105,552 research outputs found
The Contribution of Blood Serum Biomarkers to the Prediction of Cognitive Decline by fMRI and Apolipoprotein-E in Healthy Older Adults
Biomarkers are a promising approach to the prediction and early intervention of Alzheimer\u27s disease. We demonstrated that cortical functional MRI (fMRI) activation during a semantic memory task and apolipoprotein-E ?4 allele inheritance (APOE?4) effectively predicted cognitive decline after 18-months in healthy, asymptomatic elders. Hippocampal volume added modest prediction, while AD family history and demographics were ineffective. Previous studies have linked plasma homocysteine (tHcy), vitamin B12 and creatinine values to cognitive funcitoning, cortical atrophy, hippocampal atrophy and neuropathology, and vascular integrity. Here we incorporated total plasma homocysteine (tHcy), B12 creatinine values into our previous predictive models. Of 78 healthy elders, 27 (34.6%) exhibited significant cognitive decline after 18-months. tHcy, but not B12 or creatinine, was marginally positively correlated with cortical semantic memory fMRI activation, particularly in stable participants. Logistic regression showed that tHcy, when added to APOE?4 and cortical fMRI, was a significant predictor of outcome and strengthed the already significant model (p = .007; C = .80 and R2 = .37). However, control for B12 and creatinine covariates diminished tHcy as a predictor (p = .084), though the model was still stronger than without this factor (C = .78 and R = 31). tHcy did not significantly interact with APOE?4, as has previously been reported. Neither B12 nor creatinine was similarly effective as a predictor. These results suggest that commonly investigated blood serum biomarkers are at best weakly associated with predicting age- and dementia-related cognitive decline in healthy, asymptomatic elders. fMRI and APOE?4 presently provided the best predictive model
Postnatal maturation of the glomerular filtration rate in conventional growing piglets as potential juvenile animal model for preclinical pharmaceutical research
Adequate animal models are required to study the preclinical pharmacokinetics (PK), pharmacodynamics (PD) and safety of drugs in the pediatric subpopulation. Over the years, pigs were presented as a potential animal model, since they display a high degree of anatomical and physiological similarities with humans. To assess the suitability of piglets as a preclinical animal model for children, the ontogeny and maturation processes of several organ systems have to be unraveled and compared between both species. The kidneys play a pivotal role in the PK and PD of various drugs, therefore, the glomerular filtration rate (GFR) measured as clearance of endogenous creatinine (Jaffe and enzymatic assay) and exo-iohexol was determined in conventional piglets aging 8 days (n = 16), 4 weeks (n = 8) and 7 weeks (n = 16). The GFR data were normalized to bodyweight (BW), body surface area (BSA) and kidney weight (KW). Normalization to BSA and KW showed an increase in GFR from 46.57 to 100.92 mL/min/m2 and 0.49 to 1.51 mL/min/g KW from 8 days to 7 weeks of age, respectively. Normalization to BW showed a less pronounced increase from 3.55 to 4.31 mL/min/kg. The postnatal development of the GFR was comparable with humans, rendering the piglet a convenient juvenile animal model for studying the PK, PD and safety of drugs in the pediatric subpopulation. Moreover, to facilitate the assessment of the GFR in growing piglets in subsequent studies, a formula was elaborated to estimate the GFR based on plasma creatinine and BW, namely eGFR =1.879 × BW^1.092/Pcr^0.600
The Contribution of Blood Serum Biomarkers to the Prediction of Cognitive Decline by fMRI and Apolipoprotein-E in Healthy Older Adults
Biomarkers are a promising approach to the prediction and early intervention of Alzheimer\u27s disease. We demonstrated that cortical functional MRI (fMRI) activation during a semantic memory task and apolipoprotein-E ?4 allele inheritance (APOE?4) effectively predicted cognitive decline after 18-months in healthy, asymptomatic elders. Hippocampal volume added modest prediction, while AD family history and demographics were ineffective. Previous studies have linked plasma homocysteine (tHcy), vitamin B12 and creatinine values to cognitive funcitoning, cortical atrophy, hippocampal atrophy and neuropathology, and vascular integrity. Here we incorporated total plasma homocysteine (tHcy), B12 creatinine values into our previous predictive models. Of 78 healthy elders, 27 (34.6%) exhibited significant cognitive decline after 18-months. tHcy, but not B12 or creatinine, was marginally positively correlated with cortical semantic memory fMRI activation, particularly in stable participants. Logistic regression showed that tHcy, when