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Abstract: Eurygaster integriceps Puton, commonly known as sunn pest, is a major pest of 
wheat in Northern Africa, the Middle East and Eastern Europe. This insect injects a prolyl 
endoprotease into the wheat, destroying the gluten. The purpose of this study was to clone 
the full length cDNA of the sunn pest prolyl endoprotease (spPEP) for expression in E. coli 
and to compare the amino acid sequence of the enzyme to other known PEPs in both phylogeny 
and potential tertiary structure. Sequence analysis shows that the 5� UTR contains several 
putative transcription factor binding sites for transcription factors known to be expressed in 
Drosophila that might be useful targets for inhibition of the enzyme. The spPEP was first 
identified as a prolyl endoprotease by Darkoh et al., 2010. The enzyme is a unique serine 
protease of the S9A family by way of its substrate recognition of the gluten proteins, which 
are greater than 30 kD in size. At 51% maximum identity to known PEPs, homology 
modeling using SWISS-MODEL, the porcine brain PEP (PDB: 2XWD) was selected in the 
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database of known PEP structures, resulting in a predicted tertiary structure 99% identical to 
the porcine brain PEP structure. A Km for the recombinant spPEP was determined to be  
210 ± 53 μM for the zGly-Pro-pNA substrate in 0.025 M ethanolamine, pH 8.5, containing 
0.1 M NaCl at 37 °C with a turnover rate of 172 ± 47 μM Gly-Pro-pNA/s/μM of enzyme. 

Keywords: Hemiptera; Scutelleridae; prolyl endoprotease; gluten; serine protease; cDNA; 
homology modeling; insect; wheat 

 

1. Introduction 

Eurygaster integriceps Puton, commonly known as sunn pest, belongs to the order Hemiptera and 
family Scutelleridae. This true bug is considered a major pest of wheat crops in Northern Africa, the Middle 
East and Eastern Europe. In addition to direct reduction in wheat crops during the life cycle of the bug, the 
sunn pest also injects saliva containing hydrolytic and proteolytic enzymes into the grains during feeding. 
The mechanism of injection is most likely similar to that shown for a closely related bug, brown marmorated 
stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), which secretes its proteases in the watery saliva 
through a stylet in the beak [1]. The salivary glutenase, characterized as a prolyl endoprotease (spPEP) by 
Darkoh et al. [2], assists in penetration and pre-oral digestion of the grain contents by degrading the high 
molecular weight gluten proteins of the wheat. The spPEP remains in the grain after the bugs have 
finished feeding and continue to cause extensive damage to the gluten proteins when the grain is milled 
and used as dough. The degradation of the gluten causes bread made from such dough to be weak, sticky 
and to have reduced volume and an unusually heavy texture [3,4]. The dough does not rise in the oven 
and often burns. As little as 2%–5% sunn pest-contaminated grains render the whole lot unacceptable 
for baking purposes [5,6]. Darkoh et al. [2] showed the spPEP to be a serine protease through inhibition  
by phenylmethylsulfonyl fluoride (PMSF) and, specifically, a prolyl endoprotease, which cleaved 
peptide bonds at the carboxyl terminal side of the GlyPro-pNA substrate. The enzyme was partially 
purified by Darkoh et al. [2], exhibiting a Km of 65.3 ± 1.8 μM for the GlyPro-pNA substrate at pH 8, 
22 °C, with maximum activity between pH 8–10 and 25 °C–35 °C in 25 mM ethanolamine buffer. The 
turnover number could not be determined by Darkoh, because the enzyme was not purified  
to homogeneity. 

A recombinant form of the enzyme responsible for gluten degradation is required to determine 
environmentally safe inhibitors to reduce crop losses. The spPEP is unique, because its natural substrates 
are large gluten proteins; Perez et al. [7] showed the enzyme to preferentially hydrolyze high molecular 
weight glutenins that are as large as 140 kD. Every [8] and Darkoh [2] showed a general specificity  
for whole gluten containing both the high and low molecular weight glutenins and gliadins, as well as 
specificity for the dipeptide GPpNA. 

The primary focus of this study was to clone the full transcript of the spPEP and produce an active 
recombinant prolyl endoprotease from the sunn pest. Prior to submission of the nucleic acid sequence 
obtained from this study, the only nucleotide sequence reported for true bugs in the National Center for 
Biotechnology Information (NCBI) was amylase for Eurygaster integriceps; therefore, degenerate primers 
were designed based on known insect PEP sequences to probe cDNA from each of the life stages of 
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Eurygaster integriceps. The cDNA from three different life stages of the sunn pest was constructed with 
only the adult sunn pest expressing the mRNA for the spPEP. The 5� and 3� untranslated regions of the 
transcript were analyzed for possible transcription factor binding sites and secondary structure motifs that 
might be used for translational control for future studies to determine mechanisms of inhibition of the 
enzyme through either a biological pesticide or the use of transgenic wheat. Inhibitors must be specific to 
the sunn pest due to human consumption of the wheat; therefore, knowing the complete sequence of  
the spPEP transcript and comparing it to others, including that of mammals, is important for specifically 
targeting the spPEP. A phylogenetic comparison of the spPEP amino acid sequences to other known PEPs 
places the spPEP on a branch with Daphnia pulex separate from other known insects and several nodes 
distant from mammalian PEPs. Structure analysis is also important for inhibitor design. Despite being at 
most only 56% identical to all of the known PEP sequences, homology modeling of the resulting amino 
acid sequence shows the spPEP to be highly homologous in its tertiary structure to that of the porcine brain 
PEP, which recognizes only short peptides less than 30 amino acids long. 

2. Experimental Section 

2.1. Harvesting Sunn Pest of Various Life Stages 

Sunn pest nymphs and actively feeding adults were harvested from the experimental wheat fields of 
the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, during the months 
of April and June, 2010, respectively. The overwintering adults were collected from a small forest near the 
wheat fields of the ICARDA experimental station in fall 2010. Approximately two hundred insects of each 
life stage were collected. In order to increase the mRNA levels that encode for the insect salivary enzymes, 
especially PEP, actively feeding insects were starved for 24 h and then allowed to feed on wheat grains 
in plastic containers, with aeration and light provided.  

2.2. Synthesis of cDNA 

2.2.1. Total RNA Isolation 

The actively feeding insects were powdered in liquid nitrogen using a mortar and pestle. Total RNA 
was isolated from ten to fifteen insects of each life stage using the SV total RNA isolation system from 
Promega Corp. (Madison, WI, USA) according to the manufacturer’s instructions. 

2.2.2. mRNA Enrichment 

In order to ensure contaminating bacterial mRNA was not amplified in downstream PCR reactions, 
eukaryotic mRNA was isolated from the total RNA using the PolyATract mRNA isolation system 
(Promega Corp., Madison, WI, USA). 

2.2.3. First Strand cDNA Synthesis 

The purified mRNA from the three different life stages was converted to first strand cDNA using the 
SMARTer RACE cDNA synthesis kit (Clonetech Inc., Mountain View, CA, USA). Primers, buffers and 
all enzymes were included in the kit. For each of the life stages, two reaction buffer mixes, one for  
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5� RACE-ready cDNA and one for 3� RACE-ready cDNA, were prepared according to the manufacturer’s 
instructions using between 3.5 and 7 ng of mRNA for the 5� RACE and 3� RACE ready cDNA. 

2.3. Amplification of spPEP Transcript 

2.3.1. Design of Degenerate Primers 

Degenerate primers shown in Table 1 were designed using COnsensus-DEgenerate Hybrid 
Oligonucleotide Primer (CODEHOP) [9] with the consensus sequence obtained from the ClustalW2 
alignment [10] of the following insect PEP amino acid sequences: Drosophila melanogaster 
(NP_610129), Culex quinquefasciatus (XP_001843671), Aedes aegypti (XP_001659779), 
 Nasonia vitripennis (XP_001603578) and Apis mellifera (XP_395364). 

