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Abstract Pathogens have been implicated in the initiation
and/or promotion of systemic sclerosis (scleroderma, SSc);
however, no evidence was found to substantiate the direct
contribution to this disease in past years. Recently, significant
advances have been made in understanding the role of the
innate immune system in SSc pathogenesis, supporting the
idea that pathogens might interact with host innate immune-
regulatory responses in SSc. In light of these findings, we
review the studies that identified the presence of pathogens
in SSc, along with studies on pathogens implicated in driving
the innate immune dysregulation in SSc. The goal of this
review is to illustrate how these pathogens, specifically virus-
es, may play important role both as triggers of the innate
immune system, and critical players in the development of
SSc disease.
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Introduction

The immune system walks a fine line to distinguish self from
harmful non-self to preserve the integrity of the host.
However, certain kind of infections can result in the break-
down of self-tolerance, leading to immunopathology and au-
toimmunity. A potential role for microbial involvement in the
pathogenesis of systemic sclerosis (scleroderma, SSc) was
recognized, and viral infections have been implicated in the
initiation and/or promotion of most autoimmune diseases, in-
cluding SSc. In the past years, this hypothesis was primarily
supported by serological, molecular, and epidemiological
studies on several different environmental microbes that were
found associated with SSc. However, no evidence has dem-
onstrated a clear and direct contribution of these factors to the
disease.

Recently, a number of studies highlighted the potential
driving role that the innate immune response can play in acti-
vation of cells responsible for the central pathological triad of
SSc: vasculopathy, inflammation, and fibrosis. The evolution-
ary older innate immune system is classically viewed as first
line of host defense, and it represents the sole mode of protec-
tion against pathogens in non-immune cells, although it is an
intricate system in which immune and non-immune cells play
a role. Toll-like receptors (TLRs) have a particularly instruc-
tive role in innate immune responses against microbial patho-
gens, as well as in the subsequent induction of adaptive im-
mune responses [1]. Intriguingly, several molecular innate im-
mune mediators were found to underlie inflammation in SSc
lesional tissues [2, 3]. Among these mediators, the interferons
(IFNs) have captured the most attention due to their central
role in regulating a multitude of biological functions in the
innate immune system, facilitating their primarily antiviral
activity [4, 5]. Microarray and proteome-wide studies largely
documented the presence of BIFN signatures^ as a common
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theme in most of the organs involved in SSc, such as skin,
lungs, and peripheral blood mononuclear cells (PBMCs) [2, 3,
6–11]. In vitro studies showed that activation of the innate
immune response in immune and non-immune cells, includ-
ing fibroblasts and endothelial cells (ECs), by specific TLR
ligands, induced high expression of several IFN- and TGFβ-
responsive genes also seen upregulated in SSc skin, such as
CXCL9, OAS2, PAI-1, and ET-1 [12–16]. Based on these
findings, it appears that dysregulation of the innate immune
system might contribute to the activation of key effector cells
such as fibroblasts and ECs, leading to production of genes
implicated in SSc pathogenesis. Further genetic studies that
strongly associate polymorphisms in TLRs and IFN pathways
(IRF5, IRF7,IRF8 STAT4) with SSc confirm the correlation of
innate immune dysregulation and IFNs with the risk of devel-
oping SSc [17, 18].

The rationale for studying the role of pathogens is very
attractive since the etiology of autoimmunity, as well as the
origin innate immune dysregulation is largely unexplained in
SSc. Herein, we discuss the evidence that the pathogens asso-
ciated with SSc have a mechanistic role in influencing disease
development.

