141,445 research outputs found

    Polyelectrolyte multilayer films as backflushable nanofiltration membranes with tunable hydrophilicity and surface charge

    Get PDF
    A diverse set of supported polyelectrolyte multilayer (PEM) membranes with controllable surface charge, hydrophilicity, and permeability to water and salt was designed by choosing constituent polyelectrolytes and by adjusting conditions of their deposition. The membranes were characterized in terms of their water and MgSO4 permeabilities and resistance to colloidal fouling. The commercial nanofiltration membrane (NF270) was used as a comparative basis. Highly hydrophilic and charged PEMs could be designed. For all membranes, MgSO4 permeability coefficients of NF270 and all PEM membranes exhibited a power law dependence on concentration: Ps [is proportional to] C-[tau], 0.19 < [tau] < 0.83. PEM membranes were highly selective and capable of nearly complete intrinsic rejection of MgSO4 at sufficiently high fluxes. With the deposition of colloids onto the PEM surface, the separation properties of one type of polyelectrolyte membrane showed similar rejection and superior flux properties compared to NF270 membranes. We hypothesize that a PEM-colloid nanocomposite was formed as a result of colloidal fouling of these PEM films. The feasibility of regenerating the PEM membranes fouled by colloids was also demonstrated. In summary, the PEM-based approach to membrane preparation was shown to enable the design of membranes with the unique combination of desirable ion separation characteristics and regenerability of the separation layer

    Models, Brains, and Scientific Realism

    Get PDF
    Prediction Error Minimization theory (PEM) is one of the most promising attempts to model perception in current science of mind, and it has recently been advocated by some prominent philosophers as Andy Clark and Jakob Hohwy. Briefly, PEM maintains that “the brain is an organ that on aver-age and over time continually minimizes the error between the sensory input it predicts on the basis of its model of the world and the actual sensory input” (Hohwy 2014, p. 2). An interesting debate has arisen with regard to which is the more adequate epistemological interpretation of PEM. Indeed, Hohwy maintains that given that PEM supports an inferential view of perception and cognition, PEM has to be considered as conveying an internalist epistemological perspective. Contrary to this view, Clark maintains that it would be incorrect to interpret in such a way the indirectness of the link between the world and our inner model of it, and that PEM may well be combined with an externalist epistemological perspective. The aim of this paper is to assess those two opposite interpretations of PEM. Moreover, it will be suggested that Hohwy’s position may be considerably strengthened by adopting Carlo Cellucci’s view on knowledge (2013)

    Review: Electro-acoustic Music From the Netherlands 2000

    Get PDF
    Compact disc, PEM Productions PEM CD-1, 2000; available from Gaudeamus Foundation, Swammerdamstraat 38, 1091 RV Amsterdam, The Netherlands; telephone (+31) 20-694-7349; fax (+31) 20-694-7258; electronic mail [email protected]; Web www.gaudeamus.nl/

    Comparative study of osteogenic activity of multilayers made of synthetic and biogenic polyelectrolytes

    Get PDF
    Polyelectrolyte multilayer (PEM) coatings on biomaterials are applied to tailor adhesion, growth, and function of cells on biomedical implants. Here, biogenic and synthetic polyelectrolytes (PEL) are used for layer-by-layer assembly to study the osteogenic activity of PEM with human osteosarcoma MG-63 cells in a comparative manner. Formation of PEM is achieved with biogenic PEL fibrinogen (FBG) and poly-l-lysine (PLL) as well as biotinylated chondroitin sulfate (BCS) and avidin (AVI), while poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) represent a fully synthetic PEM used as a reference system here. Surface plasmon resonance measurements show highest layer mass for FBG/PLL and similar for PSS/PAH and BCS/AVI systems, while water contact angle and zeta potential measurements indicate larger differences for PSS/PAH and FBG/PLL but not for BCS/AVI multilayers. All PEM systems support cell adhesion and growth and promote osteogenic differentiation as well. However, FBG/PLL layers are superior regarding MG-63 cell adhesion during short-term culture, while the BCS/AVI system increases alkaline phosphatase activity in long-term culture. Particularly, a multilayer system based on affinity interaction like BCS/AVI may be useful for controlled presentation of biotinylated growth factors to promote growth and differentiation of cells for biomedical applications
    corecore