158 research outputs found

    PEP Analysis of the SDP Based Joint Channel Estimation and Signal Detection

    Get PDF
    In multi-antenna communication systems, channel information is often not known at the receiver. To fully exploit bandwidth resources of the system and ensure practical feasibility of the receiver, channel parameters are often estimated blindly and then employed in the design of signal detection algorithms. Instead of separating channel estimation from signal detection, in this paper we focus on the joint channel estimation and signal detection problem in a single-input multiple-output (SIMO) system. It is well known that finding solution to this optimization requires solving an integer maximization of a quadratic form and is, in general, an NP hard problem. To solve it, we propose an approximate algorithm based on the semi-definite program (SDP) relaxation. We derive a bound on the pairwise probability of error (PEP) of the proposed algorithm and show that, the algorithm achieves the same diversity as the exact maximum-likelihood (ML) decoder. The computed PEP implies that, over a wide range of system parameters, the proposed algorithm requires moderate increase in the signal-to-noise ratio (SNR) in order to achieve performance comparable to that of the ML decoder but with often significantly lower complexit

    PEP analysis of SDP-based non-coherent signal detection

    Get PDF
    In multi-antenna communication systems, channel information is often not known at the receiver. To fully exploit the bandwidth resources of the system and ensure the practical feasibility of the receiver, the channel parameters are often estimated and then employed in the design of signal detection algorithms. However, sometimes communication can occur in the environment where learning the channel coefficients becomes infeasible. In this paper we consider the problem of maximum-likelihood (ML)-detection in single-input multiple-output (SIMO) systems when the channel information is completely unavailable at the receiver and when employed signalling at the transmitter is q-PSK. It is well known that finding the solution to this optimization requires solving an integer maximization of a quadratic form and is, in general, an NP hard problem. To solve it, we propose an approximate algorithm based on the semi-definite program (SDP) relaxation. We derive a bound on the pairwise probability of error (PEP) of the proposed algorithm and show that, the algorithm achieves the same diversity as the exact maximum-likelihood (ML) decoder. Furthermore, we prove that in the limit of large system dimension this bound differs from the corresponding one in the exact ML case by at most 3.92 dB if the transmitted symbols are from 2 or 4-PSK constellations and by at most 2.55 dB if the transmitted symbols are from 8-PSK constellation. This suggests that the proposed algorithm requires moderate increase in the signal-to-noise ratio (SNR) in order to achieve performance comparable to that of the ML decoder but with often significantly lower complexity

    Out-sphere decoder for non-coherent ML SIMO detection and its expected complexity

    Get PDF
    In multi-antenna communication systems, channel information is often not known at the receiver. To fully exploit the bandwidth resources of the system and ensure the practical feasibility of the receiver, the channel parameters are often estimated and then employed in the design of signal detection algorithms. However, sometimes communication can occur in an environment where learning the channel coefficients becomes infeasible. In this paper we consider the problem of maximum-likelihood (ML)-detection in singleinput multiple-output (SIMO) systems when the channel information is completely unavailable at the receiver and when the employed signalling at the transmitter is q-PSK. It is well known that finding the solution to this optimization requires solving an integer maximization of a quadratic form and is, in general, an NP hard problem. To solve it, we propose an exact algorithm based on the combination of branch and bound tree search and semi-definite program (SDP) relaxation. The algorithm resembles the standard sphere decoder except that, since we are maximizing we need to construct an upper bound at each level of the tree search. We derive an analytical upper bound on the expected complexity of the proposed algorithm

    Differential modulation for two-way wireless communications: a perspective of differential network coding at the physical layer

    Get PDF
    This work considers two-way relay channels (TWRC), where two terminals transmit simultaneously to each other with the help of a relay node. For single antenna systems, we propose several new transmission schemes for both amplify-and-forward (AF) protocol and decode-and-forward (DF) protocol where the channel state information is not required. These new schemes are the counterpart of the traditional noncoherent detection or differential detection in point-to-point communications. Differential modulation design for TWRC is challenging because the received signal is a mixture of the signals from both source terminals. We derive maximum likelihood (ML) detectors for both AF and DF protocols, where the latter can be considered as performing differential network coding at the physical layer. As the exact ML detector is prohibitively complex, we propose several suboptimal alternatives including decision feedback detectors and prediction-based detectors. All these strategies work well as evidenced by the simulation results. The proposed protocols are especially useful when the required average data rate is high. In addition, we extend the protocols to the multiple-antenna case and provide the design criterion of the differential unitary space time modulation (DUSTM) for TWRC

    Physical Layer Differential Network Coding for Two-way Relay Channels

    Get PDF
    In this work, we consider differential modulation in two-way relay channels (TWRC). In single antenna systems, we propose non-coherent schemes for both amplify-and forward (AF) and decode-and-forward (DF) where the channel state information is not required. These new schemes are counterparts of the traditional non-coherent detection in point to point communications. The difficulty with differential modulation design in TWRC is that the received signal is a mixture of the signals from both source terminals. We derive maximum likelihood (ML) detectors for both AF and DF. The DF protocol can be considered as performing differential network coding at the physical layer. In addition, we propose several suboptimal alternatives including decision feedback and prediction based detectors. All these strategies work well as evidenced by simulation results. We also extend the schemes to the multiple-antenna case and provide design criterion of differential unitary space time modulation