Table 1. Gene-specific and degenerate primers designed from the known sequence 
information and the deduced sequence information during the time course of the project. 
Primer 3 software [11], available online, was used to design the following gene-specific 
primers, and the CODEHOP program [9], available online, was used for designing the 
degenerate primers. All of the primers were purchased from Sigma-Aldrich. Each primer 
had a region of conserved degeneracy at the 3� end (lower case) and a non-degenerate  
5� clamp (upper case). 

Primer Name Sequence 5��3� 
P1gen CCCCTACAGGTGGCTGgargayccnga  
P24gen TGAACTTGTGGAACCTCAGCatrtccatnac 
P1 CCCCTACAGGTGGCTGGA 
265 TGGTCGTCATCGATTTTGAA 
415 TTCACAGTTTGGTGGATGGA 
707 CCTGGAACAAAACGGAAAAA 
PEP Start ATGAAAAAGTTCCAATACCCTGAAGCTCGG 
1747 CGCTTCTGCAAACATAAGGGGAGGA 
312 ACGTCACCCAATTTTCTTCG 
434 TCCATCCACCAAACTGTGAA 
980 TCGCCAGACAACTCTTATTG 
Lic PEP Start TATTTTCAATCCTACGTAATGAAAAAGTTCCAATACCCTG 
Lic PEP Stop CCCTCAATATTATACGGGTCA AATGATCTGACAAAC 

2.3.2. Amplification from Degenerate Primers 

Polymerase chain reaction (PCR) was performed with KlenTaq LA polymerase (DNA Polymerase 
Technology, Inc. St. Louis, MO, USA) as illustrated in Figure 1 using the 5� and 3� RACE-ready cDNA, 
described in Section 2.2.3, as the template. Degenerate primer sequences P1gen and P24gen (Table 1) were 
used. PCR conditions consisted of an initial denaturation at 95 °C for 4 min followed by 32 cycles of 95 °C 
for 45 s, 50 °C for 45 s and 72 °C for 3 min with a final extension at 72 °C for 5 min. 
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2.3.3. Amplification of the 5� and 3� Ends 

The 5� RACE ready cDNA contained the SMARTer IIA oligo on their 5� end, making the 5� RACE 
cDNA complimentary to the universal primers (UPM) provided in the SMARTer RACE kit. Based on 
the sequence information of the P1gen-P24gen amplicon (1,105 bp), internal gene-specific primers 
(GSP) (Table 1) were designed to walk through the cDNA towards both the 5� and 3� ends as the sequence 
became known, as illustrated in Figure 1. The GSP Primer design in this case was performed using the 
Primer 3 software, available online [11]. The parameters for the PCR were an initial denaturation at 95 °C 
for 4 min; 30 cycles consisting of a 1-min melt at 95 °C, a 1-min annealing at the Tm for the specific primer 
pair and a 1-min/kb extension at 68 °C; and finally, a 5-min final extension at 68 °C. 

Figure 1. PCR reactions performed to amplify the PEP cDNA. The known and deduced 
sequence regions are represented by solid lines. The unknown sequence regions are 
represented by dotted lines. The arrows represent the direction of amplification from the 
gene-specific primers that successfully amplified the unknown regions of the PEP gene. The 
universal primer mix (UPM) contained short and long universal primers that bound to their 
complementary adaptors that were placed on the 5� end during 5� RACE and on the 3� end for  
3� RACE first strand cDNA synthesis from mRNA. 

 

2.3.4. Confirmation of cDNA Clones 

The amplicons were gel purified using the Gel Purification system from Promega Corp. (Madison, WI, 
USA) and cloned into the pGEM-T Easy vector (Promega Corp., Madison, WI, USA.) using the pGEM-T 
Easy vector System II Protocol for ligation and transformation. Colonies were selected for EcoR1 digestion 
to confirm that the insert was present, and then, positive colonies were sent for sequencing (Amplicon 
Express Inc., Pullman, WA, USA). 
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2.3.5. Final Assembly of the PEP cDNA Sequence 

The raw sequences were vector trimmed to remove vector contamination using either NEB cutter 3.0 
or DNA Baser (DNA Baser Sequence Assembler v3.x (Heracle BioSoft S.R.L.). A final contig of all 
fragment sequences was obtained, which included the 5� untranslated region (5� UTR), the complete open 
reading frame (ORF) and the 3� untranslated region (3� UTR). The resultant contig was submitted to 
BLASTX [12] at the NCBI web-based portal to confirm that the sequence was indeed similar to other 
insect PEP sequences. 

2.4. Cloning of the Sunn Pest PEP Construct into the Expression Vector 

Primers with the start ATG (primer: PEPstart) and stop (primer: PEPstop) codons were used to 
amplify the ORF from the PEP cDNA, which was subsequently cloned into the pGEM-T EASY vector 
(Promega Corp., Madison, WI, USA), as described before. Following the confirmation of the amplified 
ORF as PEP, the gene was ligated into the pNYCOMPS-LIC-ccdB-FH10T+ (N term) vector, a bacterial 
expression vector purchased from Arizona State University (ASU) Biodesign Institute. The vector 
includes an inducible T7 promoter, an N terminal flag epitope and a 10X His tag. In addition, it has a 
Kanamycin resistance gene and allows for ligation-independent cloning (LIC) and IPTG induction. The 
complete PEP gene was amplified by PCR with the LIC-modified PEP Start (Lic PEP start) and PEP Stop 
(Lic PEP stop) primers (Table 1) using the PEP clone from Section 2.3.5 as the template; the amplicon 
was designated as LIC-PEP. The vector was linearized with SnaBI (NEB, Ipswich, MA, USA) and 
subsequently treated with T4 DNA polymerase in the presence of 10 mM dGTP according to the ASU 
protocol [13] for making LIC ends. Similarly, the amplified LIC-PEP DNA was also treated with T4 DNA 
polymerase (Promega Corp., Madison, WI, USA) in the presence of only dCTPs at the same concentration 
as the dGTP above. For each reaction, 2 μL of vector were combined with 4 μL of LIC-PEP. The 
components were allowed to anneal at room temperature for 60 min. Following incubation, 2 μL of 25 
mM EDTA was added to each reaction tube and incubated at room temperature for 5 min. Two microliters 
of each LIC reaction were transformed into the BL21(DE3)-competent E. coli cells (NEB, Ipswich, UK).  

2.5. Sequence Analysis 

The 5� UTR sequence was submitted to TFFSearch [14] to determine the consensus sequences present 
for transcription factor binding. The coding sequence, which started at base pair 330 of the complete cDNA 
and ended at 2,483 bp, was submitted to BLASTX at the NCBI portal using the eukaryote, insect, fungi, 
bacteria and Archaea databases. A ClustalW2 [10] alignment of the sunn pest PEP was performed with the 
top 25 hits obtained from the BLASTX (Figure S2), as well as with the PEP sequences from the six known 
insects used to generate the consensus primers used for cDNA synthesis, as well as four PEP sequences, 
whose structure has been determined, the porcine PEP sequence and three bacterial PEP sequences to 
determine the degree of identity and homology. Additionally, the sequence was scanned for putative signal 
sequences using SignalP 4.1 available as a web portal [15]. 

ClustalW2 was used to align the top 25 sequences obtained from the BLASTX. A phylogenetic tree 
was constructed using Phylogeny.fr [16] with the ClustalW2 alignment file as input. Homology modeling 
was performed using the web-based SWISS-MODEL [17,18], which searches known structures for the 
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best fit. USCF Chimera 1.8.1 [19] was then used for visualization. The Chimera 1.8.1 MatchMaker tool 
was used to plot the spPEP predicted tertiary structure aligned with the reference structure of the porcine 
brain PEP (2XDW.pdb). Using the Alignment assessment tool, structural differences between the spPEP 
sequence and the porcine sequence were identified. 

