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Abstract. In terminal Pliocene–early Pleistocene times, part
of the Malawi Basin was occupied by paleo-lake Chiwondo.
Molluscan biostratigraphy situates this freshwater lake either
in the East African wet phase between 2.7–2.4 Ma or that of
2.0–1.8 Ma. In-lake divergent evolution remained restricted
to a few molluscan taxa and was very modest. The lacustrine
Chiwondo fauna went extinct at the beginning of the Pleis-
tocene. The modern Lake Malawi malacofauna is depauper-
ate and descends from ubiquistic southeast African taxa and
some Malawi basin endemics that invaded the present lake
after the Late Pleistocene mega-droughts. The Pleistocene
aridity crises caused dramatic changes, affecting the malaco-
fauna of all East African lakes. All lacustrine endemic faunas
that had evolved in the Pliocene rift lakes, such as paleo-lake
Chiwondo, became extinct. In Lake Tanganyika, the fresh-
water ecosystem did not crash as in other lakes, but the en-
vironmental changes were sufficiently important to trigger
a vast radiation. All African endemic lacustrine molluscan
clades that are the result of in-lake divergence are hence ge-
ologically young, including the vastLavigeriaclade in Lake
Tanganyika (ca. 43 species).

1 Introduction

The hypothesis that the large African lakes are “natural lab-
oratories of evolution” and that their diversified molluscan
fauna are prime examples of intense and ancient processes of
in-lake evolution (Michel et al., 1991) has become generally
accepted. The recent and fossil malacofauna of Lake Malawi
does not corroborate this theory. In fact, all actual molecular
and paleontological investigations provide evidence pointing
to the contrary, namely that in Lake Malawi, as well as in

other past and present rift lakes, molluscan in-lake diver-
gence is surprisingly modest and young geologically speak-
ing. This view is partly applicable even to the unique mala-
cofauna of Lake Tanganyika. The present study links the late
origin of the malacofaunas of the present rift lakes to the in-
creasing climate destabilisation in East Africa since the late
Pliocene.

2 The fossil record

This study is based on the collections of terminal Pliocene–
early Pleistocene molluscs collected in the Chiwondo region
(NW margin of Lake Malawi), respectively, in the 1960s dur-
ing the Desmond Clark Palaeo-Antropological Investigation
and in 1980–1990s during the Hominid Corridor Research
Project led by Timothy Bromage and Friedemann Schrenk.
Albrecht Gorthner, the HCRP malacologist, also sampled
the Holocene assemblages near the Shire River outlet and
this preliminary investigation was recently continued (Van
Bocxlaer, 2004; Van Bocxlaer et al., 2012). All relevant fos-
sil material collected in the Malawi Basin is provisionally
stored at the Paleontological Research Unit, Ghent Univer-
sity, awaiting formal taxonomic description. The taxonomy
of the Desmond Clark collection was studied by Gautier
(A. Gautier, unpublished data, 1968) and taxonomy and bios-
tratigraphy of the HCRP-collection by A. Gorthner (unpub-
lished data, 1995). Copies of both manuscripts are kept at
the Paleontological Research Unit Ghent as part of the col-
lection.

The present paper is essentially a critical review of the
fossil material cited above and the published literature on
the modern and fossil Lake Malawi malacofauna in the
light of our vastly improved knowledge on phylogeny and
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paleontology of the molluscs of the African Great Lakes and
of the paleolimnological evolution of these lake basins. The
published literature in which provisional species lists of the
Chiwondo fossil molluscs or part of them are provided is
quite extensive and widely scattered. It includes Pain (1966),
Gautier (1966), Gautier (1970), Van Damme (1984, 1988),
Van Damme and Pickford (1999, 2003), Gorthner (1994),
Gorthner et al. (1992), Schrenk et al. (1995), Schultheiß et
al. (2009) and Van Bocxlaer (2010).

3 The evolution of taxonomic concepts about the
modern Malawi malacofauna: from speciose
19th Century Lake Nyasa to species-poor 21st
Century Lake Malawi

The spectacular thalassoid or marine-like fauna of Lake
Tanganyika (area: 32 900 km2) greatly puzzled 19th Cen-
tury scientists and led to heated debate as to their origin.
The comparatively unspectacular molluscs of Lake Nyasa,
as L. Malawi formerly was known, saddled them with the
subsidiary question why in this equally vast lake (area:
29 600 km2) no such a diversified thalassoid fauna was
found, for according to Bourguignat (1889) only the Nyasan
thiarids did possess thalassoid characters. This author, rec-
ognizing about 40 thiarid species, divided them in five gen-
era:Melania(= Melanoides)represented only by the ubiquis-
tic M. tuberculataand the rest belonging to the endemic
generaNyassia, Nyassella, MicronyassiaandNyassomelania
(Fig. 1). He believed that the relatively low species richness
was due to insufficient sampling in the at the time virtually
unexplored lake.

