5,823 research outputs found
Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity
The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context
Bench-to-bedside review : targeting antioxidants to mitochondria in sepsis
Peer reviewedPublisher PD
Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia.
Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International Licence. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material.The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders
Salen Mn Complexes Mitigate Radiation Injury in Normal Tissues
Salen Mn complexes, including EUK-134, EUK-189 and a newer cyclized analog EUK-207, are synthetic SOD/catalase mimetics that have beneficial effects in many models of oxidative stress. As oxidative stress is implicated in some forms of delayed radiation injury, we are investigating whether these compounds can mitigate injury to normal tissues caused by ionizing radiation. This review describes some of this research, focusing on several tissues of therapeutic interest, namely kidney, lung, skin, and oral mucosa. These studies have demonstrated suppression of delayed radiation injury in animals treated with EUK-189 and/or EUK-207. While an antioxidant mechanism of action is postulated, it is likely that the mechanisms of radiation mitigation by these compounds in vivo are complex and may differ in the various target tissues. Indicators of oxidative stress are increased in lung and skin radiation injury models, and suppressed by salen Mn complexes. The role of oxidative stress in the renal injury model is unclear, though EUK-207 does mitigate. In certain experimental models, salen Mn complexes have shown “mito-protective” properties, that is, attenuating mitochondrial injury. Consistent with this, EUK-134 suppresses effects of ionizing radiation on mitochondrial function in rat astrocyte cultures. In summary, salen Mn complexes could be useful to mitigate delayed radiation injury to normal tissues following radiation therapy, accidental exposure, or radiological terrorism. Optimization of their mode of delivery and other key pharmaceutical properties, and increasing understanding of their mechanism(s) of action as radiation mitigators, are key issues for future study
(±)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/c mice
Racemic Gossypol [(±)-GOS], composed of both (-)-GOS and (+)-GOS, is a small BH3-mimetic polyphenol derived from cotton seeds. (±)-GOS has been employed and well tolerated by cancer patients. Head and neck carcinoma (HNC) represents one of the most fatal cancers worldwide, and a significant proportion of HNC expresses high levels of antiapoptotic Bcl-2 proteins. In this study, we demonstrate that (±)-GOS inhibits cell proliferation and induces apoptosis and autophagy of human pharynx, tongue, and salivary gland cancer cell lines and of mouse salivary gland cancer cells (SALTO). (±)-GOS was able to: (a) decrease the ErbB2 protein expression; (b) inhibit the phosphorylation of ERK1/2 and AKT; (c) stimulate p38 and JNK1/2 protein phosphorylation. (±)-GOS administration was safe in BALB/c mice and it reduced the growth of transplanted SALTO cells in vivo and prolonged mice median survival. Our results suggest the potential role of (±)-GOS as an antitumor agent in HNC patients
Protein surface mimetics: understanding how ruthenium tris(bipyridines) interact with proteins.
Protein surface mimetics achieve high affinity binding by exploiting a scaffold to project binding groups over a large area of solvent exposed protein surface to make multiple co-operative non-covalent interactions. Such recognition is a pre-requisite for competitive/ orthosteric inhibition of protein-protein interactions (PPIs). This paper describes biophysical and structural studies on ruthenium(II) tris(bipyridine) surface mimetics that recognize cytochrome (cyt) c and inhibit the cyt c/ cyt c peroxidase (CCP) PPI. Binding is electrostatically driven, with enhanced affinity achieved through enthalpic contributions thought to arise from the ability of the surface mimetics to make a greater number of non-covalent interactions with surface exposed basic residues on cyt c in comparison to CCP. High field natural abundance 1H-15N HSQC NMR experiments are consistent with surface mimetics binding to cyt c in similar manner to CCP. This provides a framework for understanding recognition of proteins by supramolecular receptors and informing the design of ligands superior to the protein partners upon which they are inspired
Recommended from our members
Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson's disease aetiology
Mitochondrial impairment, glutathione depletion and oxidative stress have been implicated in the pathogenesis of Parkinson’s disease (PD), linked recently to proteasomal dysfunction. Our study analysed how these factors influence the various activities of the proteasome in human SH-SY5Y neuroblastoma cells treated with the PD mimetics MPP+ (a complex 1 inhibitor) or dopamine. Treatment with these toxins led to dose- and time-dependent reductions in ATP and glutathione and also chymotrypsin-like and post-acidic like activities; trypsin-like activity was unaffected. Antioxidants blocked the effects of dopamine, but not MPP+, suggesting that oxidative stress was more important in the dopamine-mediated effects. With MPP+, ATP depletion was a prerequisite for loss of proteasomal activity. Thus in a dopaminergic neuron with complex 1 dysfunction both oxidative stress and ATP depletion will contribute independently to loss of proteasomal function. We show for the first time that addition of MPP+ or dopamine to purified samples of the human 20S proteasome also reduced proteasomal activities; with dopamine being most damaging. As with toxin-treated cells, chymotrypsin-like activity was most sensitive and trypsin-like activity the least sensitive. The observed differential sensitivity of the various proteasomal activities to PD mimetics is novel and its significance needs further study in human cells