added to APOE?4 and cortical fMRI, was a significant predictor of outcome and strengthed the already significant model (p = .007; C = .80 and R2 = .37). However, control for B12 and creatinine covariates diminished tHcy as a predictor (p = .084), though the model was still stronger than without this factor (C = .78 and R = 31). tHcy did not significantly interact with APOE?4, as has previously been reported. Neither B12 nor creatinine was similarly effective as a predictor. These results suggest that commonly investigated blood serum biomarkers are at best weakly associated with predicting age- and dementia-related cognitive decline in healthy, asymptomatic elders. fMRI and APOE?4 presently provided the best predictive model
Estimation of reference intervals from small samples: an example using canine plasma creatinine
Background: According to international recommendations, reference intervals should be determined from at least 120 reference individuals, which often are impossible to achieve in veterinary clinical pathology, especially
for wild animals. When only a small number of reference subjects is available, the possible bias cannot be known and the normality of the distribution cannot be evaluated. A comparison of reference intervals estimated by different methods could be helpful.
Objective: The purpose of this study was to compare reference limits determined from a large set of canine plasma creatinine reference values, and large subsets of this data, with estimates obtained from small samples selected randomly.
Methods: Twenty sets each of 120 and 27 samples were randomly selected from a set of 1439 plasma creatinine results obtained from healthy dogs in another study. Reference intervals for the whole sample and for the large
samples were determined by a nonparametric method. The estimated reference limits for the small samples were minimum and maximum, mean +/-2 SD of native and Box–Cox-transformed values, 2.5th and 97.5th percentiles by a robust method on native and Box–Cox-transformed values,
and estimates from diagrams of cumulative distribution functions.
Results: The whole sample had a heavily skewed distribution, which approached Gaussian after Box–Cox transformation. The reference limits estimated from small samples were highly variable. The closest estimates to
the 1439-result reference interval for 27-result subsamples were obtained by both parametric and robust methods after Box–Cox transformation but were grossly erroneous in some cases.
Conclusion: For small samples, it is recommended that all values be reported graphically in a dot plot or histogram and that estimates of the reference limits be compared using different methods
The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing-receptor (CaSR) mutation:relevance to autosomal dominant hypocalcemia type 1 (ADH1)
Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum parathyroid hormone (PTH) concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalise the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells and the effect of NPS 2143 on their intracellular calcium responses determined by flow cytometry. NPS 2143 was also administered as a single intraperitoneal bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1, and improve the hypocalcemia associated with this disorder
Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial.
Trial designThis analysis characterizes the degree of early organ involvement in a cohort of oligo-symptomatic untreated young patients with Fabry disease enrolled in an ongoing randomized, open-label, parallel-group, phase 3B clinical trial.MethodsMales aged 5-18 years with complete α-galactosidase A deficiency, without symptoms of major organ damage, were enrolled in a phase 3B trial evaluating two doses of agalsidase beta. Baseline disease characteristics of 31 eligible patients (median age 12 years) were studied, including cellular globotriaosylceramide (GL-3) accumulation in skin (n = 31) and kidney biopsy (n = 6; median age 15 years; range 13-17 years), renal function, and glycolipid levels (plasma, urine).ResultsPlasma and urinary GL-3 levels were abnormal in 25 of 30 and 31 of 31 patients, respectively. Plasma lyso-GL-3 was elevated in all patients. GL-3 accumulation was documented in superficial skin capillary endothelial cells (23/31 patients) and deep vessel endothelial cells (23/29 patients). The mean glomerular filtration rate (GFR), measured by plasma disappearance of iohexol, was 118.1 mL/min/1.73 m(2) (range 90.4-161.0 mL/min/1.73 m(2)) and the median urinary albumin/creatinine ratio was 10 mg/g (range 4.0-27.0 mg/g). On electron microscopy, renal biopsy revealed GL-3 accumulation in all glomerular cell types (podocytes and parietal, endothelial, and mesangial cells), as well as in peritubular capillary and non-capillary