877,542 research outputs found
Impacts of Climate Change on indirect human exposure to pathogens and chemicals from agriculture
Objective: Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts.
Data sources: In this review, we used expert input and considered literature on climate change ; health effects resulting from exposure to pathogens and chemicals arising from agriculture ; inputs of chemicals and pathogens to agricultural systems ; and human exposure pathways for pathogens and chemicals in agricultural systems.
Data synthesis: We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment ; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems ; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks.
Conclusions: Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes
Fresh Insights into Disease Etiology and the Role of Microbial Pathogens.
Pathogens have been implicated in the initiation and/or promotion of systemic sclerosis (scleroderma, SSc); however, no evidence was found to substantiate the direct contribution to this disease in past years. Recently, significant advances have been made in understanding the role of the innate immune system in SSc pathogenesis, supporting the idea that pathogens might interact with host innate immune-regulatory responses in SSc. In light of these findings, we review the studies that identified the presence of pathogens in SSc, along with studies on pathogens implicated in driving the innate immune dysregulation in SSc. The goal of this review is to illustrate how these pathogens, specifically viruses, may play important role both as triggers of the innate immune system, and critical players in the development of SSc disease
Management of plant health risks associated with processing of plant-based wastes: A review
The rise in international trade of plants and plant products has increased the risk of introduction and spread of plant pathogens and pests. In addition, new risks are arising from the implementation of more environmentally friendly methods of biodegradable waste disposal, such as composting and anaerobic digestion. As these disposal methods do not involve sterilisation, there is good evidence that certain plant pathogens and pests can survive these processes. The temperature/time profile of the disposal process is the most significant and easily defined factor in controlling plant pathogens and pests. In this review, the current evidence for temperature/time effects on plant pathogens and pests is summarised. The advantages and disadvantages of direct and indirect process validation for the verification of composting processes, to determine their efficacy in destroying plant pathogens and pests in biowaste, are discussed. The availability of detection technology and its appropriateness for assessing the survival of quarantine organisms is also reviewed
Role of rodents in transmission of Salmonella and Campylobacter
Salmonella and Campylobacter are generally regarded as the most important food-borne pathogens in the world. Reduction or elimination of these pathogens in the first part of the food chain (on the farm) is important to prevent disease among consumers of animal products. In organic farming, elimination becomes more difficult, as food animals are allowed outdoors and have easy access to potential sources of hazardous pathogens. Whilst
rodents are often associated by organic farmers with infrastructural damage and eating or spoiling of stored feed and products, their zoonotic risks are frequently underestimated. They can amplify the number of pathogens in the environment and transfer them to food animals. Thus organic farmers should be aware of the need for rodent
control from a food safety perspective. Preferably, rodent control should form an integral part of a total package of hygiene measures to prevent transfer of food-borne pathogens. These should also include e.g. control of wild birds and flies and obligatory disinfection of boots/clothes and equipment for farm workers and visitors
Drivers of disease emergence and spread: Is wildlife to blame?
The global focus on wildlife as a major contributor to emerging pathogens and infectious diseases (EIDs) in humans and domestic animals is not based on field, experimental or dedicated research, but mostly on limited surveys of literature, opinion and the assumption that biodiversity harbours pathogens. The perceived and direct impacts of wildlife, from being a reservoir of certain human and livestock pathogens and as a risk to health, are frequently overstated when compared to the Global burden of disease statistics available from WHO, OIE and FAO. However organisms that evolve in wildlife species can and do spill-over into human landscapes and humans and domestic animal population and, where these organisms adapt to surviving and spreading amongst livestock and humans, these emerging infections can have significant consequences. Drivers for the spill-over of pathogens or evolution of organisms from wildlife reservoirs to become pathogens of humans and domestic animals are varied but almost without exception poorly researched. The changing demographics, spatial distribution and movements, associated landscape modifications (especially agricultural) and behavioural changes involving human and domestic animal populations are probably the core drivers of the apparent increasing trend in emergence of new pathogens and infectious diseases over recent decades
Bioaffinity detection of pathogens on surfaces
The demand for improved technologies capable of rapidly detecting pathogens with high sensitivity and selectivity in complex environments continues to be a significant challenge that helps drive the development of new analytical techniques. Surface-based detection platforms are particularly attractive as multiple bioaffinity interactions between different targets and corresponding probe molecules can be monitored simultaneously in a single measurement. Furthermore, the possibilities for developing new signal transduction mechanisms alongside novel signal amplification strategies aremuchmore varied. In this article, we describe some of the latest advances in the use of surface bioaffinity detection of pathogens. Three major sections will be discussed: (i) a brief overview on the choice of probe molecules such as antibodies, proteins and aptamers specific to pathogens and surface attachment chemistries to immobilize those probes onto various substrates, (ii) highlighting examples among the current generation of surface biosensors, and (iii) exploring emerging technologies that are highly promising and likely to form the basis of the next generation of pathogenic sensors
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
Serological and Molecular Identification of Brucella spp. in Pigs from Cairo and Giza Governorates, Egypt
Brucellosis is considered as endemic disease of animals and humans since thousands of years in Egypt. However, brucellosis in pigs has never been reported in Egypt. Thus, serological and molecular assays were applied to detect anti-Brucella antibodies and DNA in serum samples collected from pigs. In total 331 blood samples collected from male and female pigs at slaughterhouses of Cairo and Giza governorates were investigated using Brucella c- and i-ELISA and Brucella real-time PCR. Anti-Brucella antibodies were detected in 16 (4.83%) and 36 (10.8%) sera by i-ELISA and c-ELISA, respectively. Brucella DNA was detected in 10 (3.02%) seropositive samples and identified as Brucella melitensis (7/10) and Brucella suis (3/10). A higher prevelance was found in boars. This is the first study investigating pig brucellosis in Egypt. The results of this study will raise awareness for brucellosis in these farm animals and will help to develop effective control strategies
- …