2.6. Expression and Purification of Recombinant PEP 

2.6.1. Expression 

Multiple colonies that contained the full-length PEP in the LIC vector were grown on a small scale 
to determine the highest expressing clones. Ten milliliters of culture in LB plus Kanamycin were grown 
to an OD600 of 0.4, at which time, IPTG was added to a final concentration of 0.4 mM. The cultures 
continued to grow overnight at 37 °C. The cells were harvested by centrifugation at 12,000 rpm for 10 
min. The cell pellets were resuspended in 500 μL of disruption buffer as described by Vora et al. [20] to 
obtain the soluble fraction of protein with the following modifications: 0.1 M sodium phosphate, pH 7.5, 
was used in lieu of Tris, and DTT was omitted. These substitutions were made to keep the protease inactive 
throughout purification. The cells were lysed using 200 μg/mL lysozyme and incubated for  
30 min on ice with occasional stirring. DNAse and RNase (Sigma-Aldrich, St. Louis, MO, USA) were 
added to a final concentration of 5 μg/mL. A short pulse of sonication was performed to further disrupt 
the cells. The samples were centrifuged after lysis at maximum rpm in a microcentrifuge for 10 min to 
separate the soluble protein from the inclusion bodies possibly containing insoluble PEP. The pellet was 
resuspended in 500 μL of disruption buffer plus 7 M urea [20] to obtain the solubilized inclusion body 
proteins. A Bradford assay was performed on each of the soluble and inclusion body fractions. Laemmli 
sample buffer was added to the 50 μg of protein, heated to 95 °C for 3 min and loaded on to a 10% SDS 
PAGE gel, which was run at 100 V, until the dye front migrated just off the gel. The gel was stained with 
Coomassie Blue R250. 

After identification of the highest expressing clones, the culture was scaled up to 6 L in a New 
Brunswick BioFlo110 Fermenter. The culture was grown at 37 °C with 200 rpm agitation until an OD600 
of 0.6 was reached. IPTG was then added to a final concentration of 0.4 mM, at which time the culture 
temperature was shifted to 28 °C for overnight growth. The culture was centrifuged at 7,000× g for 30 min, 
after which the supernatant was discarded. The pellet was lysed using CellLytic Express (Sigma-Aldrich) 
resuspended in 0.1 M sodium phosphate, pH 7.5, according to the manufacturer’s instructions, to obtain 
the soluble fraction of expressed protein. No protease inhibitors were added to the buffer, due to unknown 
effects on the spPEP in downstream experiments. The remaining pellet representing the insoluble protein 
was resuspended in 7 M urea in disruption buffer according to Vora et al. [20]. 

2.6.2. Affinity Purification of PEP 

Both the soluble and the insoluble spPEP were purified in a single step using Ni affinity chromatography. 
The enzyme had to be eluted in a buffer that would inhibit the activity of the enzyme; otherwise, the 
enzyme proteolyzed itself and disappeared. As previously shown by Darkoh et al. [2], the enzyme is 
active at pH 6–10; therefore, the pH could not be adjusted to stop the enzyme activity. Active enzyme 
requires 0.1 M NaCl and 1 mM DTT; therefore, these components were omitted until the enzyme activity 
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was assessed. The soluble fraction was batch adsorbed to 10 mL of PerfectPro Ni-NTA agarose  
(5-Prime, Inc., Gaithersburg, MD, USA) equilibrated in 0.1 M sodium phosphate buffer, pH 7.5 (Buffer A). 
The column was washed with Buffer A until the A260 returned to zero. The protein was eluted using a 
shallow gradient of imidazole from 0 M to 0.5 M over a total volume of 500 mL. The insoluble protein 
was resuspended in disruption buffer containing 7 M urea and bound to 10 mL of Ni resin by batch 
adsorption. The column was washed using Buffer A containing 7 M urea. The insoluble protein was 
refolded on the column using a gradient of decreasing urea (7 M to 0 M over 100 mL at 2 mL/min). The 
enzyme was then eluted with a gradient of increasing imidazole from 0 mM imidazole to 0.5 M imidazole 
in 100 mL of 0.1 M sodium phosphate, pH 7.5. Samples exhibiting enzyme activity as evidenced of 
zGPpNA hydrolysis were pooled, concentrated and the imidazole removed using Centriprep filter 
cartridges with a 50 kD cut-off (Millipore, Billerica, MA, USA). 

2.7. Measurement of PEP Activity 

2.7.1. zGly-Pro-pNA Assay for PEP Activity 

Each of the protein lysates, from the soluble fraction and from the refolded insoluble fraction, as well 
as the purified enzyme, were assayed for PEP activity using zGly-Pro-pNA (benzyloxycarbonyl-Gly-
Pro-p-nitroanilide) (Bachem Americas, Inc., Torrance, CA, USA). The reaction buffer consisted of 0.025 
M ethanolamine, pH 8.5, with 0.3 mM zGly-Pro-pNA substrate. In a 96-well microtiter plate, 150 μL of 
reaction buffer were added to all wells. Enough enzyme in 0.1 M sodium phosphate, pH 7.5, was added 
to separate wells, so that 50 μL of enzyme could be added to each well containing substrate to start the 
reaction. Immediately after the addition of the enzyme, the plate was placed in a Benchmark Plus microtiter 
plate reader (Bio-Rad Laboratories, Hercules, CA, USA). The absorbance at 410 nm was measured in 
kinetic mode. The �410 for cleaved zGPpNA is 8,800 L·mol�1·cm�1 [2]. One unit of activity is defined as 
the amount of enzyme that produces a change in absorbance of 0.1 at 410 nm per minute [2]. The specific 
activity of the PEP in each fraction is reported as μM of product·min�1. 

2.7.2. Glutenase Activity 

The glutenase assay, developed by Every [8], was used to determine the glutenase activity of the PEP. 
In this assay, 200 μL of freshly prepared 5% w/v wheat gluten (obtained at local grocery store) in 0.1 M 
ethanolamine with the addition of 0.1 M NaCl and 1 mM DTT, pH 8.5, were incubated with 50 μL of PEP. 
Gluten, in buffer without enzyme, was used as a blank. Samples were incubated in a 37 °C water bath for  
2 h with vigorous shaking every 30 min. After incubation, 10% freshly prepared SDS was added to a final 
concentration of 2% and incubated further for 30 min with vigorous shaking every 5 min. The gel height 
was measured after centrifugation at 3,000× g for 10 min. A 1-mm change in height corresponded to one 
unit of enzyme [8]. 

2.7.3. Kinetic Assay 

Protein concentration was determined using the Bradford assay (Bio-Rad, Hercules, CA) in the case of 
the spPEP. To determine the Km and turnover number of the recombinant enzyme for the zGPpNA 
substrate, the substrate concentration was varied from 0 mM to 0.3 mM. The reaction buffer was the same 
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as described above in Section 2.7.1. Purified recombinant spPEP at a concentration of 0.65 μg/μL  
(8.125 μM) was added per well. The A410 was measured every 15 s for 20 min. The initial velocity was 
plotted as a function of substrate concentration using Excel. A double reciprocal plot (1/[S] vs. 1/v) was 
used to determine the Km and Vmax. The turnover number for the enzyme was determined by dividing the 
Vmax by the μM of PEP using a molecular weight of 80,000, as previously determined by Darkoh et al. [2]. 

2.7.4. Gluten Isolation and Digestion 

Gluten, purchased from the grocery store, was extracted according to van den Broeck et al. [21] using 
50% isopropanol in 0.1 M sodium phosphate plus 1 mM DTT, pH 7.5. The protein concentration was 
determined using the Modified Lowry Assay (Thermo Scientific, IL). The digestion with spPEP consisted 
of incubating 2 mg/mL of gluten fraction with 65 μg of spPEP in PBS plus 1 mM DTT in 300 μL at 37 °C 
over time up to 90 min. Samples were periodically mixed by vortexing followed by removal of 25 μL 
every 15 min for SDS PAGE analysis of the digestion. The reaction was stopped by putting each sample 
into 5 μL of 6× Laemmli sample buffer containing 6 M urea and heating to 95 °C for 3 min. Each sample 
was applied to a 4%–20% SDS PAGE mini-gel (Bio-Rad, Hercules, CA) for separation of the proteins. 
The gels were stained with SyproRuby (Bio-Rad, Hercules, CA) according to the manufacturer’s 
instructions and imaged using a Typhoon Trio Plus (GE-Lifesciences, Pittsburgh, PA, USA) with the 
excitation laser set at 532 nm and the emission laser set at 610 nm. 

