99,538 research outputs found

    Cloning, Expression, Sequence Analysis and Homology Modeling of the Prolyl Endoprotease from Eurygaster integriceps Puton

    Get PDF
    Eurygaster integriceps Puton, commonly known as sunn pest, is a major pest of wheat in Northern Africa, the Middle East and Eastern Europe. This insect injects a prolyl endoprotease into the wheat, destroying the gluten. The purpose of this study was to clone the full length cDNA of the sunn pest prolyl endoprotease (spPEP) for expression in E. coli and to compare the amino acid sequence of the enzyme to other known PEPs in both phylogeny and potential tertiary structure. Sequence analysis shows that the 5ꞌ UTR contains several putative transcription factor binding sites for transcription factors known to be expressed in Drosophila that might be useful targets for inhibition of the enzyme. The spPEP was first identified as a prolyl endoprotease by Darkoh et al., 2010. The enzyme is a unique serine protease of the S9A family by way of its substrate recognition of the gluten proteins, which are greater than 30 kD in size. At 51% maximum identity to known PEPs, homology modeling using SWISS-MODEL, the porcine brain PEP (PDB: 2XWD) was selected in the database of known PEP structures, resulting in a predicted tertiary structure 99% identical to the porcine brain PEP structure. A Km for the recombinant spPEP was determined to be 210 ± 53 µM for the zGly-Pro-pNA substrate in 0.025 M ethanolamine, pH 8.5, containing 0.1 M NaCl at 37 °C with a turnover rate of 172 ± 47 µM Gly-Pro-pNA/s/µM of enzyme

    Experiences with designing and managing organic rotation trials

    Get PDF
    This report was presented at the UK Organic Research 2002 Conference. Practical problems encountered in two long-term organic rotation trials at Aberdeen and Elgin are discussed. Compromises have had to be made in designing and managing the trials: how to include livestock and measure output, plot size, marking and fencing, discards and paths, replication, rotation length, randomisation of crop sequence, site uniformity, manoeuvrability of machines, soil compaction and exposure to pest damage

    Effects of pH on Double Stranded RNA Stability in European Corn Borer Nucleases

    Get PDF
    RNA interference (RNAI) is an immune response that can be exploited to make greener pesticides. It works by inciting suppression of a specific target gene using fed or injected dsRNA. Targeting a specific gene sequence also means RNAi can be used to target a specific organism. However, some insects, such as lepidopterans, have nucleases, called dsRNases, in their gut and hemolymph that sever dsRNA and lower RNAi efficiency (1). Ostrinia nubilalis, the European corn borer, (ECB), is a prime example of a lepidopteran pest which decimates corn supplies across the Midwest and does not respond to RNAi. Comparison of dsRNA stability in dsRNase genes in ECB and western corn rootworm (WCR), a coleopteran pest that has very high RNAi efficiency, indicates that dsRNA is rapidly degraded in ECB tissues, but not WCR tissues, despite similar expression of dsRNase genes in both species. These findings suggest that another variable, such as pH may be influencing dsRNA stability in insects (2)

    Genome of Drosophila suzukii, the spotted wing drosophila.

    Get PDF
    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access

    A CRISPR-Cas9 sex-ratio distortion system for genetic control.

    Get PDF
    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome

    A model-based approach to assess the effectiveness of pest biocontrol by natural enemies

    Full text link
    Main goal: The aim of this note is to propose a modeling approach for assessing the effectiveness of pest biocontrol by natural enemies in diversified agricultural landscapes including several pesticide-based management strategies. Our approach combines a stochastic landscape model with a spatially-explicit model of population dynamics. It enables us to analyze the effect of the landscape composition (proportion of semi-natural habitat, non-treated crops, slightly treated crops and conventionally treated crops) on the effectiveness of pest biocontrol. Effectiveness is measured through environmental and agronomical descriptors, measuring respectively the impact of the pesticides on the environment and the average agronomic productivity of the whole landscape taking into account losses caused by pests. Conclusions: The effectiveness of the pesticide, the intensity of the treatment and the pest intrinsic growth rate are found to be the main drivers of landscape productivity. The loss in productivity due to a reduced use of pesticide can be partly compensated by biocontrol. However, the model suggests that it is not possible to maintain a constant level of productivity while reducing the use of pesticides, even with highly efficient natural enemies. Fragmentation of the semi-natural habitats and increased crop rotation tend to slightly enhance the effectiveness of biocontrol but have a marginal effect compared to the predation rate by natural enemies. This note was written in the framework of the ANR project PEERLESS "Predictive Ecological Engineering for Landscape Ecosystem Services and Sustainability"(ANR-12-AGRO-0006)

    Biological control of the chestnut gall wasp with \emph{T. sinensis}: a mathematical model

    Full text link
    The Asian chestnut gall wasp \emph{Dryocosmus kuriphilus}, native of China, has become a pest when it appeared in Japan, Korea, and the United States. In Europe it was first found in Italy, in 2002. In 1982 the host-specific parasitoid \emph{Torymus sinensis} was introduced in Japan, in an attempt to achieve a biological control of the pest. After an apparent initial success, the two species seem to have locked in predator-prey cycles of decadal length. We have developed a spatially explicit mathematical model that describes the seasonal time evolution of the adult insect populations, and the competition for finding egg deposition sites. In a spatially homogeneous situation the model reduces to an iterated map for the egg density of the two species. While the map would suggest, for realistic parameters, that both species should become locally extinct (somewhat corroborating the hypothesis of biological control), the full model, for the same parameters, shows that the introduction of \emph{T. sinensis} sparks a traveling wave of the parasitoid population that destroys the pest on its passage. Depending on the value of the diffusion coefficients of the two species, the pest can later be able to re-colonize the empty area left behind the wave. When this occurs the two populations do not seem to attain a state of spatial homogeneity, but produce an ever-changing pattern of traveling waves

    Differences in microbiota between two multilocus lineages of the sugarcane Aphid (Melanaphis sacchari) in the continental United States

    Full text link
    The sugarcane aphid (SCA), Melanaphis Sacchari (Zehntner) (Hemiptera: Aphididae), has been considered an invasive pest of sugarcane in the continental United States since 1977. Then, in 2013, SCA abruptly became a serious pest of U.S. sorghum and is now a sorghum pest in 22 states across the continental United States. Changes in insect-associated microbial community composition are known to influence host-plant range in aphids. In this study, we assessed whether changes in microbiota composition may explain the SCA outbreak in U.S. sorghum. We characterized the SCA bacterial microbiota on sugarcane and grain sorghum in four U.S. states, using a metabarcoding approach. In addition, we used taxon-specific polymerase chain reaction (PCR) primers to screen for bacteria commonly reported in aphid species. As anticipated, all SCA harbored the primary aphid endosymbiont Buchnera aphidicola, an obligate mutualistic bacterial symbiont. Interestingly, none of the secondary symbionts, facultative bacteria typically associated with aphids (e.g., Arsenophonus, Hamiltonella, Regiella) were present in either the metabarcoding data or PCR screens (with the exception of Rickettsiella and Serratia, which were detected by metabarcoding at low abundances <1%). However, our metabarcoding detected bacteria not previously identified in aphids (Arcobacter, Bifidobacterium, Citrobacter). Lastly, we found microbial host-associated differentiation in aphids that seems to correspond to genetically distinct aphid lineages that prefer to feed on grain sorghum (MLL-F) versus sugarcane (MLL-D)
    corecore