979; Delson, 1980; Rook et al., 2001), and it became extinct in Europe during the Late Pleistocene (Elton and O’Regan, 2014). Nowadays this primate is still present in North Africa and a small population has been reintroduced at Gibraltar (Modolo et al., 2005). The taxonomy of the Plio-Pleistocene European macaques is still debated but many authors agree in considering all the fossils as belonging to the M. sylvanus lineage, while the Pleistocene endemic M. majori Azzaroli, 1946 from Sardinia (Italy) has been considered a distinct valid species (Rook and O’Higgins, 2005). The occurrence of this species is documented from Late Pliocene to Late Pleistocene sites located in Northern and Central Italy. Here we describe unpublished dentognathic remains of Macaca sylvanus from the Middle Pleistocene site of Quecchia Quarry (Botticino, Brescia, North Italy)

    Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula

    Get PDF
    A palaeobotanical analysis of the Pleistocene floras and vegetation in the Iberian Peninsula shows the existence of patched landscapes with Pinus woodlands, deciduous and mixed forests, parklands (savannah-like), shrublands, steppes and grasslands. Extinctions of Arctotertiary woody taxa are recorded during the Early and Middle Pleistocene, but glacial refugia facilitated the survival of a number of temperate, Mediterranean and Ibero-North African woody angiosperms. The responses of Iberian vegetation to climatic changes during the Pleistocene have been spatially and temporarily complex, including rapid changes of vegetation in parallel to orbital and suborbital variability, and situations of multi-centennial resilience or accommodation to climatic changes. Regional characteristics emerged as soon as for the Middle Pleistocene, if not earlier: Ericaceae in the Atlantic coast indicating wetter climate, thermo-mediterranean elements in the south as currently, and broad-leaf trees in the northeastern. Overall, steppe landscapes and open Pinus woodlands prevailed over many continental regions during the cold spells of the Late Pleistocene. The maintenance of a high phytodiversity during the glacials was linked to several refuge zones in the coastal shelves of the Mediterranean and intramountainous valleys. Northern Iberia, especially on coastal areas, was also patched with populations of tree species, and this is not only documented by palaeobotanical data (pollen, charcoal) but also postulated by phylogeographical models

    Pleistocene hominins as a resource for carnivores. A c. 500,000-year-old human femur bearing tooth-marks in North Africa (Thomas Quarry I, Morocco)

    Get PDF
    In many Middle Pleistocene sites, the co-occurrence of hominins with carnivores, who both contributed to faunal accumulations, suggests competition for resources as well as for living spaces. Despite this, there is very little evidence of direct interaction between them to-date. Recently, a human femoral diaphysis has been recognized in South-West of Casablanca (Morocco), in the locality called Thomas Quarry I. This site is famous for its Middle Pleistocene fossil hominins considered representatives of Homo rhodesiensis. The bone was discovered in Unit 4 of the Grotte à Hominidés (GH), dated to c. 500 ky and was associated with Acheulean artefacts and a rich mammalian fauna. Anatomically, it fits well within the group of known early Middle Pleistocene Homo, but its chief point of interest is that the diaphyseal ends display numerous tooth marks showing that it had been consumed shortly after death by a large carnivore, probably a hyena. This bone represents the first evidence of consumption of human remains by carnivores in the cave. Whether predated or scavenged, this chewed femur indicates that humans were a resource for carnivores, underlining their close relationships during the Middle Pleistocene in Atlantic Morocco

    Lacustrine mollusc radiations in the Lake Malawi Basin : experiments in a natural laboratory for evolution

    Get PDF
    In terminal Pliocene-early Pleistocene times, part of the Malawi Basin was occupied by paleo-lake Chiwondo. Molluscan biostratigraphy situates this freshwater lake either in the East African wet phase between 2.7-2.4 Ma or that of 2.0-1.8 Ma. In-lake divergent evolution remained restricted to a few molluscan taxa and was very modest. The lacustrine Chiwondo fauna went extinct at the beginning of the Pleistocene. The modern Lake Malawi malacofauna is depauperate and descends from ubiquistic southeast African taxa and some Malawi basin endemics that invaded the present lake after the Late Pleistocene mega-droughts. The Pleistocene aridity crises caused dramatic changes, affecting the malacofauna of all East African lakes. All lacustrine endemic faunas that had evolved in the Pliocene rift lakes, such as paleo-lake Chiwondo, became extinct. In Lake Tanganyika, the freshwater ecosystem did not crash as in other lakes, but the environmental changes were sufficiently important to trigger a vast radiation. All African endemic lacustrine molluscan clades that are the result of in-lake divergence are hence geologically young, including the vast Lavigeria clade in Lake Tanganyika (ca. 43 species)

    Uppermost Pleistocene shrews (Mammalia, Soricidae) from Vaskapu Cave (N-Hungary)