Herpesviruses

Herpesviruses are a large family of DNA viruses and can be
subdivided into α−, β− (cytomegalovirus (CMV)) or γ−
(Epstein-Barr virus (EBV)) subfamilies based on their biolog-
ical functions and sequence similarities. Common to all her-
pesviruses is the ability to cause lytic infections, to replicate in
permissive cells, and to establish latency in distinct special-
ized cells, such as lymphocytes (γ) and/or myeloid (β), as
occurs with EBV and CMV, respectively. Importantly, while
the immunological control of herpesviruses is achieved by
both the innate and adaptive immune systems, the innate an-
tiviral immune response (interferon (IFNs)) and NK cells have
key roles in monitoring the containment of herpesvirus lytic
infection (replication phase) [19, 20•]. In this regard, it is
important to know how innate immune system detection trans-
lates into anti-herpesvirus host defense, and how the viruses
seek to evade this innate detection to establish persistent
infection.

For a long time, EBVand CMV have been associated with
SSc; however, most of the evidence was based only on the
serological patterns often detected in SSc patients. Numerous
studies reported elevated levels of antibodies against EBVand
CMVantigens in most SSc patients, indicating the presence of
a recent and active infection [21, 22•, 23]. Moreover, the
cross-reactivity between several EBVand CMVantigens with
cellular autoantigens raised multiple theories including epi-
tope spreading in generating a host antiviral response that is
reactive toward self-antigens [24]. Thus, EBVand CMV have

been considered the best candidates in priming autoreactive
immune responses and in initiating the immune abnormalities
in SSc.

Over the past decades, advances have been made in the
innate immunity field to clarify how herpesviruses are initially
recognized during cellular infections. It has been proposed
that distinct viral genes trigger host innate immune responses
in the infected cells. While the role of EBV and CMV as
disruptors of acquired immunity was largely studied in SSc,
their ability to interfere with the host innate immune system is
less known and almost unexplored in most autoimmune dis-
eases, including SSc. Understanding the interaction between
herpesviruses and the host innate immune system might clar-
ify the mechanisms used by viruses to influence the develop-
ment of SSc disease.

EBV and Autoimmunity in SSc

Multiple serological, molecular, and epidemiological studies
support the theory of EBV playing an important role in trig-
gering autoimmunity in SSc. A persistent widespread infec-
tion and frequent EBV reactivation was found in patients with
SSc [18, 21, 25–29]. While the hypothesis of molecular mim-
icry between several EBV antigens and self-antigens clearly
links EBV infection to autoimmunity in SSc, there are mech-
anisms related to the viral pathology which make EBVunique
in its contribution to the induction of autoimmunity [30]. For
instance, it is well established that EBV initiates a transforma-
tive, latent infection in selected B-lymphocytes, leading to
their proliferative expansion as lymphoblastoid cell lines
(LCL) and immortalization in vitro [31, 32]. This process
requires the expression of distinct EBV transforming proteins
and expression of oncogenic genes which can be seen in EBV-
associated tumors [31, 33]. Early studies reporting induction
of recombination-activating genes (RAGs) by EBV in both
lytic infected and in immortalized B-cells indicate that EBV
dysregulates the process of receptor editing and revision, pro-
cesses used to rescue B-cells with autoreactive or missing
primary antigen receptor specificity, through RAG
reexpression and secondary immunoglobulin rearrangement
[34–37]. Autoreactive antibodies, like all other antibodies
are produced in developing B-lymphocytes by variable diver-
sity and joint gene segment (V(D)J) recombination regulated
by RAG proteins [38]. It was shown that EBV generates tran-
sient levels of autoantibodies in patients with infectiousmono-
nucleosis (IM), suggesting that secondary immunoglobulin
gene rearrangements by EBV-induced RAGs could be the
mechanism employed by the virus in the production of the
autoantibodies in IM [34]. Translating this concept to SSc, it
was reported that B-lymphocytes from healthy donors upon
EBV transformation were able to produce anti-topoisomerase
I antibody (Scl-70), suggesting that the production of these
specific autoantibodies might be directly related to EBV
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infection in SSc, since anti-topoisomerase I antibody is con-
sidered a specific marker for SSc [39].

