3 research outputs found

    4D printing of materials for the future: Opportunities and challenges

    Get PDF
    The concept of 4D printing is its formation of complex three-dimensional structures that have the ability to adopt different shapes and forms when subjected to different environmental stimuli. A few researchers simply view 4D printing as an extended technique of 3D printing or additive manufacturing with the added constraint of time. However, the unique shape change mechanism exhibited in this process is a combination of shape programming and the usage of smart active materials mostly polymers. This review article highlights the various smart materials, activation mechanisms and the shape-changing techniques employed in the 4D printing process. The potential of the shape-changing structures and their current applications in various biomedical and engineering fields is also explored. The article aims to emphasize the potential and viability of 4D printing and focused on providing an in-depth insight into the 4D printing process

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in GerĂ€ten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese FĂ€higkeiten nutzen, ist allerdings problematisch. HierfĂŒr sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter InteraktivitĂ€t und KompatibilitĂ€t mit vielfĂ€ltigen Materialien erforderlich. Zudem sollten solche Technologien zugĂ€nglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als SchlĂŒsseltechnologie, um diese Probleme zu adressieren. Sie trĂ€gt vier neue Design- und FabrikationsansĂ€tze fĂŒr das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugĂ€ngliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfĂ€ltigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der FĂ€higkeit ihre Form und Materialeigenschaften zu Ă€ndern. Insgesamt trĂ€gt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des grĂ¶ĂŸeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei

    Physical sketching tools and techniques for customized sensate surfaces

    Get PDF
    Sensate surfaces are a promising avenue for enhancing human interaction with digital systems due to their inherent intuitiveness and natural user interface. Recent technological advancements have enabled sensate surfaces to surpass the constraints of conventional touchscreens by integrating them into everyday objects, creating interactive interfaces that can detect various inputs such as touch, pressure, and gestures. This allows for more natural and intuitive control of digital systems. However, prototyping interactive surfaces that are customized to users' requirements using conventional techniques remains technically challenging due to limitations in accommodating complex geometric shapes and varying sizes. Furthermore, it is crucial to consider the context in which customized surfaces are utilized, as relocating them to fabrication labs may lead to the loss of their original design context. Additionally, prototyping high-resolution sensate surfaces presents challenges due to the complex signal processing requirements involved. This thesis investigates the design and fabrication of customized sensate surfaces that meet the diverse requirements of different users and contexts. The research aims to develop novel tools and techniques that overcome the technical limitations of current methods and enable the creation of sensate surfaces that enhance human interaction with digital systems.Sensorische OberflĂ€chen sind aufgrund ihrer inhĂ€renten IntuitivitĂ€t und natĂŒrlichen BenutzeroberflĂ€che ein vielversprechender Ansatz, um die menschliche Interaktionmit digitalen Systemen zu verbessern. Die jĂŒngsten technologischen Fortschritte haben es ermöglicht, dass sensorische OberflĂ€chen die BeschrĂ€nkungen herkömmlicher Touchscreens ĂŒberwinden, indem sie in AlltagsgegenstĂ€nde integriert werden und interaktive Schnittstellen schaffen, die diverse Eingaben wie BerĂŒhrung, Druck, oder Gesten erkennen können. Dies ermöglicht eine natĂŒrlichere und intuitivere Steuerung von digitalen Systemen. Das Prototyping interaktiver OberflĂ€chen, die mit herkömmlichen Techniken an die BedĂŒrfnisse der Nutzer angepasst werden, bleibt jedoch eine technische Herausforderung, da komplexe geometrische Formen und variierende GrĂ¶ĂŸen nur begrenzt berĂŒcksichtigt werden können. DarĂŒber hinaus ist es von entscheidender Bedeutung, den Kontext, in dem diese individuell angepassten OberflĂ€chen verwendet werden, zu berĂŒcksichtigen, da eine Verlagerung in Fabrikations-Laboratorien zum Verlust ihres ursprĂŒnglichen Designkontextes fĂŒhren kann. Zudem stellt das Prototyping hochauflösender sensorischer OberflĂ€chen aufgrund der komplexen Anforderungen an die Signalverarbeitung eine Herausforderung dar. Diese Arbeit erforscht dasDesign und die Fabrikation individuell angepasster sensorischer OberflĂ€chen, die den diversen Anforderungen unterschiedlicher Nutzer und Kontexte gerecht werden. Die Forschung zielt darauf ab, neuartigeWerkzeuge und Techniken zu entwickeln, die die technischen BeschrĂ€nkungen derzeitigerMethoden ĂŒberwinden und die Erstellung von sensorischen OberflĂ€chen ermöglichen, die die menschliche Interaktion mit digitalen Systemen verbessern
    corecore