    Get PDF
    Three shrew species (Sorex araneus LINNAEUS1758, Sorex minutus LlNNAEUS1766 and Sorex alpinus SHINZ1837) were found in the fossiliferous sediments of Vaskapu Cave, near Felsötárkány. The probable stratigraphical position of the sample is Upper Pleistocene, Pilisszántó Horizon (Upper Würm), about 15,000 years B.P. A cold period of the Late Pleistocene with wooded environment is indicated by the soricid assemblage

    Grotta Romanelli (Southern Italy, Apulia). Legacies and issues in excavating a key site for the Pleistocene of the Mediterranean

    Get PDF
    Grotta Romanelli, located on the Adriatic coast of southern Apulia (Italy), is considered a key site for the Mediterranean Pleistocene for its archaeological and palaeontological contents. The site, discovered in 1874, was re-evaluated only in 1900, when P. E. Stasi realised that it contained the first evidence of the Palaeolithic in Italy. Starting in 1914, G. A. Blanc led a pioneering excavation campaign, for the first-time using scientific methods applied to systematic palaeontological and stratigraphical studies. Blanc proposed a stratigraphic framework for the cave. Different dating methods (C-14 and U/Th) were used to temporally constrain the deposits. The extensive studies of the cave and its contents were mostly published in journals with limited distribution and access, until the end of the 1970s, when the site became forgotten. In 2015, with the permission of the authorities, a new excavation campaign began, led by a team from Sapienza University of Rome in collaboration with IGAG CNR and other research institutions. The research team had to deal with the consequences of more than 40 years of inactivity in the field and the combined effect of erosion and legal, as well as illegal, excavations. In this paper, we provide a database of all the information published during the first 70 years of excavations and highlight the outstanding problems and contradictions between the chronological and geomorphological evidence, the features of the faunal assemblages and the limestone artefacts

    Anatomy and origin of authochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract

    Get PDF
    High-resolution seismic reflection data from the east Coromandel coast, New Zealand, provide details of the sequence stratigraphy beneath an autochthonous, wave dominated inner shelf margin during the late Quaternary (0-140 ka). Since c. 1 Ma, the shelf has experienced limited subsidence and fluvial sediment input, producing a depositional regime characterised by extensive reworking of coastal and shelf sediments during glacio-eustatic sea-level fluctuations. It appears that only one complete fifth-order (c. 100 000 yr) depositional sequence is preserved beneath the inner shelf, the late Pleistocene Waihi Sequence, suggesting any earlier Quaternary sequences were mainly cannibalised into successively younger sequences. The predominantly Holocene-age Whangamata Sequence is also evident in seismic data and modern coastal deposits, and represents an incomplete depositional sequence in its early stages of formation. A prominent aspect of the sequence stratigraphy off parts of the east Coromandel coast is the presence of forced regressive deposits (FRDs) within the regressive systems tract (RST) of the late Pleistocene Waihi Sequence. The FRDs are interpreted to represent regressive barrier-shoreface sands that were sourced from erosion and onshore reworking of underlying Pleistocene sediments during the period of slow falling sea level from isotope stages 5 to 2 (c. 112-18 ka). The RST is volumetrically the most significant depositional component of the Waihi Sequence; the regressive deposits form a 15-20 m thick, sharp-based, tabular seismic unit that downsteps and progrades continuously across the inner shelf. The sequence boundary for the Waihi Sequence is placed at the most prominent, regionally correlative, and chronostratigraphically significant surface, namely an erosional unconformity characterised in many areas by large incised valleys that was generated above the RST. This unconformity is interpreted as a surface of maximum subaerial erosion generated during the last glacial lowstand (c. 18 ka). Although the base of the RST is associated with a prominent regressive surface of erosion, this is not used as the sequence boundary as it is highly diachronous and difficult to identify and correlate where FRDs are not developed. The previous highstand deposits are limited to subaerial barrier deposits preserved behind several modern Holocene barriers along the coast, while the transgressive systems tract is preserved locally as incised-valley fill deposits beneath the regressive surface of erosion at the base of the RST. Many documented late Pleistocene RSTs have been actively sourced from fluvial systems feeding the shelf and building basinward-thickening, often stacked wedges of FRDs, for which the name allochthonous FRDs is suggested. The Waihi Sequence RST is unusual in that it appears to have been sourced predominantly from reworking of underlying shelf sediments, and thus represents an autochthonous FRD. Autochthonous FRDs are also present on the Forster-Tuncurry shelf in southeast Australia, and may be a common feature in other shelf settings with low subsidence and low sediment supply rates, provided shelf gradients are not too steep, and an underlying source of unconsolidated shelf sediments is available to source FRDs. The preservation potential of such autochthonous FRDs in ancient deposits is probably low given that they are likely to be cannibalised during subsequent sea-level falls

    Some Post-Pliocene Buried Soils of Central United States

    Get PDF
    corecore