Additional findings of lytic EBV dysregulation further link
EBV infection to SSc disease. Specifically, SSc patients more
often exhibited high titers of EBV antibodies including in-
creased titers of anti-viral capsid antigen (VCA)-Ig(VCA)-
IgG antibodies that suggest that a recent EBV infection or
reactivation occurred in SSc [25, 31, 40]. Moreover, a recent
study showed that antibodies to distinct EBV antigens were
detected more frequently than specific SSc and systemic lupus
erythematosus (SLE) autoantibodies in these patients.
Specifically, SSc and SLE patients, who tested negative for
anti-dsDNA and Scl-70/anti-centromere autoantibodies, were
positive for at least one of the antibodies against EBV anti-
gens, suggesting that both of these diseases may be associated
with a defective immune response to EBV infection, predis-
posing EBV to persistent activation in these patients [21].

In light of this new observation the following questions
could be raised: does EBV trigger autoimmunity, and if so,
is the innate antiviral immune response to EBV a critical
mediator?

EBV, Innate Immunity, and Fibrosis in SSc

Evidence suggests that EBV is ubiquitous in human popula-
tions and establishes benign lifelong silent infections of B-
lymphocytes occasionally interrupted by viral reactivation
and virion production. This reflects the fine balance struck
between host immune control over virus infection and the
ability of the virus to evade this control. In healthy hosts, the
immune system forces EBV to enter the Btrue latency^ state,
where the virus hides inside the nucleus of lymphocytes
asymptomatically. EBV in true latency is neither pathogenic
nor visible to the host immune systems due to the lack of any
lytic or latent viral protein production [31].

While the acquired immune system tightly controls distinct
viral gene expression programs and enables EBV to persist in
immunocompetent hosts without doing much harm, the host
innate immune system plays a critical role in blocking the
initiation of EBV lytic infection [41, 42]. In the early stage
of lytic infection, the host mounts an innate immune response
represented by activation of several signaling pathways, in-
cluding IFN production mediated by TLRs [43]. One of the
most potent immune-stimulating components of EBV is the
unmethylated form of genomic DNA. Based on studies using
synthetic DNA, the current paradigm is that TLR9 recognizes
CpG-motif-containing DNA, which is abundantly present in
the EBV genome [31]. During the replication phase, the linear
double-stranded DNA remains free of CpG methylation to
facilitate the amplification of EBV genomes. At this point,
the unmethylated EBV genome becomes visible to the innate
immune system and can be detected by TLR9 [44, 45]. The
hypomethylated genomes disappear in the true latency phase

after the inhibition of productive viral replication, and EBV
circularizes its DNA to an episome which then gets heavily
methylated, strongly impairing its ability to activate TLR9 or
other TLRs [45, 46]. Treatment with EBV DNA activates
cultured plasmacytoid dendritic cells (pDCs), B-lymphocytes,
and monocytes through the TLR9 signaling pathway. Under
specific viral programs, EBV is also recognized by other
TLRs, such as TLR7 and its downstream signaling mediators,
IRF5 and IRF7 in B-lymphocytes [47, 48]. Moreover, the
Epstein-Barr-virus-encoded small RNAs (EBERs) are also
implicated as mediators of innate immune activation since
they can interact with both the RIG-I and TLR3 sensors of
adjacent cells when released by infected cells [49, 50].
Together, these results suggest that activation of the innate
immune response by EBV is dependent on the viral programs
carried in the infected cells.

