18,166 research outputs found
A penalty method for PDE-constrained optimization in inverse problems
Many inverse and parameter estimation problems can be written as
PDE-constrained optimization problems. The goal, then, is to infer the
parameters, typically coefficients of the PDE, from partial measurements of the
solutions of the PDE for several right-hand-sides. Such PDE-constrained
problems can be solved by finding a stationary point of the Lagrangian, which
entails simultaneously updating the paramaters and the (adjoint) state
variables. For large-scale problems, such an all-at-once approach is not
feasible as it requires storing all the state variables. In this case one
usually resorts to a reduced approach where the constraints are explicitly
eliminated (at each iteration) by solving the PDEs. These two approaches, and
variations thereof, are the main workhorses for solving PDE-constrained
optimization problems arising from inverse problems. In this paper, we present
an alternative method that aims to combine the advantages of both approaches.
Our method is based on a quadratic penalty formulation of the constrained
optimization problem. By eliminating the state variable, we develop an
efficient algorithm that has roughly the same computational complexity as the
conventional reduced approach while exploiting a larger search space. Numerical
results show that this method indeed reduces some of the non-linearity of the
problem and is less sensitive the initial iterate
Progressive construction of a parametric reduced-order model for PDE-constrained optimization
An adaptive approach to using reduced-order models as surrogates in
PDE-constrained optimization is introduced that breaks the traditional
offline-online framework of model order reduction. A sequence of optimization
problems constrained by a given Reduced-Order Model (ROM) is defined with the
goal of converging to the solution of a given PDE-constrained optimization
problem. For each reduced optimization problem, the constraining ROM is trained
from sampling the High-Dimensional Model (HDM) at the solution of some of the
previous problems in the sequence. The reduced optimization problems are
equipped with a nonlinear trust-region based on a residual error indicator to
keep the optimization trajectory in a region of the parameter space where the
ROM is accurate. A technique for incorporating sensitivities into a
Reduced-Order Basis (ROB) is also presented, along with a methodology for
computing sensitivities of the reduced-order model that minimizes the distance
to the corresponding HDM sensitivity, in a suitable norm. The proposed reduced
optimization framework is applied to subsonic aerodynamic shape optimization
and shown to reduce the number of queries to the HDM by a factor of 4-5,
compared to the optimization problem solved using only the HDM, with errors in
the optimal solution far less than 0.1%
Robust preconditioners for PDE-constrained optimization with limited observations
Regularization robust preconditioners for PDE-constrained optimization
problems have been successfully developed. These methods, however, typically
assume that observation data is available throughout the entire domain of the
state equation. For many inverse problems, this is an unrealistic assumption.
In this paper we propose and analyze preconditioners for PDE-constrained
optimization problems with limited observation data, e.g. observations are only
available at the boundary of the solution domain. Our methods are robust with
respect to both the regularization parameter and the mesh size. That is, the
condition number of the preconditioned optimality system is uniformly bounded,
independently of the size of these two parameters. We first consider a
prototypical elliptic control problem and thereafter more general
PDE-constrained optimization problems. Our theoretical findings are illuminated
by several numerical results
Multilevel quasiseparable matrices in PDE-constrained optimization
Optimization problems with constraints in the form of a partial differential
equation arise frequently in the process of engineering design. The
discretization of PDE-constrained optimization problems results in large-scale
linear systems of saddle-point type. In this paper we propose and develop a
novel approach to solving such systems by exploiting so-called quasiseparable
matrices. One may think of a usual quasiseparable matrix as of a discrete
analog of the Green's function of a one-dimensional differential operator. Nice
feature of such matrices is that almost every algorithm which employs them has
linear complexity. We extend the application of quasiseparable matrices to
problems in higher dimensions. Namely, we construct a class of preconditioners
which can be computed and applied at a linear computational cost. Their use
with appropriate Krylov methods leads to algorithms of nearly linear
complexity
Reduced Order Modeling for Nonlinear PDE-constrained Optimization using Neural Networks
Nonlinear model predictive control (NMPC) often requires real-time solution
to optimization problems. However, in cases where the mathematical model is of
high dimension in the solution space, e.g. for solution of partial differential
equations (PDEs), black-box optimizers are rarely sufficient to get the
required online computational speed. In such cases one must resort to
customized solvers. This paper present a new solver for nonlinear
time-dependent PDE-constrained optimization problems. It is composed of a
sequential quadratic programming (SQP) scheme to solve the PDE-constrained
problem in an offline phase, a proper orthogonal decomposition (POD) approach
to identify a lower dimensional solution space, and a neural network (NN) for
fast online evaluations. The proposed method is showcased on a regularized
least-square optimal control problem for the viscous Burgers' equation. It is
concluded that significant online speed-up is achieved, compared to
conventional methods using SQP and finite elements, at a cost of a prolonged
offline phase and reduced accuracy.Comment: Accepted for publishing at the 58th IEEE Conference on Decision and
Control, Nice, France, 11-13 December, https://cdc2019.ieeecss.org
- …