    Optimization in multi-relay wireless networks

    Get PDF
    The concept of cooperation in communications has drawn a lot of research attention in recent years due to its potential to improve the efficiency of wireless networks. This new form of communications allows some users to act as relays and assist the transmission of other users' information signals. The aim of this thesis is to apply optimization techniques in the design of multi-relay wireless networks employing cooperative communications. In general, the thesis is organized into two parts: ``Distributed space-time coding' (DSTC) and ``Distributed beamforming', which cover two main approaches in cooperative communications over multi-relay networks. In Part I of the thesis, various aspects of distributed implementation of space-time coding in a wireless relay network are treated. First, the thesis proposes a new fully-diverse distributed code which allows noncoherent reception at the destination. Second, the problem of coordinating the power allocation (PA) between source and relays to achieve the optimal performance of DSTC is studied and a novel PA scheme is developed. It is shown that the proposed PA scheme can obtain the maximum diversity order of DSTC and significantly outperform other suboptimal PA schemes. Third, the thesis presents the optimal PA scheme to minimize the mean-square error (MSE) in channel estimation during training phase of DSTC. The effect of imperfect channel estimation to the performance of DSTC is also thoroughly studied. In Part II of the thesis, optimal distributed beamforming designs are developed for a wireless multiuser multi-relay network. Two design criteria for the optimal distributed beamforming at the relays are considered: (i) minimizing the total relay power subject to a guaranteed Quality of Service (QoS) measured in terms of signal-to-noise-ratio (SNR) at the destinations, and (ii) jointly maximizing the SNR margin at the destinations subject to power constraints at the relays. Based on convex optimization techniques, it is shown that these problems can be formulated and solved via second-order conic programming (SOCP). In addition, this part also proposes simple and fast iterative algorithms to directly solve these optimization problems

    Optimization Algorithms in Wireless and Quantum Communications

    Get PDF
    Since the first communication systems were developed, the scientific community has been witnessing attempts to increase the amount of information that can be transmitted. In the last 10--15 years there has been a tremendous amount of research towards developing multi-antenna systems which would hopefully provide high-data-rate transmissions. However, increasing the overall amount of transmitted information increases the complexity of the necessary signal processing. A large portion of this thesis deals with several important issues in signal processing of multi-antenna systems. In almost every particular case the goal is to develop a technique/algorithm so that the overall complexity of the signal processing is significantly decreased. In the first part of the thesis a very important problem of signal detection in MIMO (multiple-input multiple-output) systems is considered. The problem is analyzed in two different scenarios: when the transmission medium (channel) 1) is known and 2) is unknown at the receiver. The former case is often called coherent and the later non-coherent MIMO detection. Both cases usually amount to solving highly complex NP-hard combinatorial optimization problems. For the coherent case we develop a significant improvement of the traditional sphere decoder algorithm commonly used for this type of detection. An interesting connection between the new improved algorithm and the H-infinity estimation theory is established, and the performance improvement over the standard sphere decoder is demonstrated. For the non-coherent case we develop a counterpart to the standard sphere decoder, the so-called out-sphere decoder. The complexity of the algorithm is viewed as a random variable; its expected value is analyzed and shown to be significantly smaller than the one of the overall exhaustive search. In the non-coherent case, in addition to the complexity analysis of the exact out-sphere decoder, we analyze the performance loss of a suboptimal technique. We show that only a moderate loss of a few dbs in power required at the transmitter will occur if a polynomial algorithm based on the semi-definite relaxation is used in place of any exact technique (which of course is not known to be polynomial). In the second part of the thesis we consider a few problems that arise in wireless broadcast channels. Namely, we consider the problem of the information symbol vector design at the transmitter. A polynomial linear precoding technique is constructed. It enables achieving data rates very close to the ones achieved with DPC (dirty paper coding) technique. Additionally, for another suboptimal polynomial scheme (the so-called nulling and cancelling), we show that it asymptotically achieves the same data rate as the optimal, exponentially complex, DPC. In the last part of the thesis we consider a quantum counterpart of the signal detection from classical communication. In quantum systems the signals are quantum states and the quantum detection problem amounts to designing measurement operators which have to satisfy certain quantum mechanics laws. A specific type of quantum detection called unambiguous detection, which has numerous applications including quantum filtering, has recently attracted a lot of attention in the research community. We develop a general framework for numerically solving this problem using the tools from the convex optimization theory. Furthermore, in the special case where the two quantum states are of rank 2, we construct an explicit analytical solution for the measurement operators. At the end we would like to emphasize that the contribution of this thesis goes beyond the specific problems mentioned here. Most algorithmic optimization techniques developed in this paper are generally applicable. While it is a fact that our results were originally motivated by wireless and quantum communications applications, we believe that the developed techniques will find applications in many different areas where similar optimization problems appear.</p

    PHY Layer Anonymous Precoding: Sender Detection Performance and Diversity-Multiplexing Tradeoff

    Get PDF
    Departing from traditional data security-oriented designs, the aim of anonymity is to conceal the transmitters’ identities during communications to all possible receivers. In this work, joint anonymous transceiver design at the physical (PHY) layer is investigated. We first present sender detection error rate (DER) performance analysis, where closed-form expression of DER is derived for a generic precoding scheme applied at the transmitter side. Based on the tight DER expression, a fully DER-tunable anonymous transceiver design is demonstrated. An alias channel-based combiner is first proposed, which helps the receiver find a Euclidean space that is close to the propagation channel of the received signal for high quality reception, but does not rely on the recognition of the real sender’s channel. Then, two novel anonymous precoders are proposed under a given DER requirement, one being able to provide full multiplexing performance, and the other flexibly adjusting the number of multiplexing streams with further consideration of the receive-reliability. Simulation demonstrates that the proposed joint transceiver design can always guarantee the subscribed DER performance, while well striking the trade-off among the multiplexing, diversity and anonymity performance
    corecore