Activation of non-immune cells in SSc skin induced by
viral products has also been investigated over the past few
years since EBV/LMP1/latency-antigen mRNA was found
in SSc skin [29]. However, the cellular source of EBV viral
products was never identified. Recently, our group reported
the expression of EBV viral mRNA and lytic proteins in the
majority of fibroblasts, mainly myofibroblasts, as well as en-
dothelial cells in the skin of SSc patients, indicating that EBV
replication is ongoing in the skin, and also that SSc
fibroblasts/myofibroblasts and ECs might represent a target
of EBV infection in SSc skin [22•]. Supported by the notion
that lytic EBV activates the host innate immune system, ex-
pression of TLR7/9, IRF5/7, and the EBV-BZLF1 lytic gene
was found increased in EBV-infected SSc fibroblasts in vitro,
suggesting that EBVmediates the fibroblast antiviral response
via the TLR7/9-MyD88 activation pathway. Because EBV
induces a large spectrum of genes in infected B-lymphocytes
and epithelial cells, it was of particular interest to investigate
whether EBV could also alter the fibroblast pro-fibrotic re-
sponse in infected cells. Intriguingly, expression of TGFβ1,
and several TGFβ-regulated genes, including α-SMA and
collagen-1, were also found upregulated in infected fibro-
blasts, suggesting that the activation of SSc fibroblasts might
be related to EBV infection in these cells [22•]. These results
lead to the idea that EBV lytic infection might be dysregulated
in SSc and the lytic viral program might regulate both the
inflammatory and the fibrotic processes in SSc skin, but the
driving role of TLR in inducing pro-fibrotic genes in infected
fibroblasts remains to be substantiated.

Among several EBV lytic genes, one has been reported to
upregulate TGFβ expression in Burkitt’s lymphoma (BL) cell
lines and in epithelial cells. BZLF1/Zta, which was found
abundantly expressed in SSc skin fibroblasts, is known to
regulate several host cellular functions including innate immu-
nity and cellular apoptosis, although its primary role is to
disrupt viral latency and transactivate the expression of
EBV/early-lytic genes [51–53]. Among its host cellular
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targets, activation of the TGFβ pathway is one of the strate-
gies employed by the EBV/Zta gene to modulate the host
immune response in infected B-lymphocytes and epithelial
cells [42, 54, 55]. Moreover, BZLF1/Zta was shown to upreg-
ulate TGFβ1 mRNA levels and biologically active protein
and to interact with numerous key cellular transcriptional reg-
ulatory factors including EGR1 in cells expressing this gene
[55–58]. Given the fact that TGFβ is required by the virus
during the lytic stage of the infection, it is possible that TGFβ
might represent one of the mechanisms employed by EBV to
dampen the host innate immune response. Supporting this
observation, it was recently shown that TGFβ inhibits CpG
DNA-induced type I IFN production transcriptionally via
ubiquitination of TRAF6 [59].

Collectively, these results suggest that EBV targets the in-
nate immune system during the lytic phase of viral infection.
Moreover, in order to enhance the efficiency of lytic viral
replication, EBV employs several strategies to evade the in-
nate immune response, and activation of TGFβ might repre-
sent one of them.

EBV and Fibroblasts

While there is ample evidence that EBV hides in latent form in
memory B-lymphocytes in the majority of the world healthy
population, there is limited evidence that EBV infects fibro-
blasts. Fibroblasts are not considered a typical target of EBV
infection since they are negative for the CD21-EBV receptor
[20•, 60] used by EBV for cell entry. Early studies showed
Zebra protein expression in synovial fibroblasts from one pa-
tient with rheumatoid arthritis, and EBNA1 protein expression
in lung fibroblasts, suggesting that EBV might infect fibro-
blasts even if, like epithelial cells, they are negative for CD21
[61–66]. Recently, our group reported that EBV is able to
infect human dermal fibroblasts using monocytes or dendritic
cells as a vehicle for infection in vitro. This finding suggests
that EBV uses alternative strategies to infect fibroblasts that
bypass the absence of CD21, resembling the described trans-
mission of EBV to human epithelial cells by cell-to-cell con-
tact [22•, 60, 67]. While the mechanism by which EBV infects
fibroblasts in vivo and in vitro is still uncertain, there is grow-
ing interest in exosomes. Those specialized membranous ves-
icles derived from the endocytic compartment can carry and
deliver functional mRNA, miRNAs as well as proteins to
various cells [68–70]. Given the fact that thousands of EBV-
miRNA copy numbers have been detected in exosomes from
LCL-infected cells, it would be conceivable that EBV-
containing exosomes may be continuously secreted and trans-
ferred from the infected cells to uninfected neighboring cells,
including fibroblasts [70, 71, 72•]. In light of this observation,
further research will be warranted to evaluate the presence of
EBV-miRNA/protein-containing exosomes in SSc skin, as
well as clarify whether EBV-infected immune cells might

transfer functional EBV-RNA and protein to fibroblasts
through exosomes.