In the middle of the 20th Century, during what Michel et
al. (2003) call “the dawn of Mayrian optimism for the prac-
ticality of a single ‘biological’ species concept”, the num-
ber of molluscan species in all African lakes was taxonomi-
cally decimated. In Lake Malawi none of the endemic thiarid
genera survived this taxonomic lumping event and only 16
gastropods are presently considered to live in the lake sensu
stricto of which eight are endemicMelanoides(Brown, 1994;
Darwall et al., 2005), but the number of theMelanoidesen-
demics is still unresolved (see Table 1). Eldblom and Kris-
tensen (2003) retain three endemics only in the last revision
based on morphology. While molecular biologists speak of
the “Melanoides polymorpha-complex”, considered to be a
poly- or paraphyletic group of clones (Genner et al., 2004,
2007b; Von Gersdorff Sørensen et al., 2005). This led Michel
et al. (2008) to raise a question about their equivalence to
“standard” species, i.e., as defined according to the Biologi-
cal Species Concept (BSC).

Questions on the morphological distinctiveness and the
number of the endemicBellamya(Viviparidae) andLanistes
(Ampullariidae) have not yet been fully resolved either. Re-
cent molecular investigations of these two other prosobranch
“species flocks”, considered to have diverged within the lake,

 

Fig. 1. 

Fig. 1. Example of taxonomic hyper-splitting in modern Lake
Malawi molluscs. Representatives of the four thiarid genera created
by Bourguignat (1889), endemic to Lake Malawi: 1 -Nyassia mag-
nifica; 2 - Nyassella pulchra;3 - Nyassomelania truncatelliformis
and 4 -Micronyassia singularis. All ca. 40 thiarid species recog-
nized by Bourguignat have been shown by molecular research to be
parthenogenetic clones belonging to the “Melanoides polymorpha-
complex”. Some (e.g.,Melanoides truncatelliformis) are still “offi-
cially” considered as distinct endemic species (Scale bar: 10 mm).

revealed that both groups consist not exclusively of in-lake
endemics, as was formerly assumed, but of in-lake endemics
sensu stricto plus one or two paludal/fluvial species endemic
to the whole of the Malawi Basin, i.e., basin endemics (Sen-
gupta et al., 2009; Schultheiß et al., 2009, 2011). Both these
Malawi species groups are monophyletic, young and the spe-
ciation processes still likely are going on in the viviparid
flock (Schultheiß et al., 2011). In addition, the possibility that
the clonalMelanoideslineages endemic to lake Malawi are
not the result of an in-lake radiation either, but that they are
allopatric paleo-endemics that colonized Lake Malawi at dif-
ferent times, is considered a possible scenario in view of their
para-/polyphyly (Genner et al., 2007b).

Dudley’s (2000) remark that “Malawi gastropod classifi-
cation is in a continuing state of revision and that it will be
some time before a system comes to be generally agreed for
the groups of higher rank” is still painfully actual. Certain
is that the recent genetic research on Lake Malawi molluscs
does not lend support to the ingrained concept of “spectacu-
lar” species diversification/radiation in this supposedly long-
lived “natural laboratory of evolution”. The largest Malawi
group, that ofMelanoides, can only partially result from an
in-lake radiation and the two other “clades” are small and
genetically little diversified.

Diversification is not spectacular and hence niche parti-
tioning and occupation are neither. Most Malawi species are
restricted to the shallow littoral zone with sandy substrate
(above 20 m) and only a few are found in the deep sublittoral
between 40 and 80 m. But at such depths their occurrence
is sporadical and the only two species,Lanistes nasutusand
Bellamya ecclesi(Fig. 2), possessing morphological adapta-
tions for life at greater depths, are represented by a few rare
and highly localized populations (Brown, 1994). The spe-
cific shells adaptations in both species consist of the persis-
tence of essentially neotenous traits, namely a thin, rapidly
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Fig. 2 

Fig. 2. Example of partly repeated convergent evolution in the
Malawi Basin. Two groups of endemic lacustrineBellamyaspecies
(Viviparidae) that evolved in lakes of the Malawi basin separated by
ca. 2 million years. The first group, consisting of (1)B. cf. pagod-
iformis, (2) B. cf. trochlearis, and (3)B. cf. robertsoni, lived in
paleo-lake Chiwondo during late Pliocene–early Pleistocene times.
The second group, consisting of (4)Bellamya ecclesi, (5)B. jeffreysi
and (6)B. robertsoni, occurs in present Lake Malawi. Both groups
are not directly affiliated (Scale bar: 10 mm).

growing shell, a strongly inflated body whorl and a mouth
aperture that is very large compared to the total length and
width of the animal, either being strongly elongated as in
L. nasutusor wide as inB. ecclesi. Such morphological fea-
tures increase buoyancy and permit the extension of a large
foot, adaptations for life in or on fluid sediment. No special
anatomical features are mentioned in literature except for
strongly elongated tentacles inL. nasutus(Mandahl-Barth,
1972; Berthold, 1990).