3. Results and Discussion

3.1. Total RNA Isolation and mRNA Enrichment 

Total RNA was successfully obtained from all samples. Actively feeding adults resulted in the highest 
yield of mRNA at 1.88 ng/μL with an A260/A280 ratio of 2.1. mRNA from each of the life stages was used 
as a template to generate the RACE-ready cDNA. 

3.2. SMARTer RACE cDNA Synthesis 

The enriched mRNA for each life stage was converted to first strand cDNA resulting in 5� and 3�  
RACE-ready cDNA with concentrations ranging from 62 ng/μL to 77 ng/μL and purity (A260/A280) from 
1.6 for the nymphs, 1.8 for the over-wintering adults and 2.0 for the actively feeding adults (first year). 

3.3. Amplification Using Degenerate Primers 

PCR amplification of the actively feeding adult cDNA was the only cDNA that produced amplicons. 
Therefore, subsequent amplifications used only the cDNA from the actively feeding adults. A 1,105-base 
pair fragment returned a match for prolyl endopeptidase from different organisms, including the insects, 
whose sequences were used to generate the degenerate primers (Section 2.3.1). This 1,105-bp sequence 
was used to design the GSPs that were used in subsequent amplifications, as illustrated in Figure 1 and 
listed in Table 1. The primer names were designated according to the base pair position in the 1,105-bp 
PCR amplicon. 
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3.4. Rapid Amplification of cDNA Ends (RACE) 

As illustrated in Figure 1 for both the 5� direction and 3� direction, the gene specific primers, 265, 415 
and 707 (Table 1), were paired with the universal primer mix for 3� RACE (3� RACE-ready cDNA as the 
template). Gene-specific primers, 312, 434 and 980 (Table 1), were paired with the universal primer mix 
for 5� RACE (5� RACE-ready cDNA as template). No distinct band was observed in any of the 
amplification reactions; however, faint smearing was observed [22]. Aliquots of these reactions were used 
as templates for nested PCR.  

3.5. Sequence Analysis 

The obtained sequences were vector trimmed using DNA Baser and aligned with all resulting sequences 
to obtain the final transcript. The deduced sequence included the start methionine at 348 bp resulting in 
347 bp of the 5� untranslated region (the UTR is shown in the solid box in Figure S1), the stop codon at 
2,483 bp and a 3� UTR region followed by the poly-A tail of 29 adenine residues. No signal sequence 
was identified using the web-based software, SignalP 4.1 [15]. Combining the 5� contig and the resulting 
3� contig, the complete cDNA was found to be 2,822 bp in length, as shown in Figure S1. The open 
reading frame was deposited into GenBank and is listed as Accession Number EU934738.3. The 5� UTR 
consisted of several conserved transcription factor binding sites, as shown in Figure S2 and listed in 
Table S1. All of the transcription factors that bind to the sites identified [23–28] have been well studied in 
Drosophila and correspond to factors produced in the saliva glands consistent with the spPEP having 
regulated expression in the salivary glands of the sunn pest. 

The deduced amino acid sequence aligned with the insect PEP amino acid sequences used to create the 
degenerate primers, bacterial sequences for which the structure has been determined and that of Sus susex 
is shown in Figure 2. The first twenty hits from BLASTX [12] are shown in the Supplemental Data as  
Table S3. The first 19 hits were PEPs of closely-related insects with 85% coverage. The highest identity 
was found to be 56% to Bombus terrestris and Daphnia pulex. Nasonia vitripennis and Apis mellifera were 
both only 55% identical, and Camponotus floridanus and Harpegnathos saltator were 53% identical.
Further supporting the fact that the sequenced DNA is a prolyl endopeptidase, the spPEP sequence 
contained the conserved domain for serine proteases of type S9A with the conserved catalytic domain 
consisting of Ser-Asp-His aligning (boxed residues in Figure 2). A phylogenetic tree was constructed using 
the alignment and was performed using Phylogeny.fr [16] obtained from ClustalW2 with the top 25 hits 
from BLASTX in addition to the sequences of the insects used in the degenerate primer design (if they did 
not come up in the BLASTX result), as well as four species for which the three-dimensional structure has 
been determined, the three bacterial sequences (Sphingomonas capsulate, Elizabethkingia meningoseptica 
and Myxococcus xanthus) and the porcine PEP (Figure S3). The spPEP sequence separated into a node 
shared with Daphnia pulex with both the spPEP and the Daphnia PEP being separated by several nodes 
from the other insect PEPs and even further removed from the mammalian PEPs. The bacterial PEPs 
were at most 39% identical, as determined from BLASTX (Table S4).  
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3.6. Structure Analysis of spPEP Based on Amino Acid Sequence 

The amino acid sequence was submitted to homology modeling using SWISS-MODEL [17,18]. The 
modeling consisted of comparing the submitted sequence to the available structures in the PDB database. 
The structure for the porcine brain PEP (PDB: 2XDW) with an inhibitor peptide bound was selected to be 
the most conserved sequence and structure despite being distantly removed from the spPEP phylogenetically. 
As shown in Figure 3, the spPEP aligned 99% to that of the porcine brain PEP. A PDB file was generated 
from SWISS-MODEL, which was then, visualized using Chimera 1.8.1 [19]. The largest deviations from  
the porcine structure occurred in the loop regions, in particular residues 626–627 of the spPEP (black) 
compared to residues 632–636 of the porcine PEP (grey) and residues 567–578 of the spPEP (black) 
compared to residues 570–681 of the porcine structure. Other minor deviations were identified using  
the alignment assessment tool in Chimera; these are indicated in black, as well. The conserved catalytic 
residues (spPEP/porcine), Ser553/554, Asp642/641 and His681/680, align at the same location in both 
structures (Figure 3B). Despite having only 50% identity in amino acid sequence, the modeling suggests 
that the structure is highly conserved, questioning why and how the spPEP recognizes large and small 
substrates compared to other PEPs in this family, which, to date, have only been shown to recognize 
substrates less than 3 kD in size.  

Figure 2. Sunn pest PEP amino acid sequence aligned with PEP sequences of  
Daphnia pulex (gb|EFX79244.1), Nasonia vitripennis (XP_001603578.2), Bombus terrestris 
(XP_003394688.1), Apis florea (XP_003691037.1), Sus scrofa (NP_001004050.1),
Sphingomonas capsulate (1YR2_A), Elizabethkingia meningoseptica (AAA24925) and
Myxococcus xanthus (AAD31004). ClustalW [10] was used to generate the alignment. The 
amino acids comprising the catalytic triad are boxed. * Identical residues, conserved residues. 

ACI03586.2[Eurygaster     -------------------------------------------------- 
EFX79244.1[Daphnia        -------------------------------------------------- 
XP_003394688.1[Bombus     MAMFLIANISTKICSRKIQTGIYKNLL----------SKRPQFICASAFS 40 
XP_003691037.1[Apis       MAVFIIVNMFAN--SYKIQTKFYKNLFKFAV------SKHSQFVRTLAFS 42 
XP_001603578.2[Nasonia    MLNHLVRTTLKKVVLPKQRLHGFRRRSNVAFTGGILTSFPSTAVAASLPS 50 
NP_001004050.1[Sus        -------------------------------------------------- 
AAA24925[Elizabethkingia  ----------------------------------MKYKKLSVAVAAFAFA 16 
1YR2_A[Novosphingobium    ----------------------------------MKNRLWLAMAAPLALA 16 
AAD31004[Myxococcus       -------------------------------------------------- 