Cytomegalovirus and Autoimmunity

Serological and epidemiological studies link infection of hu-
man cytomegalovirus (HCMV) to the onset of SSc, suggest-
ing that HCMV is a possible trigger for autoimmunity in SSc.
Specifically, a higher prevalence of IgA anti-CMVantibodies
was found in patients with SSc. The presence of antibodies
against multiple CMV proteins cross-reacting with endothelial
cell and fibroblast surface proteins implicates CMV role in
triggering both endothelial cell apoptosis and fibroblast acti-
vation in SSc [23, 40, 73, 74]. Moreover, monoclonal antibod-
ies against topoisomerase I recognized peptide of an
autoantigen sharing homology with the HCMV-derived
UL70 protein, support the theory that CMV might utilize the
molecular mimicry mechanism to trigger SSc [75]. Therefore,
due to its capacity to induce powerful polyclonal immune
responses, CMV mimicry has been considered as a potential
initiator of humoral SSc autoimmunity.

Cytomegalovirus, Innate Immunity, Vasculopathies,
and Fibrosis in SSc

While the association between HMCV serology and SSc is
generally recognized, whether HCMV plays a direct role in
activating the innate immune system in SSc, at this stage, is
still unknown. The fact that multiple members of TLR and
non-TLR signaling pathways were found downregulated dur-
ing HCMV active infection suggests that CMV might use a
strategy similar to EBV to avoid the innate immune system
[76]. This would seem likely because other studies reported
that CMV structural components directly activate the innate
immune system in infected cell lines. For instance, TLR2 was
been found to functionally recognize HCMV through direct
interaction with the envelope tegumental glycoproteins, gB
and gH, suggesting that the innate immune response activated
by HCMV might be primarily dependent on viral envelope
proteins and independent of viral replication in permissive
fibroblasts [76]. Moreover, there was a reported interaction
of CMV with TLR7 and TLR9 in human plasmacytoid den-
dritic cells (pDC), suggesting that TLR involvement might
also be related to the cell types in which the virus establishes
the infection [77]. The downregulation of TLR signaling path-
ways may help CMV infect pDCs and transfer to endothelial
cells and fibroblast during early infection, while activation of
TLRs in these cells may increase during viral reactivation at a
later stage contributing to SSc disease.

The contribution of the CMV lytic gene in promoting fi-
brosis was considered in SSc. Earlier studies showed detection
of CMV immediate early lytic gene IE1 in SSc skin [29].
Supported by this observation and based on CMV’s tropism
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to infect endothelial cells as well as a broad range of cells
within its host, including fibroblasts, the effect of the CMV
IE1 gene was tested in human fibroblasts. It was found that
fibroblasts expressing the CMV-IE1 gene were capable of
transiently inducing high levels of CTGF, TIMP-1 and
Collagen-1 mRNAs, partially mediated by TGFβ, suggesting
that HCMV lytic infection can produce several pro-fibrotic
cytokines implicated in SSc skin disease [78]. The association
of viral active infection with fibrosis was further confirmed by
studies in animal models. Murine CMV (MCMV) infection
induced vascular lesions similar to that seen in SSc tissues in
mice carrying an IFNγR deficiency [79]. These results were
particularly intriguing, since they were the first to suggest that
chronic CMV infection might be directly involved in inducing
endothelial cell injury by a mechanism independent of molec-
ular mimicry/autoimmunity, and that MCMV chronic infec-
tion, in the presence of aberrant IFNγ signaling recapitulated
SSc vascular/fibrotic features. Given the importance of IFNγ-
producing cells in protection against CMV disease and in
controlling viral lytic reactivation, these results suggest that
the cell activation, vascular proliferation and fibroblast pro-
fibrotic responses induced by CMV viral products might only
contribute to SSc in conditions of a predisposing aberrant
immune response [80].