4 The paleontological data reviewed: the end of Lake
Malawi as an ancient lake

The paleolimnological, pre-Holocene evidence in the Malawi
basin is fragmentary and localized. Pliocene–Pleistocene de-
posits, described as the Chiwondo and the Chitimwe Beds,

are exposed at the NW fringe of Lake Malawi near its satel-
lite lake Chiwondo (Fig. 3). For detailed stratigraphic in-
formation we refer to Sandrock et al. (2007) and Kullmer
(2008). Age estimates are based on suid biochronostratig-
raphy (= chronostratigraphy based on teeth of fossil pigs
(Suidae)). Since no mammal fossils are found at the mol-
lusc bearing sites, their age was based, as well as possible,
on stratigraphic correlations with nearby exposures yielding
mammals.

According to the authors cited, five limnological stages
can be discerned in the Chiwondo region ranging from ter-
minal Miocene to Late Pleistocene times:

– Chiwondo Beds, Unit 1 (time range:> 5 to ca. 4.0 Ma).
Exclusively fluvial deposits, no molluscs.

– Chiwondo beds, Unit 2 (time range:≥ 4 to ca. 3.75 Ma).
Lacustrine limestone and silt- to sandstone deposits
formed in littoral and margin environments with rare
gastropod fossils (Bellamya). At the top of the unit the
facies changes to littoral marlstones with abundant gas-
tropods and rare bivalves. The molluscan assemblages
are found in consolidated shell beds cropping out as
benches with a thickness up to several meters and ex-
tending over several hundred meters (Schrenk et al.,
1995). Preservation in the coarse sandstone is poor with
inner casts and partly dissolved outer casts. In the rare
marl- and limestones fossilization is slightly better, con-
sisting of recrystallized calcitic shells.

– Chiwondo Beds, Unit 3 (time range: ca. 3.75 to 2.0 Ma
for Subunit 3A and ca. 2.0 to ca. 1.5 Ma for Sub-
unit 3b on the basis of suid biochronostratigraphy).
The overlying unit, separated from the earlier deposits
by an unconformity, is characterized by the return of
deltaic/fluvial conditions. Pronounced lake regressions
took place between 2.3–2.0 Ma and 1.6–1.5 Ma. No
molluscan assemblages.

– Chiwondo Beds, Unit 4 (time range: ca. 1.5 Ma to
> 20 ka). Deposits of eolian sands indicate periods of
marked aridity but a brief lacustrine transgressive phase
is recorded (no molluscs).

– Chitimwe Beds (time range:≤ 20 ka). Alluvial fan
deposits indicate a phase of lacustrine regression.
Holocene lacustrine deposits are not present in the NW
Lake Malawi region.

The known Chiwondo malacofauna comprises species be-
longing to the generaLanistes(2–3 species; Ampullariidae),
Bellamya(4 sp.; Viviparidae), Gabbiella(2–3 sp.; Bithyni-
idae), Cleopatra (1 sp.; Paludomidae),Melanoides(2 sp.;
Thiaridae),Bulinus (1 sp.; Planorbidae),Coelatura (2 sp.;
Unionidae),Pseudobovaria(1 sp.; Unionidae),Chambardia
(1 sp.; Iridinidae),Etheria (1 sp.; Etheriidae) andCorbic-
ula (1 sp.; Cyrenidae) (see Table 1). Many assemblages are
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Fig. 3. Modern Lake Malawi and Lake Tanganyika in the African Western Rift (after Beadle, 1974). The location of the fossiliferous
Chiwondo Beds is indicated by a star.

species poor with mainlyBellamy, Gabbiella, Melanoidesor
monospecific with onlyBellamya. All appear to have been
formed in the littoral storm wave zone and the higher part of
the littoral.

Most Chiwondo species, i.e., those belonging to the genera
Lanistes, Gabbiella, Melanoides, Bulinus, Coelatura, Pseu-
dobovaria, Chambardia, Etheriaand Corbicula are mor-
phologically similar to species that are or were (i.e.,Pseu-

dobovaria) widespread in East Africa or are endemic to
the Malawi Basin (e.g.,Chambardia nyassaensis(Graf and
Cummings, 2007) and do not show lacustrine adaptations.

A marked diversification can be observed only in the
genusBellamya(Fig. 2.), which apart from an unornamented
morph (’‘Bellamya capillata” auctores) is represented by
(1) a form with sloping, flattened whorls and a basal carina,
described by A. Gautier (unpublished data, 1968) and cited

Biogeosciences, 10, 5767–5778, 2013 www.biogeosciences.net/10/5767/2013/
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in Van Damme and Pickford (1999) asBellamyacf. pagodi-
formisfor the likeness with the modern Lake Mweru species,
(2) a carinated form,B. cf. trochlearis, resembling the mod-
ern Lake Victoria endemic and (3)B. cf. robertsoni, which
is morphologically quite similar to the present-day Lake
MalawiB. robertsonibut smaller. The unornamentedB capil-
lata is dominant, all others are relatively rare. The morpho-
logical differences suggest a para- or polyphyletic origin of
the ChiwondoBellamya-group. That these Chiwondo lacus-
trine endemics are ancestral to the present ones is highly un-
likely, considering the evidence for intermittent aridity and
salinity peaks during the Pleistocene (see paleoenvironmen-
tal reconstruction of Pleistocene events). As to a continuity
in Melanoides, the morphological divergence and dwarfism
observed in the modern Malawi representatives is not found
in the Chiwondo assemblages, where the taxon is represented
by two large sized forms with no distinct correlations to the
modern clade (see also further).

