1,239 research outputs found

    Koopman operator-based model reduction for switched-system control of PDEs

    Full text link
    We present a new framework for optimal and feedback control of PDEs using Koopman operator-based reduced order models (K-ROMs). The Koopman operator is a linear but infinite-dimensional operator which describes the dynamics of observables. A numerical approximation of the Koopman operator therefore yields a linear system for the observation of an autonomous dynamical system. In our approach, by introducing a finite number of constant controls, the dynamic control system is transformed into a set of autonomous systems and the corresponding optimal control problem into a switching time optimization problem. This allows us to replace each of these systems by a K-ROM which can be solved orders of magnitude faster. By this approach, a nonlinear infinite-dimensional control problem is transformed into a low-dimensional linear problem. In situations where the Koopman operator can be computed exactly using Extended Dynamic Mode Decomposition (EDMD), the proposed approach yields optimal control inputs. Furthermore, a recent convergence result for EDMD suggests that the approach can be applied to more complex dynamics as well. To illustrate the results, we consider the 1D Burgers equation and the 2D Navier--Stokes equations. The numerical experiments show remarkable performance concerning both solution times and accuracy.Comment: arXiv admin note: text overlap with arXiv:1801.0641

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    An efficient method for multiobjective optimal control and optimal control subject to integral constraints

    Full text link
    We introduce a new and efficient numerical method for multicriterion optimal control and single criterion optimal control under integral constraints. The approach is based on extending the state space to include information on a "budget" remaining to satisfy each constraint; the augmented Hamilton-Jacobi-Bellman PDE is then solved numerically. The efficiency of our approach hinges on the causality in that PDE, i.e., the monotonicity of characteristic curves in one of the newly added dimensions. A semi-Lagrangian "marching" method is used to approximate the discontinuous viscosity solution efficiently. We compare this to a recently introduced "weighted sum" based algorithm for the same problem. We illustrate our method using examples from flight path planning and robotic navigation in the presence of friendly and adversarial observers.Comment: The final version accepted by J. Comp. Math. : 41 pages, 14 figures. Since the previous version: typos fixed, formatting improved, one mistake in bibliography correcte

    Optimal Switching for Hybrid Semilinear Evolutions

    Full text link
    We consider the optimization of a dynamical system by switching at discrete time points between abstract evolution equations composed by nonlinearly perturbed strongly continuous semigroups, nonlinear state reset maps at mode transition times and Lagrange-type cost functions including switching costs. In particular, for a fixed sequence of modes, we derive necessary optimality conditions using an adjoint equation based representation for the gradient of the costs with respect to the switching times. For optimization with respect to the mode sequence, we discuss a mode-insertion gradient. The theory unifies and generalizes similar approaches for evolutions governed by ordinary and delay differential equations. More importantly, it also applies to systems governed by semilinear partial differential equations including switching the principle part. Examples from each of these system classes are discussed
    corecore