Structural Evidence for a Copper-Bound Carbonate Intermediate in the Peroxidase and Dismutase Activities of Superoxide Dismutase
Copper-zinc superoxide dismutase (SOD) is of fundamental importance to our understanding of oxidative damage. Its primary function is catalysing the dismutation of superoxide to O2 and H2O2. SOD also reacts with H2O2, leading to the formation of a strong copper-bound oxidant species that can either inactivate the enzyme or oxidise other substrates. In the presence of bicarbonate (or CO2) and H2O2, this peroxidase activity is enhanced and produces the carbonate radical. This freely diffusible reactive oxygen species is proposed as the agent for oxidation of large substrates that are too bulky to enter the active site. Here, we provide direct structural evidence, from a 2.15 Å resolution crystal structure, of (bi)carbonate captured at the active site of reduced SOD, consistent with the view that a bound carbonate intermediate could be formed, producing a diffusible carbonate radical upon reoxidation of copper. The bound carbonate blocks direct access of substrates to Cu(I), suggesting that an adjunct to the accepted mechanism of SOD catalysed dismutation of superoxide operates, with Cu(I) oxidation by superoxide being driven via a proton-coupled electron transfer mechanism involving the bound carbonate rather than the solvent. Carbonate is captured in a different site when SOD is oxidised, being located in the active site channel adjacent to the catalytically important Arg143. This is the probable route of diffusion from the active site following reoxidation of the copper. In this position, the carbonate is poised for re-entry into the active site and binding to the reduced copper. © 2012 Strange et al
Functional and structural mimics of superoxide dismutase enzymes
Superoxide dismutase (SOD) enzymes form important defence line in living organisms. Through a dismutation reaction they transform the highly reactive superoxide radical ion to oxygen and hydrogen peroxide. The latter compound is further transformed by catalase or peroxidase enzymes to water and oxygen. The overall structure of the enzymes and those of the active sites are largely known, thus, it has been revealed that in eukaryotes Cu(II) and Zn(II) ions act as cofactors and they are connected with an imidazolate bridge and this structural unit is coordinated with amino acids. In prokaryotes the SOD enzymes contain Mn(II) or Fe(II) or Ni(II) in their active centres. In order to learn about the working mechanism of SOD enzymes at the molecular level various structural mimics were prepared and their structural transformations during the dismutation reaction was followed. Gathering adequate amount of information allowed the preparation of functional mimics that are not necessarily copies of the active sites of the enzymes, nevertheless, display considerable SOD activity. Both functional and structural mimics are comprehensively dealt with in this review. Although enzymes may seem to be attractive catalysts for promoting real-life reactions effectively with high selectivity, they can seldom if ever be used under industrial conditions, i.e. at high temperatures and pressures. The SOD enzymes for promoting oxygen transfer reactions are not durable enough under these conditions either. The complexes mimicking SOD activities perform better in this respect, however, their reusabilities are limited, because of separation problems. A solution can be the immobilisation of these SOD mimicking complexes on solid or semi-solid supports. Even if the activity is not better then the support-free complexes, the catalyst can be filtered at the end of the reaction and can easily be recycled. Attempts for immobilisation are also comprehensively reviewed and immobilised complexes with surprisingly high SOD activities are reported as well. Full characterisation of these materials is given and rationalisation of their exceptionally high activities is offered
Antioxidant pharmacological therapies for COPD
Increased oxidative stress occurs in the lungs and systemically in COPD, which plays a role in many of the pathogenic mechanisms in COPD. Hence, targeting local lung and systemic oxidative stress with agents that modulate the antioxidants/redox system or boost endogenous antioxidants would be a useful therapeutic approach in COPD. Thiol antioxidants (N-acetyl-L-cysteine and N-acystelyn, carbocysteine, erdosteine, and fudosteine have been used to increase lung thiol content. Modulation of cigarette smoke induced oxidative stress and its consequent cellular changes have also been reported to be effected by synthetic molecules, such as spin traps (α-phenyl-N-tert-butyl nitrone), catalytic antioxidants (superoxide dismutase [ECSOD] mimetics), porphyrins, and lipid peroxidation and protein carbonylation blockers/inhibitors (edaravone and lazaroids/tirilazad). Pre-clinical and clinical trials have shown that these antioxidants can reduce oxidative stress, affect redox and glutathione biosynthesis genes, and pro-inflammatory gene expression. In this review the approaches to enhance lung antioxidants in COPD and the potential beneficial effects of antioxidant therapy on the course of the disease are discussed
- …