Generally the Chiwondo littoral malacofauna is surpris-
ingly similar in diversity and composition to the early–
middle Holocene fauna (Van Boxclaer, 2004), at least in
comparison to the marked differences between Pliocene and
Holocene–modern faunas in paleo-lakes of the Turkana and
the Albertine basins. It is safe to conclude that during late
Pliocene times the Chiwondo lake fauna did already consist
for an important part of the same ubiquistic and basin en-
demic taxa occurring in the present lake and that the com-
position of the late Pliocene faunal community was in many
aspects already “modern”. The only “ancient” taxon present,
be it rare, in the Chiwondo assemblages is the unionidPseu-
dobovaria. In the two other basins mentioned, Pliocene fauna
elements remain dominant until the period ca. 1.8 Ma to
ca. 1.2 Ma (see further).

That the Chiwondo malacofauna dates from the early
Pliocene, that is from 4–3.8 Ma as proposed by Sandrock
et al. (2007) and Kullmer (2008), is difficult to accept, not
primarily because that would infer that the Malawi fauna
had reached its modern aspect millions of years earlier than
those of other East African basins, but because of the pres-
ence of the Asiatic bivalveCorbicula. The presence of fos-
sils of this Asian clam provides aterminus ante quemdate
of 2.6–2.5 Ma for African assemblages. Well-calibrated ev-
idence comes from the Turkana Basin whereCorbicula ap-
pears for the first time in deposits of the short-lived paleo-
lake Lokeridede directly overlying the Burgi Tuff, dated to
2.68± 0.06 Ma (Feibel et al., 1989; McDougall and Brown,
2008). FossilCorbicula from the Kada Me’e Tuff Complex
in the Hadar Formation are dated at ca. 3.4 Ma, but this in
an estimate obtained by interpolation of six40Ar / 39Ar ana-
lytical data and considered as unreliable (Campisano, 2007;
Campisano and Feibel, 2008).

The terminus ante quemdate based on the molluscs is
1.5 to 1.2 Ma, i.e., the last records of the extinct unionid
Pseudobovaria(Van Damme and Pickford, 2010). The age
of all molluscan Chiwondo assemblages should, consider-

ing the absence of any marked morphologically differences
among the assemblages, be considered as being broadly sim-
ilar, hence deposited either around 2.5 Ma or around 1.9 Ma.
In East Africa the 2.7–2.4 Ma interval appears to be a ma-
jor lake period suggested by the moisture history of the
Ethiopian, Kenyan and Tanzanian rift basins (Trauth et al.,
2005, 2007, 2010; Tiercelin et al., 2010). Important incur-
sions of invasive species (e.g.,Corbicula) synchronously in
the Turkana Basin (Van Bocxlaer et al., 2008) and the Alber-
tine Basin (Van Damme and Pickford, 2003, 2010) indicate
a significant increase of hydrological connections among
different basins during the time segment. Paleo-lake Chi-
wondo may hence have existed synchronously with paleo-
lake Lokeridede (ca. 2.5 Ma) of the Turkana basin and with
the earlier stages of paleo-lake Kaiso and paleo-lake Lusso
(ca. 2.5 Ma) of the Albertine basin. An alternative possibil-
ity is that it existed during the same period as paleo-lake
Lorenyang (ca. 2.0–1.8 Ma) in the Turkana Basin and the
terminal stages of both aforementioned lakes in the Alber-
tine Basin (ca. 2.0–1.8 Ma) (Van Damme and Van Bocxlaer,
2009; Van Damme and Pickford, 2010), present during an
equally wide spread East African wet phase (Trauth et al.,
idem). In the latter period the Pliocene fauna elements in the
two basins were disappearing also.

As in other parts of East Africa, periods of increas-
ingly aridification and climatic instability are recorded in
the Malawi Basin throughout the whole Pleistocene period
with extremely low lake levels between 2.3–2.0 Ma in late
Pliocene times and between 1.6–1.5 Ma during Lower Pleis-
tocene times, in Unit 3b of the Chiwondo Beds. In the over-
lying Unit 4, eolian sands equally indicate phases of hyper-
aridity during the rest of the early and middle Pleistocene
(Sandrock et al., 2007). The intermittent occurrence of dis-
crete but extreme periods of aridity during the Late Pleis-
tocene and the dramatic degradation of the freshwater la-
custrine ecosystem has been reconstructed in detail via the
multidisciplinary study of Malawi lake cores (Cohen et al.,
2007). Hyper-aridity is noted in the period between 135
to 90 ka, when the strongly constricted lake was shallow,
holomictic and saline, surrounded by semi-desert.