Parvovirus B19 and SSc

Parvovirus B19 was speculated to be a causative agent in
SSc since serum parvovirus viremia was more often de-
tected in SSc patients than healthy subjects, and the pres-
ence of parvovirus B19 was more frequently detected in
SSc bone marrow biopsy specimens, suggesting that the
bone marrow may represent a reservoir from which the
parvovirus spreads to SSc tissue [81, 82]. Endothelial in-
jury in patients with parvovirus was suggested to reflect a
combination of direct cytotoxicity and humoral immunity.
It was described that parvovirus can persistently infect
SSc fibroblasts and that this might be responsible for
marked cell alteration [40]. However, how parvovirus
B19 impacts innate immunity and the mechanism by
which it might cause fibrosis await further validation in
SSc.

Conclusions

Infections are known to be involved in the initiation and pro-
motion of SSc [21, 22•, 29, 40]. Viral infections such as EBV
and CMVappear to be the main candidates to trigger SSc due
to their multifaceted and multidirectional relationships with
the development of this disease. The studies highlighted in
this review suggest that EBV and CMV have the capacity to

elicit a strong immune activation as well as to contribute to the
pro-fibrotic process in SSc. In the case of EBV, the finding of
anti-topoisomerase antibody that could be induced by the on-
cogenic genes expressed in immortalized B-lymphocytes sup-
ports the hypothesis that EBV modulates the production of
specific autoantibodies in SSc. The presence of viral proteins
in the skin strongly indicates that EBV could be the source of
tissue injury in SSc skin. Moreover, activation of the innate
immune response by lytic-genes could represent one of the
mechanisms employed by EBV to drive inflammation and
pro-fibrotic responses in infected SSc fibroblasts. On the other
hand, CMValso seems to be involved in the development of
SSc, although its contribution to the disease appears to be
different than EBV. Specifically, CMV might promote vascu-
lar injury in SSc, based on its tropism for endothelial cells, and
the capacity to induce anti-CMV antibodies cross-reacting
with endothelial cell and fibroblast surface proteins.

Modulation of the host innate immune responses is a key
component in herpesviruses life. In fact, herpesviruses are
very common pathogens and the majority of healthy adult
populations show serological evidence of past EBV and
CMV infection. However, evidence of viral reactivation is
rarely reported in the healthy population carrying a viral ge-
nome [42]. While the host innate antiviral responses mediated
by IFNs promptly monitor and limit those infections, the rea-
son why the innate immune system of SSc patients fails to
limit EBVand CMV infection remains to be understood. The
finding of active EBV and CMV infections, as well as the
evidence of higher susceptibility of SSc patients to specific
pathogens, including fungi (Rhodotorula glutinis) [83],
strongly support the idea that dysregulation of SSc antiviral
immune response could facilitate pathogen persistent infec-
tions in the disease. Furthermore, one animal study confirmed
this observation by showing the development of vascular le-
sions similar to those seen in SSc only in mice infected with
MCMV, in the condition of an impaired IFNγ response [79].
Although the reason for this has not yet been taken into ac-
count, one explanation could be that SSc genetic backgrounds
might affect important key regulators of the host defense, pre-
disposing the host immune response to an uncontrolled EBV
and CMV infection. If this is the case, SSc patients might
poorly handle certain kinds of infection, facilitating viruses
such as EBV to display their pathogenic potential in infecting
atypical target cells, such as fibroblasts, or, even worse, in
transforming these cells. In addition, due to EBV’s oncogenic
potential that etiologically links this virus to a remarkably
wide range of tumors, of B-cell and non-B-cell origin, it
would be interesting to determine whether aberrant immune
responses might also increase the oncogenic capacity of this
virus, or other oncogenic viruses, to induce cancer in SSc
patients [20•, 84•].

Overall, further research is needed to better understand the
interaction of pathogens with genes that confer susceptibility
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to autoimmunity in SSc. Perhaps understanding the dynamic
interplay among genetics, immune responses, and pathogens
might shed a light on the origin of SSc pathogenesis.
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