ACI03586.2[Eurygaster     ---------------------------MKKFQYPEARRDETIKETFFGIE 23 
EFX79244.1[Daphnia        ---------------------------MSSFTYPIAKR-TDFSENLHGIA 22 
XP_003394688.1[Bombus     TVKVLDPTIR---------KHIENHKIMEKLQYPEAYRDETIVDNYHGVE 81 
XP_003691037.1[Apis       TVKVFDSTVQ---------KRININKKMEKLQYPEAYRDESIIDNYHGIE 83 
XP_001603578.2[Nasonia    SRSRDNPLIEGFRRDFSRVRFFGTTMSPNKFTYPKARRDETAVDVYHGVE 100 
NP_001004050.1[Sus        ---------------------------MLSFQYPDVYRDETAIQDYHGHK 23 
AAA24925[Elizabethkingia  AVS---------------------AQNSNSLKYPETKK-VNHTDTYFGNQ 44 
1YR2_A[Novosphingobium    TPVAFAQTPP----------TLAKDQAMPSLPPYPASPQVPLVEDHFGEK 56 
AAD31004[Myxococcus       -------------------------------MSYPATRAEQVVDTLHGVQ 19 
                                                             .       :  .*
ACI03586.2[Eurygaster     VADPYRWLEDPD--SEETKNFVDAQNSISEPYLKGCPARDKIKARLTQML 71 
EFX79244.1[Daphnia        VEDPYRWLEDPD--SAETQEFVRLQNELTTPYIQGSPALSSIKTRLTELW 70 
XP_003394688.1[Bombus     VQDSYRWLEDPD--SEKTKAFVDAQNSVTIPYLASCKARQDIHDRLKQLW 129 
XP_003691037.1[Apis       VQDPYRWLEDPD--SEKTKAFVDAQNSITTPYLTSCKARQDIHDRLKQLW 131 
XP_001603578.2[Nasonia    IKDPYKWLEDPE--SEETKAYVDAQNAITVPFIQACPKRQAIHDRLKQLW 148 
NP_001004050.1[Sus        VCDPYAWLEDPD--SEQTKAFVEAQNKITVPFLEQCPIRGLYKERMTELY 71 
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AAA24925[Elizabethkingia  VSDPYRWLEDDR--AEDTKAWVQQEVKFTQDYLAQIPFRGQIKKQLLDIW 92 
1YR2_A[Novosphingobium    VSDPWRWLEADVRTDAKVAAWVQAQSAYTAAYLKQLPERAALEKRMKALI 106 
AAD31004[Myxococcus       VADPYRWLEDEK--APEVQTWMTAQNAHAREALAKFPGREALAARFKELF 67 
                           : *.: ***       ..  ::  :   :   :           ::  :
ACI03586.2[Eurygaster     DYPKYSPPEKEGNHYFYFKNTGLQNHSVLYMQDSLD---GPSKVFLDPNT 118 
EFX79244.1[Daphnia        NFPKYSCPTKKGNHYFFYKNSGLQNHSVLFVQDSLE---SEPRIFLDPNT 117 
XP_003394688.1[Bombus     DFPKYSCPARYGNKYYFYKNTGLQNQSVLYVQDTLD---SEPRIFLDPNT 176 
XP_003691037.1[Apis       DFPKYSCPARYGNKYYFYKNTGLQNQSVLYVQDTLD---SEPRVFLDPNT 178 
XP_001603578.2[Nasonia    DYPKYSCPAKKGSKYYFFMNTGLQNQSVFYVQDSLD---GEPRVFLDPNT 195 
NP_001004050.1[Sus        DYPKYSCHFKKGKRYFYFYNTGLQNQRVLYVQDSLE---GEARVFLDPNI 118 
AAA24925[Elizabethkingia  NYEKISAPFKKGKYTYFYKNDGLQAQSVLYRKDAS----GKTEVFLDPNK 138 
1YR2_A[Novosphingobium    DYERFGLPQRRGASVFYSWNSGLMNQSQLLVRPADAPVGTKGRVLLDPNT 156 
AAD31004[Myxococcus       YTDSVSTPSRRNGRFFYVRTHKDKEKAILYWRQGES---GQEKVLLDPNG 114 
                               .   : .   ::  .     :  :  :          .::****
ACI03586.2[Eurygaster     FSSDGTVALTSTSFSEDGSIMGYTVSKSGSDWCTIHFRRVDTG-EDYPEE 167 
EFX79244.1[Daphnia        LSDDGTVSLSMKKFSEDGEIFAYGLSQSGSDWNSIHFKCVKTG-EDFPEV 166 
XP_003394688.1[Bombus     FSEDGTIAITSSKFSEDGSIYAYGLSISGSDWCTIHFMNTETG-EKYPEI 225 
XP_003691037.1[Apis       LSEDGTIAITISKFSEDGSIYAFGLSASGSDWCTIHFMNTETG-EKYPEI 227 
XP_001603578.2[Nasonia    FSTDGTVAISSGEFSEDGGIYAYALSASGSDWNTIHFINTKTG-EKYPEV 244 
NP_001004050.1[Sus        LSDDGTVALRGYAFSEDGEYFAYGLSASGSDWVTIKFMKVDGA-KELPDV 167 
AAA24925[Elizabethkingia  FSDKGTTSLANLSFNKKGTLVAYSISEGGSDWNKIIILDAETK-KQIDET 187 
1YR2_A[Novosphingobium    WAKDGATALDAWAASDDGRLLAYSVQDGGSDWRTVKFVGVADG-KPLADE 205 
AAD31004[Myxococcus       WSKDGTVSLGTWAVSWDGKKVAFAQKPNAADEAVLHVIDVDSGEWSKVDV 164 
                           : .*: ::     . .*   .:  . ..:*   : .  .        :
ACI03586.2[Eurygaster     LKFVKFGHAAWTHDNLGVFYTRFPEVEGKSDGSETS-QNRNQKIYYHKVG 216 
EFX79244.1[Daphnia        LEKIKFSSISWTHDRKGVFYSCYPEQQGKTDGSETT-SNENHKLFYHRIG 215 
XP_003394688.1[Bombus     LEKVKFSPITWTHDNRGIFYGCYPDQKGKTDGSETE-GNRDQKLCYHIVG 274 
XP_003691037.1[Apis       LEKVKFSPITWTHDNCGIFYGCYPDQKGKTDGSETE-GNRDQKLCYHIIG 276 
XP_001603578.2[Nasonia    LEKVKYSSITWTHDNVGVFYACYPEQLEKADGSETF-VNKNQKLCYHKVG 293 
NP_001004050.1[Sus        LERVKFSCMAWTHDGKGMFYNAYPQQDGKSDGTETS-TNLHQKLYYHVLG 216 
AAA24925[Elizabethkingia  LLDVKFSGISWLGDE-GFFYSSYDKPK---DGSVLSGMTDKHKVYFHKLG 233 
1YR2_A[Novosphingobium    LKWVKFSGLAWLGNDALLYSRFAEPKEGQAFQALNY----NQTVWLHRLG 251 
AAD31004[Myxococcus       IEGGKYATPKWTPDSKGFYYEWLPTDPSIKVDERPG----YTTIRYHTLG 210 
                          :   *:.   *  :   .:                       .:  * :* 
ACI03586.2[Eurygaster     TPQSEDILVVELDD-PEYIYTVCVSDCGRGVVILPSKFCH-NNLVYFSDL 264 
EFX79244.1[Daphnia        TQQSEDILVVEFSEEPKWRIQGGVTDCGRYLIVTTGRDCQ-YNNVYFCDL 264 
XP_003394688.1[Bombus     TPQSEDVIVVEFPEEPLWRIGAQVSDCGKWLIVTPVKDCR-DNLVYFTEL 323 
XP_003691037.1[Apis       TPQSEDIIVVEFPEEPLWRIGAQVSDCGKWLIVTPVKDCR-DNLVYFTEL 325 
XP_001603578.2[Nasonia    TPQSEDVVVVDFPEHPLWRIDAKVTDCGRWLVVMPQQECR-DNLVFFAKL 342 
NP_001004050.1[Sus        TDQSEDILCAEFPDEPKWMGGAELSDDGRYVLLSIREGCDPVNRLWYCDL 266 
AAA24925[Elizabethkingia  TKQSQDELIIGGDKFPRRYLSGYVTEDQRYLVVSAANATN-GNELYIKDL 282 
1YR2_A[Novosphingobium    TPQSADQPVFATPELPKRGHGASVSSDGRWVVITSSEGTDPVNTVHVARV 301 
AAD31004[Myxococcus       TEPSKDTVVHERTGDPTTFLQSDLSRDGKYLFVYILRGWS-ENDVYWKRP 259 
                          *  * *         *       ::   : :.:   .     * :
ACI03586.2[Eurygaster     STLK-DGIKGKLDVTCIVDKFEADYEFVANTGSKFVFRTNKNAHNYKLVV 313 
EFX79244.1[Daphnia        TALPNQAISGKLELTTVVDKMEADYEYVTNTGAVVVFRTNKDAPNYRLIQ 314 
XP_003394688.1[Bombus     KPEK--KIAEKLQLTQVVDKLEADYEYVTNDDTKAIFRTNKNAPNYKLIA 371 
XP_003691037.1[Apis       KPEI--KIKEKLHLTQVVDKLEADYEYVTNDDTKAIFRTNKNAPNYKLIA 373 
XP_001603578.2[Nasonia    NTAE--GIKGKLPLTEVVGNLEADYEYVTNVGTKAVFRTNKNAPNFKLIA 390 
NP_001004050.1[Sus        QQES-NGITGILKWVKLIDNFEGEYDYVTNEGTVFTFKTNRHSPNYRLIN 315 
AAA24925[Elizabethkingia  KNKT--------DFIPIITGFESNVGLVDTDGDTLFLHTDKNAPNMRMVK 324 
1YR2_A[Novosphingobium    TNGK------IGPVTALIPDLKAQWDFVDGVGDQLWFVSGDGAPLKKIVR 345 
AAD31004[Myxococcus       GE---------KDFRLLVKGVGAKYE-VHAWKDRFYVLTDEGAPRQRVFE 299 
                                          ::  . ..   *        . :.  :   ::.
ACI03586.2[Eurygaster     IDFENHSEENWVTLVPEHPTDVLEQAVSVAQDKLVLCYIRDVKNTLDIHS 363 
EFX79244.1[Daphnia        IDFNQPEREQWKTLLEADPSDVLDWVACINKDKLIVCYMHDVKNILQLRD 364 
XP_003394688.1[Bombus     IDLLDYKQEKWVDLLPEHPDNVLDWACAVDGDKFVACYIADVKNILQLHS 421 
XP_003691037.1[Apis       IDLLDYKQEKWVDLLPEHPDNVLDWACAVDGDKFVACYIEHVKNILQLHS 423 
XP_001603578.2[Nasonia    TDFENYQENSWSELIAEHSRNVLDWATAVDKDKLVVCYIEDVKNVLGVHS 440 
NP_001004050.1[Sus        IDFTDPEESKWKVLVPEHEKDVLEWVACVRSNFLVLCYLHDVKNTLQLHD 365 
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AAA24925[Elizabethkingia  TTIQNPKPETWKDVIAETSEPMR---VNSGGGYFFATYMKDALSQIKQYD 371 
1YR2_A[Novosphingobium    VDLSG-STPRFDTVVPE-SKDNLES-VGIAGNRLFASYIHDAKSQVLAFD 392 