From Pleistocene times only a single, brief high lake
level stand of unknown age, younger than 1.5 Ma, and with-
out fossils is recorded (Sandrock et al., 2007). This event
may possibly fall within the late in the early Pleistocene
period of major global climatic transition, situated at 1.1
to 0.9 Ma by Trauth et al. (2007), or it results from lo-
cal climatic events. The absence of macrofossils may be
due to unfavourable conditions for fossilisation, but more
likely indicates the absence of macroscopic life (hyper-
salinity/hyper-alkalinity). For the whole of the Pleistocene,
information about molluscan life in the Malawi Basin is
hence missing. The lacustrine ecosystem during that epoch
must have fluctuated between a Lake Baringo-Lake Naivasha
type of lake, i.e., with a conductivity in excess of 4000–
4500 µS cm−1 without freshwater prosobranchs or bivalves
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and a Lake Turkana-Lake Langano type with a conductivity
around 2200–2300 µS cm−1, with onlyMelanoidesandGab-
biella still present but dwarfed (Van Damme, 1976; Brown,
1994).

The chances that populations of oligohaline taxa, such as
the gastropodBellamya(Viviparidae) andCleopatra(Palu-
domidae) and equally sensitive bivalves such asCoelatura
and Nyassunio (Unionidae), Mutela and Pleiodon (Iri-
dinidae) andEtheria (Etheriidae), could survive these inter-
mittent aridity/hyper-aridity peaks in the restricted and en-
dorheic Malawi Basin, i.e., prior to the connection with the
Zambezi Basin via the River Shire, were nil. These groups
must have re-invaded the Malawi Basin, when environmental
conditions improved in the Late Pleistocene. The morpholog-
ical likeness between modernBellamya robertsoniand ter-
minal Pliocene–early PleistoceneB. cf. robertsoni(Fig. 2)
does therefore not imply direct parentage, in particular since
the modernrobertsonimorph is not yet clearly discernible in
the late Holocene Malawi deposits (Van Bocxlaer, 2004; Van
Bocxlaer and Van Damme, 2009).

Taxa such asMelanoides (Thiaridae) andGabbiella
(Bithyniidae) tolerate relatively high salinity concentrations
and taxa such asLanistes(Ampullariidae) andChambardia
(Iridinidae) are able to aestivate during extended dry peri-
ods (Van Damme, 1984). Populations of these taxa may have
survived the Pleistocene salinity crises and modern represen-
tatives in the basin or in the lake such asLanistes ellipticus,
Gabbiella stanleyiandChambardia nyassaensismay derive
from basin endemics already present during Chiwondo times.
However, the molecular evidence concerning the Malawi
Lanistes, indicates that the formation of this group is young
(Middle Pleistocene?) (Schultheiß et al., 2009).

For the modern representatives of the genusMelanoides,
the case is more complex. They are not yet present in
Chiwondo times and may be dwarfed morphs that orig-
inated during Pleistocene times in the saline lakes, but
that these morphs are descended from populations already
present in the basin during Chiwondo times (Genner et al.,
2007b) cannot be ascertained. The dominant fossil Chiwondo
Melanoideswas identified asM. cf. nodicincta, a modern
Lake Malawi endemic, by A. Gautier (unpublished data,
1968), cited in Van Damme (1984) and Van Damme and
Pickford (2003), but this identification is incorrect. The Chi-
wondo shells are too poorly preserved to provide a spe-
cific attribution. Presently it seems best to consider them to
belong to theM. polymorpha–M. mweruensis–M. anomala
species group, occurring in the south-eastern African region
(Van Bocxlaer, 2010). Using these Chiwondo fossils to cali-
brate the molecular clock in calculating the age of the mod-
ernM. polymorpha-group should be avoided (Genner et al.,
2007b).

5 Is the Pleistocene climatic destabilization responsible
for major extinctions and major evolutionary
radiations in the molluscs of the African rift lakes?

The reconstruction of the malacological history of the
Malawi basin, though fragmentary, shows that as in the two
other East African basins with a fossil record, Lake Turkana
and Lake Albert basin, a diversified lacustrine fauna existed
in the basin during late Pliocene times. It contained lacustrine
endemics and definitely possessed already a distinct south-
eastern African character, clearly different from that of the
other basins mentioned. The age of this paleo-lake Chiwondo
fauna is uncertain. It certainly is not older than 2.7–2.6 Ma
but it could be younger, i.e., dating from the East African
wet phase at 2.0–1.9 Ma.

