14,816 research outputs found
Nanostructured semiconductor materials for dye-sensitized solar cells
Since O'Regan and Grätzel's first report in 1991, dye-sensitized solar cells (DSSCs) appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%), the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon. © 2017 Carmen Cavallo et al
Recommended from our members
Research advances towards large-scale solar hydrogen production from water
Recommended from our members
Photoelectrochemical ion concentration polarization : a microfluidic ion filtration system using light-driven electrochemical reactions
We report an ion separation or filtration method used in microchannel called photoelectrochemical ion concentration polarization (pICP). As a variant of faradaic ion concentration polarization (fICP), pICP utilizes TiO₂ photoelectrochemistry to form an ion depletion zone (IDZ) with light. A microfluidic device with TiO₂ photoanode and Pt cathode generated IDZ near the cathode by generating a corresponding electrochemical reaction. Local electric field near the cathode was amplified with TiO₂ irradiation. Furthermore, on-chip solution conductivity measurement confirmed decrease in ion concentration as a consequence of pICP ion filtration.Chemistr
Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution
The development of low cost, scalable, renewable energy technologies is one of today's most pressing scientific challenges. We report on progress towards the development of a photoelectrochemical water-splitting system that will use sunlight and water as the inputs to produce renewable hydrogen with oxygen as a by-product. This system is based on the design principle of incorporating two separate, photosensitive inorganic semiconductor/liquid junctions to collectively generate the 1.7-1.9 V at open circuit needed to support both the oxidation of H_2O (or OH^-) and the reduction of H^+ (or H_2O). Si microwire arrays are a promising photocathode material because the high aspect-ratio electrode architecture allows for the use of low cost, earth-abundant materials without sacrificing energy-conversion efficiency, due to the orthogonalization of light absorption and charge-carrier collection. Additionally, the high surfacearea design of the rod-based semiconductor array inherently lowers the flux of charge carriers over the rod array surface relative to the projected geometric surface of the photoelectrode, thus lowering the photocurrent density at the solid/liquid junction and thereby relaxing the demands on the activity (and cost) of any electrocatalysts. Arrays of Si microwires grown using the Vapor Liquid Solid (VLS) mechanism have been shown to have desirable electronic light absorption properties. We have demonstrated that these arrays can be coated with earth-abundant metallic catalysts and used for photoelectrochemical production of hydrogen. This development is a step towards the demonstration of a complete artificial photosynthetic system, composed of only inexpensive, earth-abundant materials, that is simultaneously efficient, durable, and scalable
Solid solutions of rare earth cations in mesoporous anatase beads and their performances in dye-sensitized solar cells
Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1-0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J-V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. © 2015, Nature Publishing Group. All rights reserved
Growth, Characterization, and Electrochemical Properties of Doped n-Type KTaO_3 Photoanodes
The effects of compositionally induced changes on the semiconducting properties, optical response, chemical stability, and overall performance of KTaO_3 photoanodes in photoelectrochemical (PEC) cells have been investigated. Single crystals of n-type Ca- and Ba-doped KTaO_3 with carrier concentrations ranging from 0.45 to 11.5×10^(19) cm^(−3) were grown and characterized as photoanodes in basic aqueous electrolyte PEC cells. The PEC properties of the crystals, including the photocurrent, photovoltage, and flatband potential in contact with 8.5 M NaOH(aq) were relatively independent of whether Ca or Ba was used to produce the semiconducting form of KTaO_3. All of the Ca- or Ba-doped KTaO_3 single-crystal photoanodes were chemically stable in the electrolyte and, based on the open-circuit potential and the band-edge positions, were capable of unassisted photochemical H_2 and O_2 evolution from H_2O. The minority-carrier diffusion lengths values were small and comparable to the depletion region width. Photoanodic currents were only observed for photoanode illumination with light above the bandgap (i.e., λ<340 nm). The maximum external quantum yield occurred at λ=255 nm (4.85 eV), and the depletion width plus the minority-carrier diffusion length ranged from 20 to 65 nm for the various KTaO_3-based photoanode materials
- …
