34,993 research outputs found

    Statistical paleoclimate reconstructions via Markov random fields

    Full text link
    Understanding centennial scale climate variability requires data sets that are accurate, long, continuous and of broad spatial coverage. Since instrumental measurements are generally only available after 1850, temperature fields must be reconstructed using paleoclimate archives, known as proxies. Various climate field reconstructions (CFR) methods have been proposed to relate past temperature to such proxy networks. In this work, we propose a new CFR method, called GraphEM, based on Gaussian Markov random fields embedded within an EM algorithm. Gaussian Markov random fields provide a natural and flexible framework for modeling high-dimensional spatial fields. At the same time, they provide the parameter reduction necessary for obtaining precise and well-conditioned estimates of the covariance structure, even in the sample-starved setting common in paleoclimate applications. In this paper, we propose and compare the performance of different methods to estimate the graphical structure of climate fields, and demonstrate how the GraphEM algorithm can be used to reconstruct past climate variations. The performance of GraphEM is compared to the widely used CFR method RegEM with regularization via truncated total least squares, using synthetic data. Our results show that GraphEM can yield significant improvements, with uniform gains over space, and far better risk properties. We demonstrate that the spatial structure of temperature fields can be well estimated by graphs where each neighbor is only connected to a few geographically close neighbors, and that the increase in performance is directly related to recovering the underlying sparsity in the covariance of the spatial field. Our work demonstrates how significant improvements can be made in climate reconstruction methods by better modeling the covariance structure of the climate field.Comment: Published at http://dx.doi.org/10.1214/14-AOAS794 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    New Constraints on the Timing and Pattern of Deglaciation in the Húnaflói Bay Region of Northwest Iceland Using Cosmogenic 36CA Dating and Geomorphic Mapping

    Full text link
    Understanding the evolution and timing of changes in ice sheet geometry and extent in Iceland during the Last Glacial Maximum (LGM) and subsequent deglaciation continues to stimulate much active research. Though many previous studies have advanced our knowledge of Icelandic ice sheet history preserved in marine and terrestrial settings (e.g., Andrews et al., 2000; Norðdahl et al., 2008), the timing of ice margin retreat remains largely unknown in several key regions. Recently published 36Cl surface exposure ages of bedrock surfaces and moraines in the West Fjords (Brynjólfsson et al., 2015) contribute important progress in establishing more precise age control of ice recession in northwest Iceland. In another recent study, the spatial pattern and style of deglaciation in northern Iceland have been revealed through geomorphic mapping and GIS analyses of glacial landforms (Principato et al., 2016). Additional insight comes from updated numerical modeling reconstructions, which now provide a series of glaciologically plausible Icelandic ice sheet configurations from the LGM through the last deglaciation (Patton et al., 2017). However, the optimization of ice sheet model simulations relies on critical comparisons with the available empirical record of glacial-geologic evidence and chronological control, which remains relatively limited and sparsely distributed throughout Iceland. Our investigation is motivated by the need for more accurate constraints on the deglacial history in northern Iceland, where dated terrestrial records of ice margin retreat are particularly scarce. (excerpt

    Geodynamic contributions to global climatic change

    Get PDF
    Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed

    A Predictive Algorithm For Wetlands In Deep Time Paleoclimate Models

    Get PDF
    Methane is a powerful greenhouse gas produced in wetland environments via microbial action in anaerobic conditions. If the location and extent of wetlands are unknown, such as for the Earth many millions of years in the past, a model of wetland fraction is required in order to calculate methane emissions and thus help reduce uncertainty in the understanding of past warm greenhouse climates. Here we present an algorithm for predicting inundated wetland fraction for use in calculating wetland methane emission fluxes in deep time paleoclimate simulations. The algorithm determines, for each grid cell in a given paleoclimate simulation, the wetland fraction predicted by a nearest neighbours search of modern day data in a space described by a set of environmental, climate and vegetation variables. To explore this approach, we first test it for a modern day climate with variables obtained from observations and then for an Eocene climate with variables derived from a fully coupled global climate model (HadCM3BL-M2.2). Two independent dynamic vegetation models were used to provide two sets of equivalent vegetation variables which yielded two different wetland predictions. As a first test the method, using both vegetation models, satisfactorily reproduces modern data wetland fraction at a course grid resolution, similar to those used in paleoclimate simulations. We then applied the method to an early Eocene climate, testing its outputs against the locations of Eocene coal deposits. We predict global mean monthly wetland fraction area for the early Eocene of 8 to 10 × 106km2 with corresponding total annual methane flux of 656 to 909 Tg, depending on which of two different dynamic global vegetation models are used to model wetland fraction and methane emission rates. Both values are significantly higher than estimates for the modern-day of 4 × 106km2 and around 190Tg (Poulter et. al. 2017, Melton et. al., 2013

    Speleothem Paleoclimatology for the Caribbean, Central America, and North America

    Get PDF
    Speleothem oxygen isotope records from the Caribbean, Central, and North America reveal climatic controls that include orbital variation, deglacial forcing related to ocean circulation and ice sheet retreat, and the influence of local and remote sea surface temperature variations. Here, we review these records and the global climate teleconnections they suggest following the recent publication of the Speleothem Isotopes Synthesis and Analysis (SISAL) database. We find that low-latitude records generally reflect changes in precipitation, whereas higher latitude records are sensitive to temperature and moisture source variability. Tropical records suggest precipitation variability is forced by orbital precession and North Atlantic Ocean circulation driven changes in atmospheric convection on long timescales, and tropical sea surface temperature variations on short timescales. On millennial timescales, precipitation seasonality in southwestern North America is related to North Atlantic climate variability. Great Basin speleothem records are closely linked with changes in Northern Hemisphere summer insolation. Although speleothems have revealed these critical global climate teleconnections, the paucity of continuous records precludes our ability to investigate climate drivers from the whole of Central and North America for the Pleistocene through modern. This underscores the need to improve spatial and temporal coverage of speleothem records across this climatically variable region

    La2010: A new orbital solution for the long term motion of the Earth

    Full text link
    We present here a new solution for the astronomical computation of the orbital motion of the Earth spanning from 0 to -250 Myr. The main improvement with respect to the previous numerical solution La2004 (Laskar et al. 2004) is an improved adjustment of the parameters and initial conditions through a fit over 1 Myr to a special version of the high accurate numerical ephemeris INPOP08 (Fienga et al. 2009). The precession equations have also been entirely revised and are no longer averaged over the orbital motion of the Earth and Moon. This new orbital solution is now valid over more than 50 Myr in the past or in the future with proper phases of the eccentricity variations. Due to chaotic behavior, the precision of the solution decreases rapidly beyond this time span, and we discuss the behavior of various solutions beyond 50 Myr. For paleoclimate calibrations, we provide several different solutions that are all compatible with the most precise planetary ephemeris. We have thus reached the time where geological data are now required to discriminate among planetary orbital solutions beyond 50 Myr.Comment: 17 pages, 14 figure
    corecore