After that period, possibly from ca. 1.8 Ma and definitely
after 1.5 Ma, the old Pliocene malacofauna in the Turkana
and Albertine basins shows signs of a severe deterioration. In
the Albertine Basin the Miocene–Pliocene Congolian faunal
elements are replaced by an impoverished eurytopic fauna
of the “Nilotic” type around 1.8 Ma (Van Damme and Pick-
ford, 1999, 2003, 2010). In the Turkana basin virtually all
old Pliocene basin elements are definitely gone after ca. 1.3
to 1.2 Ma, i.e., after the brief lake interval around ca. 1.4 Ma
at the base of Member L, Shungura Formation (Van Bocxlaer
et al., 2008).

The paleo-environmental data for the Malawi Basin we
possess indicate the instauration of hyper-arid phases pos-
sibly already from about 2.3 Ma, if the mammalian chronos-
tratigraphy of Sandrock et al. (2007) is followed. It can be as-
sumed that in the Malawi Basin all molluscan lake endemics
must have become extinct prior to 1.8 Ma and that most of
the basin endemics, possibly except those with adaptations to
survive extended periods of aridity, e.g.,Chambardia nyas-
saensis, or significant increases in salinity, e.g.,Gabbiella
stanleyi, also were gone after ca. 1.3 to 1.2 Ma.

In all larger East African basins, where according to the
fossil evidence an endemic lake fauna developed during late
Miocene–Pliocene times, all Pliocene lacustrine endemics
and many basin endemics appear to have become extinct
during the hyper-arid early Pleistocene times. In all smaller
basins such as those in the Gregory and Ethiopian rift, fos-
sil mollusc assemblages from Pliocene freshwater lakes are
also known, but intense level fluctuations, endorheism and
volcanic activity only permitted short lived incursions of eu-
rytopic species and no evolution (Van Damme, 1984).

In their study on the evolution of the modern endemic
Lanistesclade of Lake Malawi, Schultheiß et al. (2009) ex-
tend the debate concerning possible evolutionary patterns
in molluscs to all large African lakes. They discern three
types of lacustrine ecosystems based on the criterion that
tempo and mode of molluscan evolution are primarily deter-
mined by the degree of ecosystem stability on a geological
timescale. At one end they place “seemingly” stable systems
but which are, viewed on a geological timescale, instable and
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Table 1. Freshwater molluscs from terminal Pliocene–early Pleistocene Paleo-Lake Chiwondo and modern Lake Malawi. Taxonomy and
range of modern species according to Brown (1994) and Graf and Cummings (2007) except when mentioned otherwise.

Taxon Paleo- Modern Remarks
Lake Lake

Chiwondo Malawi

GASTROPODA

Viviparidae
Bellamya capillata x x Wide spread SE-African species, but modern Malawi Basin populations differ
fideBrown genetically and the nameBellamya simonsiBgt, a basin endemic, has preference
Bellamya jeffreysi – x Modern lake endemic, absent in early Holocene L. Malawi deposits
Bellamya robertsoni x Modern lake endemic, absent in early Holocene L. Malawi deposits
Bellamyacf. robertsoni x – Lake endemic. Morphological convergence with modern species from

L. Malawi
Bellamya ecclesi – x Modern lake endemic known only from deeper water in southern L. Malawi
Bellamyacf pagodiformis x – Lake endemic. Morphological convergence with modern species from

L. Mweru
Bellamyacf. trochlearis x – Lake endemic. Morphological convergence with modern species from

L. Victoria

Ampullariidae
Lanistes ovum fideBrown x x Widespread in Africa but modern Malawi Basin populations differ genetically

and the nameLanistes ingensAncey, a basin endemic, hence has preference.
Lanistes ellipticus x x Basin endemic, not found in the lake proper
Lanistes solidus – x Lake Malawi endemic (?) nearly indistinct fromL. ellipticus
Lanistescf. solidus ? – Only a few badly preserved specimens possibly belong to this species
Lanistes nyassanus – x Modern Lake Malawi endemic, not found in early Holocene deposits
Lanistes nasutus – x Modern Lake Malawi deep water species, only known from a dozen specimens

Bithyniidae
Gabbiella stanley – x Mainly in vegetation in Lake Malawi shallows, probably basin endemic
Gabbiellacf. stanley x – Morphological identical to modern species, probably basin endemic
Gabbiellasp. x – Exceptionally largeGabbiellaspecies, related to the above. Lake endemic?

?Valvatidae
?Valvatasp. x – Costulate ovate species, identified by Van Damme (1976) asValvata, but more

likely belonging to the Assiminaeidae

Paludomidae
Cleopatrasp. x – Basin endemic with modest carinae, probably belonging to theCl. smithi/

Cl. mweruensisgroup from Zambia. Genus presently absent in the Malawi
basin.