AAD31004[Myxococcus       VDPAKPARASWKEIVPEDSSASLLS-VSIVGGHLSLEYLKDATSEVRVAT 348 
                                    :  ::                . :   *: .. . :
ACI03586.2[Eurygaster     LVDGSLIRKIPVP-IGTVSSISGSKKHSEVFYTFISFTSPGTIYRCDLSQ 412 
EFX79244.1[Daphnia        LQNGQLLKTYALE-MGTVREFSGKNTSSEFFFQFGSFLTPGVIYRCDIGE 413 
XP_003394688.1[Bombus     LTSGEKLRIFPLD-VGTIVNFAGQKKYSEIFYQFKSFLVPGIIYRVDLK- 469 
XP_003691037.1[Apis       LKSGDILRTFPLD-VGTIVNFAGQKKYSEIFYQFKSFLIPGIIYRVDLK- 471 
XP_001603578.2[Nasonia    LETGKLIRQLPLD-VGTVVGFSGDLKYSEIFYQFTSFLTPGIIYTLDLKE 489 
NP_001004050.1[Sus        LATGALLKIFPLE-VGSVVGYSGQKKDTEIFYQFTSFLSPGIIYHCDLTK 414 
AAA24925[Elizabethkingia  K-TGKLVREIKLPGSGTAGGFGGEKTEKELYYSFTNYITPPTIFKFSIDS 420 
1YR2_A[Novosphingobium    L-DGKPAGAVSLPGIGSASGLSGRPGDRHAYLSFSSFTQPATVLALDPAT 441 
AAD31004[Myxococcus       L-KGKPVRTVQLPGVGAASNLMGLEDLDDAYYVFTSFTTPRQIYKTSVST 397 
                             *       :   *:     *     . :  * .:  *  :   .
ACI03586.2[Eurygaster     SPIPDPEVFRQITIPGYDPSMFEEKQVFYLSKDGTRIPMFLVHKKVLEQN 462 
EFX79244.1[Daphnia        SVEAEPTVFRQIELNGFDPSLFETQQVFYPSKDGTRIPMFIVKKKTVVLD 463 
XP_003394688.1[Bombus     -NEEEPQVLREIKVKNFDPSLYKTSQIFYTSKDGTKIPMFIVMKHDAVLD 518 
XP_003691037.1[Apis       -NEEEPQILREIKVKNFDPSLYKTSQIFYTSKDGTKIPMFIVMKHDAVLD 520 
XP_001603578.2[Nasonia    -NEEKPKVFREIKVNDFDASSYKTTQIFYSSKDGTKIPMFIVHKKDLVLD 538 
NP_001004050.1[Sus        -EELEPRVFREVTVKGIDASDYQTVQIFYPSKDGTKIPMFIVHKKGIKLD 463 
AAA24925[Elizabethkingia  ---GKSEVYQKPKVK-FNPENYVSEQVFYTSADGTKIPMMISNKKGLKKD 466 
1YR2_A[Novosphingobium    ---AKTTPWEPVHLT-FDPADFRVEQVFYPSKDGTKVPMFIVRRKDAK-- 485 
AAD31004[Myxococcus       ---GKSELWAKVDVP-MNPEQYQVEQVFYASKDGTKVPMFVVHRKDLKRD 443 
                                  ..       :   :.  :   *:** * ***::**::  ::
ACI03586.2[Eurygaster     GKNPCLVYGYGGFNISLLPMFSTIRLVFVQYFNAVFASANIRGGGEYGEK 512 
EFX79244.1[Daphnia        GTNPCLMYGYGGFNISLEPAFSVTRIVFMQHFNGVFAVPNIRGGGEYGEA 513 
XP_003394688.1[Bombus     GSMPALLYGYGGFNVSIQPTFSVTKLVFVQHLNGVLAVANIRGGGEYGEK 568 
XP_003691037.1[Apis       GSMPALLYGYGGFNVSIQPTFSVTKLVFVQHLNGVLAVANIRGGGEYGEK 570 
XP_001603578.2[Nasonia    GSSPALLYGYGGFNVSIQPTFSVTRLVFLQHLNGVLAIPNIRGGGEYGEK 588 
NP_001004050.1[Sus        GSHPAFLYGYGGFNISITPNYSVSRLIFVRHMGGVLAVANIRGGGEYGET 513 
AAA24925[Elizabethkingia  GKNPTILYSYGGFNISLQPAFSVVNAIWMENG-GIYAVPNIRGGGEYGKK 515 
1YR2_A[Novosphingobium    GPLPTLLYGYGGFNVALTPWFSAGFMTWIDSG-GAFALANLRGGGEYGDA 534 
AAD31004[Myxococcus       GNAPTLLYGYGGFNVNMEANFRSSILPWLDAG-GVYAVANLRGGGEYGKA 492 
                          *  * ::*.*****: : . :      ::    .  * .*:*******.
ACI03586.2[Eurygaster     WHDGGRLLNKQNSFDDFIAAGEYLIAEKYTNKSCLAIQGASNGGLLIGAS 562 
EFX79244.1[Daphnia        WHDGGRLFNKQNSFDDFHSAAEYLIANGYTSSSKLAIQGASNGGLLIGAC 563 
XP_003394688.1[Bombus     WHNGGRFFNKQNVFDDFQAAAEYLVEKGYTTSSKLSILGASNGGLLVAAC 618 
XP_003691037.1[Apis       WHNGGRFFNKQNVFDDFQTAAEYLIENGYTTSSKLSILGASNGGLLIAAC 620 
XP_001603578.2[Nasonia    WHNGGRFTNKQNVFDDFQCAAEYLIDNRYTSPKKLIIQGGSNGGLLVGAC 638 
NP_001004050.1[Sus        WHKGGILANKQNCFDDFQCAAEYLIKEGYTSPKRLTINGGSNGGLLVATC 563 
AAA24925[Elizabethkingia  WHDAGTKQQKKNVFNDFIAAGEYLQKNGYTSKDYMALSGRSNGGLLVGAT 565 
1YR2_A[Novosphingobium    WHDAGRRDKKQNVFDDFIAAGEWLIANGVTPRHGLAIEGGSNGGLLIGAV 584 
AAD31004[Myxococcus       WHDAGRLDKKQNVFDDFHAAAEYLVQQKYTQPKRLAIYGGSNGGLLVGAA 542 
                          **..*   :*:* *:**  *.*:*  :  *    : : * ******:.:
ACI03586.2[Eurygaster     VKPPYWLLEDPEYIYTVCVSDCGRWAVILPSKFCYNN--LVYFSVLFQ-E 609 
EFX79244.1[Daphnia        VN------QRPE-LYAAGIAHVGVMDMLRFHKFTVGYCWVSDYGSPEE-K 605 
XP_003394688.1[Bombus     VN------QRPD-LFGAAIAQVGVMDMLRFHKFTIGVAWVSDYGSSDD-P 660 
XP_003691037.1[Apis       IN------QRPD-LFGAAIAQVGVMDMLRFHKFTIGVAWVSDYGSSDD-S 662 
XP_001603578.2[Nasonia    IN------QRPD-LFGAAIAQVGVMDMLKFHKFTVGYAWTSDYGSSDD-R 680 
NP_001004050.1[Sus        AN------QRPD-LFGCVIAQVGVMDMLKFHKYTIGHAWTTDYGCSDS-K 605 
AAA24925[Elizabethkingia  MT------MRPD-LAKVAFPGVGVLDMLRYNKFTAGAGWAYDYGTAEDSK 608 
1YR2_A[Novosphingobium    TN------QRPD-LFAAASPAVGVMDMLRFDQFTAGRYWVDDYGYPEK-E 626 
AAD31004[Myxococcus       MT------QRPE-LYGAVVCAVPLLDMVRYHLFGSGRTWIPEYGTAEK-P 584 
                           .        *: :            ::    :  .      :.   .
ACI03586.2[Eurygaster     EHFKNVLKYSPLHNIRVPED---QYPALLLLTASHDDRVVPLHSLKYIAQ 656 
EFX79244.1[Daphnia        AAFENLLKFSPLHNLKVPETG--QYPAMLLLTADHDDRVVPLHSLKYMAQ 653 
XP_003394688.1[Bombus     KHFENLLKYSPLHNVRIPENG--QYPATLLLTADHDDRVVPLHSLKLIAT 708 
XP_003691037.1[Apis       KHFENLIKYSPLHNVRVPENG--QYPATLLLTADHDDRVVPLHSLKLIAT 710 
XP_001603578.2[Nasonia    EHFKNLLKYSPLHNVKPPKDGG-QYPATLLLTADHDDRVVPLHSLKLIAT 729 
NP_001004050.1[Sus        QHFEWLIKYSPLHNVKLPEADDIQYPSMLLLTADHDDRVVPLHSLKFIAT 655 
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AAA24925[Elizabethkingia  EMFEYLKSYSPVHNVKAGTC----YPSTMVITSDHDDRVVPAHSFKFGAE 654 
1YR2_A[Novosphingobium    ADWRVLRRYSPYHNVRSGVD----YPAILVTTADTDDRVVPGHSFKYTAA 672 
AAD31004[Myxococcus       EDFKTLHAYSPYHHVRPDVR----YPALLMMAADHDDRVDPMHARKFVAA 630 
                            :. :  :** *:::        **: :: ::. **** * *: *  *
ACI03586.2[Eurygaster     LQHVMRDNPKQENPLLIQVETKAGHGAGKPTNKRIEEQVDILCFLMNSMN 706 
EFX79244.1[Daphnia        MHHTFRDCPKQTNPLMIRIETKAGHGANKPTSKIIDEHSDVFAFLARALN 703 
XP_003394688.1[Bombus     LQCTLGKLPQQTNPLLIKIETKAGHGGGKPTMKVIEESTDILAFIVKSLN 758 
XP_003691037.1[Apis       LQYTLGKLPQQTNPLLIKIETKAGHGGGKPTMKVIEESTDILAFIVKSLD 760 
XP_001603578.2[Nasonia    LQHEIGSLPQQTNPILIRIDVKAGHGRGKPTSKVIDESTDILSFVVQTLN 779 
NP_001004050.1[Sus        LQYIVGRSRKQNNPLLIHVDTKAGHGAGKPTAKVIEEVSDMFAFIARCLN 705 
AAA24925[Elizabethkingia  LQAKQ----ACKNPVLIRIETNAGHGAGRSTEQVVMENADLLSFALYEMG 700 
1YR2_A[Novosphingobium    LQTAA----IGPKPHLIRIETRAGHGSGKPIDKQIEETADVQAFLAHFTG 718 
AAD31004[Myxococcus       VQNSP----GNPATALLRIEANAGHGGADQVAKAIESSVDLYSFLFQVLD 676 
                          ::           . :::::..****      : : .  *: .*     . 
ACI03586.2[Eurygaster     LKFIE------------------ 711 
EFX79244.1[Daphnia        LEFQS------------------ 708 
XP_003394688.1[Bombus     LEFKL------------------ 763 
XP_003691037.1[Apis       LEFKL------------------ 765 
XP_001603578.2[Nasonia    LEFK------------------- 783 
NP_001004050.1[Sus        IDWIP------------------ 710 
AAA24925[Elizabethkingia  IKNLK------------------ 705 
1YR2_A[Novosphingobium    LTPRPWSSVDKLAAALEHHHHHH 741 
AAD31004[Myxococcus       VQG----AQGGVAAQGR------ 689 
                          :

