377 research outputs found

    Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach

    Full text link
    Modern neural networks are highly overparameterized, with capacity to substantially overfit to training data. Nevertheless, these networks often generalize well in practice. It has also been observed that trained networks can often be "compressed" to much smaller representations. The purpose of this paper is to connect these two empirical observations. Our main technical result is a generalization bound for compressed networks based on the compressed size. Combined with off-the-shelf compression algorithms, the bound leads to state of the art generalization guarantees; in particular, we provide the first non-vacuous generalization guarantees for realistic architectures applied to the ImageNet classification problem. As additional evidence connecting compression and generalization, we show that compressibility of models that tend to overfit is limited: We establish an absolute limit on expected compressibility as a function of expected generalization error, where the expectations are over the random choice of training examples. The bounds are complemented by empirical results that show an increase in overfitting implies an increase in the number of bits required to describe a trained network.Comment: 16 pages, 1 figure. Accepted at ICLR 201

    Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

    Full text link
    Recent works have cast some light on the mystery of why deep nets fit any data and generalize despite being very overparametrized. This paper analyzes training and generalization for a simple 2-layer ReLU net with random initialization, and provides the following improvements over recent works: (i) Using a tighter characterization of training speed than recent papers, an explanation for why training a neural net with random labels leads to slower training, as originally observed in [Zhang et al. ICLR'17]. (ii) Generalization bound independent of network size, using a data-dependent complexity measure. Our measure distinguishes clearly between random labels and true labels on MNIST and CIFAR, as shown by experiments. Moreover, recent papers require sample complexity to increase (slowly) with the size, while our sample complexity is completely independent of the network size. (iii) Learnability of a broad class of smooth functions by 2-layer ReLU nets trained via gradient descent. The key idea is to track dynamics of training and generalization via properties of a related kernel.Comment: In ICML 201

    Generalisation and expressiveness for over-parameterised neural networks

    Get PDF
    Over-parameterised modern neural networks owe their success to two fundamental properties: expressive power and generalisation capability. The former refers to the model's ability to fit a large variety of data sets, while the latter enables the network to extrapolate patterns from training examples and apply them to previously unseen data. This thesis addresses a few challenges related to these two key properties. The fact that over-parameterised networks can fit any data set is not always indicative of their practical expressiveness. This is the object of the first part of this thesis, where we delve into how the input information can get lost when propagating through a deep architecture, and we propose as an easily implementable possible solution the introduction of suitable scaling factors and residual connections. The second part of this thesis focuses on generalisation. The reason why modern neural networks can generalise well to new data without overfitting, despite being over-parameterised, is an open question that is currently receiving considerable attention in the research community. We explore this subject from information-theoretic and PAC-Bayesian viewpoints, proposing novel learning algorithms and generalisation bounds

    Tighter risk certificates for neural networks

    Get PDF
    This paper presents an empirical study regarding training probabilistic neural networks using training objectives derived from PAC-Bayes bounds. In the context of probabilistic neural networks, the output of training is a probability distribution over network weights. We present two training objectives, used here for the first time in connection with training neural networks. These two training objectives are derived from tight PAC-Bayes bounds. We also re-implement a previously used training objective based on a classical PAC-Bayes bound, to compare the properties of the predictors learned using the different training objectives. We compute risk certificates that are valid on any unseen examples for the learnt predictors. We further experiment with different types of priors on the weights (both data-free and data-dependent priors) and neural network architectures. Our experiments on MNIST and CIFAR-10 show that our training methods produce competitive test set errors and non-vacuous risk bounds with much tighter values than previous results in the literature, showing promise not only to guide the learning algorithm through bounding the risk but also for model selection. These observations suggest that the methods studied here might be good candidates for self-certified learning, in the sense of certifying the risk on any unseen data without the need for data-splitting protocols.Comment: Preprint under revie
    • …
    corecore