Thiaridae
Melanoides tuberculata – x Widespread Oriental species
Melanoides nodicincta – x Clone, endemic to modern L. Malawi
Melanoides pergracilis – x Clone, endemic to modern L. Malawi
Melanoidescf. pergracilis x – Very slender form, ca. twice the size of modernM. pergracilis
Melanoides pupiformis – x Clonal dwarfed form, endemic to L. Malawi
Melanoides turritispira – x Clonal dwarfed form, endemic to L. Malawi
Melanoides polymorpha – x Modern Lake Malawi endemic. Extremely polymorphic species
Melanoidescf. polymorpha x – Erroneously mentioned asM. cf. nodicinctaby Van Damme and Pickford

(2003)
Melanoides nyassana – x Clonal dwarfed form, endemic to L. Malawi
Melanoides truncatelliformis – x Clonal dwarfed form, endemic to L. Malawi
Melanoides magnifica – x Clonal dwarfed form, endemic to L. Malawi
Melanoides simonsi – x Considered distinctive fromM. nodicinctaby Eldblom and Kristensen (2003)
Melanoides virgulata – x Invasive Oriental species in modern L. Malawi (Eldblom and Kristensen, 2003)

Lymnaeidae
Lymnaea natalensis – x Widespread pulmonate
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Table 1.Continued.

Taxon Paleo- Modern Remarks
Lake Lake

Chiwondo Malawi

Planorbidae
Biomphalaria pfeifferi – x Ubiquistic. S. America genus that invaded Africa probably in Pleistocene times
Ceratophallus natalensis – x Widespread
Gyraulus costulatus – x Widespread
Bulinus globosus – x Widespread
Bulinuscf. globosus x – Species-level identification requires anatomical characters
Bulinus nyassanus – x Modern Lake Malawi endemic, also present in early Holocene deposits
Bulinus succinoides – x Modern Lake Malawi endemic
Bulinus forskalii – x Widespread

BIVALVIA

Unionidae
Nyassunio nyassaensis – x Lake endemic very close toC. hypsiprymna.Present in Holocene deposits
Coelatura hypsiprymna – x Basin endemic, also in modern L. Malombe and in Holocene L. Malawi

deposits
Coelatura mossambicensis – x Widespread south-eastern African species
Coelaturacf. mossambicensis x – Probably identical to the modern species
Coelaturasp. x – Very largeCoelatura, resembling modernC. briarti, widespread in the Congo

Basin
Pseudobovaria mwayana x – Extinct genus en species represented by the subsp.tuberculata, equally
tuberculata found in the L. Turkana and Albert Basin, where it is restricted to early

Pleistocene strata.

Iridinidae
Aspatharia subreniformis – x Widespread
Chambardia nyassaensis x x Ranging from L. Rukwa (Tanganyikan basin) to L. Malombe (Malawi Basin)
Chambardia wahlbergi – x Widespread
Mutela alata – x In L. Malawi, Shire R., L. Malombe and in Malagarasi R. (Tanganyikan Basin)

Etheriidae
Etheria elliptica x – The river oysterEtheriadoes presently not occur anymore in the Malawi Basin

Cyrenidae
Corbicula fluminalis x x Widespread Oriental species

Sphaeriidae
Pisidium pirothi – x Widespread
Pisidium reticulatum – x Widespread

intermittently cease to exist as large standing freshwater bod-
ies. As an example, they cite Lake Victoria that dried out in
Late Pleistocene times. In such type of lake radiation events
may be triggered during renewed freshwater phases but there
is no continuity in the molluscan lineages involved. On the
other end they place the Lake Tanganyika ecosystem char-
acterized by long-term stability of the abiotic setting. The
authors claim that the endemic radiations within lakes like
Lake Tanganyika or Lake Baikal “have regularly proved to
be remarkably old”. The lacustrine ecosystem in the Malawi
Basin is considered by them as an intermediate.

We fail to see why the lacustrine malacofaunas in the
Lake Malawi basin should be given this special status. The

data advanced in this paper indicate that regardless of these
depth and size, all African freshwater systems, that in the
Lake Malawi Basin included, crashed during the Pleistocene
and that their endemic intra-lacustrine faunas went extinct.
The only exception is Lake Tanganyika (Fig. 3). However,
while part of the Pliocene malacofauna survived in that
lake, there are no indications that the intra-lacustrine mol-
luscan radiations in it are remarkably old. Most Tanganyikan
mollusc taxa are paleo-endemics, not neo-endemics, as
shown by paleontological (Van Damme and Pickford, 2003,
2010), molecular (Wilson et al., 2004) and morphological
(Glaubrecht, 2008) evidence. Though significant lake level
drops did occur during the late Pliocene and Pleistocene
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(ca. 435 m level drop during the early Late Pleistocene mega-
drought, McGlue et al., 2008), the Tanganyikan freshwater
system did not crash, and the lake acted as a refuge for a num-
ber of taxa, e.g., the viviparid genusNeothauma, that became
extinct in the Albertine basin around 1.8 Ma (Van Damme
and Pickford, 1999). Consequently, the molluscan in-lake di-
versification processes observed in some of the Tanganyikan
paludomid tribes such asLavigeriamay be quite young.