Figure 3. Homology model of the spPEP. SWISS-MODEL was used to fit the spPEP to a best 
fit to porcine PEP (2XDW.pdb). The Chimera 1.8.1 Match Align tool was used to generate the 
aligned structure (A). Differences between the structures are shown in solid black, which were 
identified using the structure assessment tool in Chimera. The boxed portion of the structure 
shows the highest deviation. The catalytic core residues are circled and align in close proximity 
to each other.  The catalytic core residues are shown in an expanded view (B). 
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3.7. Cloning and Expression of Active spPEP 

An amplicon of 2,153 bp was obtained and successfully ligated into the LIC vector. Figure 4A shows a 
SDS PAGE of the cell lysate of the soluble and insoluble fractions. Significant amounts of recombinant 
PEP were found in the soluble fraction of the induced cells, but there was also PEP found in the insoluble 
fraction (Figure 4A). Figure 4B shows the Coomassie-stained 80-kD spPEP eluted from the nickel column 
on a 10% SDS PAGE gel. A total of 18 mg, approximately 95% pure, was obtained from the soluble 
fraction of 6 L of culture (Figure 4B). 

Figure 4. (A) SDS polyacrylamide gel of the cell lysates of uninduced and IPTG-induced 
Bl21(DE3)pLysS cultures expressing spPEP. UI = uninduced, I = induced with 0.4 mM IPTG. 
The cell lysate of the host without the recombinant enzyme construct is shown for comparison. 
There was no insoluble fraction for the host alone for comparison. (B) SDS PAGE (10%)  
of recombinant spPEP eluted from a Ni-NTA agarose column. Protein was stained with 
Coomassie Blue R250. 