endothelial, interstitial, vascular smooth muscle, and distal tubules/collecting duct cells. Lesions indicative of early Fabry arteriopathy and segmental effacement of podocyte foot processes were found in all 6 patients.ConclusionsThese data reveal that in this small cohort of children with Fabry disease, histological evidence of GL-3 accumulation, and cellular and vascular injury are present in renal tissues at very early stages of the disease, and are noted before onset of microalbuminuria and development of clinically significant renal events (e.g. reduced GFR). These data give additional support to the consideration of early initiation of enzyme replacement therapy, potentially improving long-term outcome.Trial registrationClinicalTrials.gov NCT00701415
Chronic Kidney Disease in Cats and the Risk of Total Hypercalcemia
BACKGROUND: Chronic kidney disease (CKD) is a common comorbidity in cats with hypercalcemia, but whether CKD is a risk factor for hypercalcemia is unclear. Hypercalcemia often is diagnosed based on total calcium concentration (tCa), which tends to underestimate the ionized calcium concentration (iCa) in cats. OBJECTIVES: Assessment of the performance of tCa for the diagnosis of ionized hypercalcemia, and exploration of factors influencing the relationship between iCa and tCa. Determination of risk factors for incident total hypercalcemia (ie, the development of hypercalcemia based on tCa during follow‐up). ANIMALS: Records of a cross‐section (n = 477) and observational cohort (n = 367) of client‐owned cats with and without azotemic CKD from first opinion practice. METHODS: Retrospective cross‐sectional and retrospective cohort study. The diagnostic accuracy of tCa as an index test for ionized hypercalcemia was evaluated, and risk factors for underestimation were explored by binary logistic and linear regression in a cross‐section of cats with and without azotemic CKD. Chronic kidney disease and clinicopathological variables were assessed as predictors of incident total hypercalcemia by both time‐invariant and time‐dependent Cox regression in a cohort of cats. RESULTS: Specificity of tCa for identification of ionized hypercalcemia was high (100%), but sensitivity was low. Underestimation was associated with lower venous bicarbonate concentrations. Cats with CKD had increased risk for incident total hypercalcemia (hazard ratio, 4.29; 95% confidence interval, 1.96–9.37; P < .001). Higher tCa predicted incident total hypercalcemia in both azotemic and nonazotemic cats (P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE: Chronic kidney disease is a risk factor for incident total hypercalcemia, and most cats with increased tCa had concurrent ionized hypercalcemia. Higher baseline tCa predicts incident total hypercalcemia. Prospective studies assessing changes in iCa are warranted
Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration
Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies
Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India.
BackgroundIngested inorganic arsenic (InAs) is methylated to monomethylated (MMA) and dimethylated metabolites (DMA). Methylation may have an important role in arsenic toxicity, because the monomethylated trivalent metabolite [MMA(III)] is highly toxic.ObjectivesWe assessed the relationship of creatinine and nutrition--using dietary intake and blood concentrations of micronutrients--with arsenic metabolism, as reflected in the proportions of InAS, MMA, and DMA in urine, in the first study that incorporated both dietary and micronutrient data.MethodsWe studied methylation patterns and nutritional factors in 405 persons who were selected from a cross-sectional survey of 7,638 people in an arsenic-exposed population in West Bengal, India. We assessed associations of urine creatinine and nutritional factors (19 dietary intake variables and 16 blood micronutrients) with arsenic metabolites in urine.ResultsUrinary creatinine had the strongest relationship with overall arsenic methylation to DMA. Those with the highest urinary creatinine concentrations had 7.2% more arsenic as DMA compared with those with low creatinine (p < 0.001). Animal fat intake had the strongest relationship with MMA% (highest tertile animal fat intake had 2.3% more arsenic as MMA, p < 0.001). Low serum selenium and low folate were also associated with increased MMA%.ConclusionsUrine creatinine concentration was the strongest biological marker of arsenic methylation efficiency, and therefore should not be used to adjust for urine concentration in arsenic studies. The new finding that animal fat intake has a positive relationship with MMA% warrants further assessment in other studies. Increased MMA% was also associated, to a lesser extent, with low serum selenium and folate
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
- …