Convincing arguments that abiotic changes did have a se-
vere impact on Lake Tanganyika’s fauna have recently been
found by molecular phylogenetic research, e.g., on mollus-
civorous plathytelphusid crabs, limnochromine cichlids,Syn-
odontiscatfish and mastacembelid eels. The studies indicate
that the radiations in these groups are geologically recent
events (late Pliocene–early Pleistocene; Cumberlidge et al.,
1999; Marijnissen et al., 2006, 2008; Duftner et al., 2005;
Day and Wilkinson, 2006; Brown et al., 2010). Since speak-
ing in geological terms, the specialized molluscivorous crabs
evolved only recently, the onset of the radiation in the thalas-
soidLavigeriaand others, considered to result from an arms-
race between crabs and their prey (West et al., 1992), must
also date from late Pliocene or early Pleistocene times at the
earliest. The quite impressive Holocene radiation ofLavige-
ria in Lake Rukwa (Fig. 3), when this lake was joined with
Lake Tanganyika via the Karema Gap (Cox, 1939; Cohen et
al., 2010) may indicate that the evolutionary divergence pro-
cess inLavigeriais still an ongoing process. On-going diver-
gence is also suggested for the plathytelphusid crabs (Mari-
jnissen et al., 2008).

In all East African lakes the current molluscan radiations
are recent events, postdating the Pliocene–Pleistocene aridity
crises. Lake Tanganyika excepted, the populations involved
in the modest modern radiation events belong to Pleistocene
invaders replacing older Pliocene in-lake lineages that went
extinct. In Lake Tanganyika the increased environmental
stress triggered a spectacular radiation but only in a single
taxon,Lavigeria, the latest estimate of this clade being ca. 43
species (Ngereza, 2010). This marked radiation in Lake Tan-
ganyika may also indicate that considerable ecospace be-
came available due to the extinction of other groups. The
Lavigeria radiation certainly is the result of an in-lake pro-
cess, and the onset of this divergence-event probably falls in
the same time segment as the extinction-events in the other
lakes. That the genus is an ancient occupant of the lake is
not even certain since a closely related taxon (Potadomoides)
occurs in the Malagarasi and Luapula (Brown, 1994) and
an invasion or multiple invasions could have occurred dur-
ing transgressive periods throughout Pliocene–Pleistocene
times.

6 Conclusions

The available data indicate that probably already during late
Pliocene times a marked basin endemism had developed in
the Malawi malacofauna, inLanistes, GabbiellaandCham-
bardia. In the paleo-lake that formed subsequently in this
basin during an East African late Pliocene wet phase, intra-
lacustrine divergence processes were initiated but ended
abruptly due to increasing aridity crises. The modern lake
fauna has no direct relation with the late Pliocene one, possi-
bly except for some salinity or drought resistant species, such
as respectivelyGabbiella stanleyiand Chambardia nyas-
saensis. The fact that in modern Lake Malawi the colo-
nization of the lacustrine environment remains mainly re-
stricted to sandy bottoms of the upper epilimnion suggests
that even now, during the present freshwater optimum, ex-
ploitation of the available space and niches is suboptimal.
The cycle of extinction and incipient radiation in the Malawi
molluscs seems to have been the norm in the African rift
lakes since late Pliocene times regardless of their size and
depth. The only exception appears to be Lake Tanganyika,
that seems to have acted primarily as a refugium for part
of the older Pliocene malacofauna during Pleistocene mega-
droughts and not as a center of in-lake evolution. Apparently
in Lake Tanganyika the Pleistocene climatological destabi-
lization was insufficient to cause the freshwater ecosystem
to crash, but it nevertheless altered the limnological envi-
ronment so drastically that spectacular divergence processes
started, e.g., in plathythelphusid crabs and in one thallasoid
molluscan taxon,Lavigeria.

The terminal Pliocene–early Pleistocene aridity crises had
continent-wide impact on the African malacofauna and this
geological abrupt event did initiate major extinctions as well
as radiations. Therefore, we propose that the beginning of the
Pleistocene is used as a reference point in calibrating molec-
ular clocks for African freshwater mollusc phylogeny instead
of estimates of the age suggested for the earliest formation of
a lake in any given rift basin. This proposal is consistent with
recent molecular clock divergency estimates for several Tan-
ganyikan non-molluscan groups (see higher), though some
of these estimates place this event around the very onset of
the Pleistocene or Gelasian Stage, i.e., between ca. 3–2 Ma.
Here a slightly younger age of ca. 1.8–1.6 Ma, i.e., late in
the early Pleistocene at the beginning of the Calabrian Stage,
is proposed, since this coincides with a time of major mol-
luscan extinctions and extreme aridity in East Africa (Trauth
et al., 2005, 2007, 2010). A late in the early Pleistocene or
even a Middle to Late Pleistocene date is also consistent
with molecular clock divergence time estimates of modern
Lake Malawi molluscs (Genner et al., 2007b; Schultheiß et
al, 2009, 2011), modern Lake MalawiBathyclarias, Clari-
idae (Agǹese and Teugels, 2001), Mbuna and non-Mbuna
cichlids (Won et al., 2005, 2006) and of cichlids in paleo-
lake Makgadikgadi and in modern L. Victoria (Genner et al,
2007a) .
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