 

3.7.1. z-Gly-Pro-pNA Assay for PEP Activity 

After the buffer exchange of PEP into the 25 mM ethanolamine buffer, pH 8.5, containing 0.1M NaCl 
and 1 mM DTT, the PEP enzyme activity was measured in both uninduced and induced protein fractions. 
The enzyme activity for both the soluble crude extract and the refolded insoluble protein fraction are 
shown in Figure 5. Both the soluble extract and the refolded insoluble protein fraction exhibited PEP 
specific activity. The specific activity was approximately the same for the induced samples whether soluble 
or refolded insoluble at 2.4 μM·s�1·mg�1 of total protein. Within the 9-min assay, the substrate was not 
depleted for these samples. Enzyme activity was observed in the uninduced refolded insoluble protein 
as a result of leaky expression; however, the activity was reduced within about 2.5 min, reaching only 
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2/3 of the activity of the induced samples. Very little spPEP was observed in this fraction at 80 kD on the 
SDS PAGE (Figure 4A), which would be the size of the full-length enzyme. No protease inhibitors were 
added to the cell lysates in order to keep the spPEP from being inhibited, so it is possible that the small 
amount of activity observed in this fraction might have been due to unstable fragments of the enzyme. 

Figure 5. GPpNA assay of recombinant spPEP. The buffer was exchanged with 50 mM Tris,  
pH 8.0, containing 0.1 M NaCl for both the induced and uninduced soluble and inclusion body 
lysates. The reactions were started by the addition of 100 μL of 3 mM GPpNA to 100 μL of 
lysate. The A410 was converted to specific activity (μM·s�1·mg�1 of total protein) for the 
respective sample using a �410 = 8,800 L·mol�1·cm�1.  

 

3.7.2. Determination of Km of spPEP 

The spPEP purified from the soluble fraction exhibited a Km similar to that determined by Darkoh [2] 
for the enzyme purified from infested wheat. A representative Michaelis–Menten kinetics is shown in 
Figure 6 using zGPpNA as the substrate. The inset shows the v vs. [S] plot. The enzyme Km for the peptide 
substrate was determined to be 211 ± 53 μM in 25 mM ethanolamine, pH 8.5, 0.1 M NaCl, 1 mM DTT. 
Darkoh et al. [2] reported a Km of 65.3 μM for the enzyme purified from the infested wheat and analyzed 
in 25 mM ethanolamine, pH 8.5. One primary reason for the difference in Km could be the level of purity 
of the enzyme. The enzyme in Darkoh’s study was only partially purified, whereas the recombinant protein 
was greater than 95% pure, as determined from the SDS PAGE (Figure 4B). The presence of contaminating 
proteins might actually help in the stability and binding of the substrate to the PEP. Additional studies 
need to be performed, such as the addition of BSA, to the reaction to test this hypothesis. Because the 
enzyme was pure, the turnover number for the spPEP was able to be determined. The turnover number 
was 172 ± 47 μM of peptide/s/μmole of spPEP. 

3.7.3. Gluten Assay 

Both the soluble fraction and the refolded insoluble fraction of the induced lysates exhibited glutenase 
activity. As shown in Figure 7, very similar glutenase activities were observed for the enzyme in the 
soluble protein lysate at 0.58 units and the enzyme in the refolded insoluble protein at 0.63 units. Direct 
analysis of the peptide products from the glutenase assay was not possible due to the fragments being 
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too small for gel electrophoresis. Therefore, a separate reaction was carried out to determine which of 
the glutens, glutenins or gliadins, or both, were being digested. An SDS PAGE of the total gluten after 
increasing incubation time with the spPEP was performed (Figure 8). With 60 μg of spPEP and 400 μg 
of total gluten, both the glutenins and gliadins had been partially digested. The high molecular weight 
(HMW) glutenins were digested first, followed by the gliadins, showing that both are substrates for the 
spPEP. Within this timeframe, not all of the gliadins were susceptible to enzyme digestion. Further 
studies are underway to identify the specific glutens cleaved by the enzyme and for determination of the 
enzyme recognition sequence within the respective glutens. 

Figure 6. Michaelis-Menten kinetics of the recombinant spPEP from the soluble protein 
fraction. PGpNA concentrations were varied from 0 to 300 μM in 0.1 M ethanolamine 
buffer, pH 8.5, containing 0.1 M NaCl and 1 mM DTT. The reaction was started by the addition 
130 μg of purified spPEP per well. The A410 was monitored over time. The Km and Vmax 
were determined from the double reciprocal plot, 1/v vs 1/[GPpNA].  The inset shows the 
initial velocities obtained for each substrate concentration plotted vs. substrate concentration to 
generate the Michaelis-Menten curve.  A Vmax of 106 μmole/mL/min was used with the μM 
concentration of PEP to determine the turnover number.  

 

Figure 7. Glutenase assay of recombinant spPEP in both soluble and inclusion body lysates. 
Buffer was exchanged to 0.1 M ethanolamine, 0.1 M NaCl, pH 8.5. Reaction conditions were 
at 37 °C, for 2 h. One unit of enzyme activity is defined as a 1-mm change in gel height [8]. 
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Figure 8. SDS PAGE analysis of the digestion of total gluten by spPEP. spPEP (60 μg) was 
incubated with 400 μg of total gluten for a total of 90 min at 37 °C. Every 15 min, a volume 
of the reaction that would contain 50 μg of gluten was removed, added to 6× Laemmli sample 
buffer, heated and loaded onto the gel. The molecular weight marker was the Kaleidoscope 
marker from Bio-Rad Laboratories. 

 

4. Conclusions 

The primary focus of the present study includes obtaining the complete sequence of the PEP cDNA, 
cloning and expression of a recombinant PEP. The initial experiments performed for the isolation of total 
RNA, enrichment of mRNA and cDNA synthesis suggested that mRNA coding for the sunn pest PEP is 
considerably low or nil in the nymphs and overwintering adults. Lack of PEP in the overwintering adults 
was expected, as the overwintered adults do not feed. The nymphs feed on grains, so it was expected to 
find some levels of PEP cDNA present; however, none of the PCR reactions using the nymph cDNA 
resulted in any amplicons using any of the primers. The spPEP enzyme appears to be expressed in high 
amounts only in the actively feeding adults. 

The sequence results showed the spPEP to be at most 56% identical to other known PEP amino acid 
sequences. The spPEP amino acid sequence was most similar to the Daphnia pulex, as evidenced on the 
phylogenetic tree, and least similar to the bacterial PEPs, which were the most divergent. The mammalian 
PEPs were separated by several nodes on the tree from the spPEP, but were included in the top 25 hits 
obtained from BLASTX. The presence of a 5� UTR might be important in regulation of protein expression 
and is being further investigated. Upon translation of the ORF sequence, the highly conserved catalytic 
triad SDH is present, indicating that the sunn pest PEP might act similarly to other PEPs. Homology 
modeling showed that the spPEP could accommodate a tertiary structure almost identical to the porcine 
brain PEP known to hydrolyze oligopeptides shorter than 30 amino acids in length. The reason for the 
ability of the spPEP to cleave high molecular weight peptides, such as the glutenins and gliadins, still 
remains unexplained. The recombinant enzyme shows recognition of both the GPpNA peptide and its 
natural substrates, the glutenins and gliadins. Now that active recombinant spPEP can be expressed and 
purified, investigations to identify inhibitors specific for the spPEP can begin. Additionally, the enzyme 
can be purified in large enough amounts to determine the three-dimensional structure of the enzyme in 



Insects 2014, 5 780 
 
the presence of inhibitors, peptides and its natural substrates, the glutens. Future studies are underway 
to investigate how this PEP can be so similar in catalytic activity of short peptides as other PEPs, yet be 
so unique in recognizing gluten proteins ranging in molecular weights up to 140 kD. 
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