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Abstract

Over-parameterised modern neural networks owe their success to two

fundamental properties: expressive power and generalisation capability.

The former refers to the model’s ability to fit a large variety of data

sets, while the latter enables the network to extrapolate patterns from

training examples and apply them to previously unseen data. This

thesis addresses a few challenges related to these two key properties.

The fact that over-parameterised networks can fit any data set

is not always indicative of their practical expressiveness. This is the

object of the first part of this thesis, where we delve into how the input

information can get lost when propagating through a deep architecture,

and we propose as an easily implementable possible solution the

introduction of suitable scaling factors and residual connections.

The second part of this thesis focuses on generalisation. The reason

why modern neural networks can generalise well to new data without

overfitting, despite being over-parameterised, is an open question that

is currently receiving considerable attention in the research community.

We explore this subject from information-theoretic and PAC-Bayesian

viewpoints, proposing novel learning algorithms and generalisation

bounds.
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Chapter 1

Introduction

Since the first conception of a programmable computer, people have been curious about the

possibility of machines acquiring intelligence (Lovelace, 1842). At present, it has become clear

that computers can efficiently perform calculations and tasks practically unsolvable for any

human. However, implementing algorithms to execute simple actions that are part of our

daily life, such as recognising objects or comprehending spoken sentences, presents a more

significant challenge, as it requires expressing our intuitive and subjective understanding in a

formal manner. Indeed, early attempts to build a computer, whose knowledge of the world is

directly hard-coded in a formal language by a human developer, so far has fallen short of a

major success: in order to learn a machine must “acquire [...] knowledge by extracting patterns

from row data” (Goodfellow et al., 2016), a capability known as machine learning.

Neural networks have shown the ability to encode knowledge from external environments

autonomously. Behind this success is the development of the backpropagation algorithm, which

allows to efficiently train multi-layer architectures capable of learning their own representations

rather than relying on human-engineered features. Indeed, modern neural networks are

structured as the sequential composition of simple parameterised functions, enabling different

layers to learn increasingly complex relationships between inputs and outputs. This hierarchical

architecture allows the network to extract and combine different types of information from the

input, leading to the emergence of more abstract and useful features (LeCun et al., 2015).

For the vast majority of the current state-of-the-art neural networks, the model parameters

outnumber by far the training examples available for their tuning. From a mathematical

perspective, this translates into a highly complex setting, for which finding rigorous statistical

1
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performance guarantees is still a major open problem (Zhang et al., 2017). Nevertheless, the

tremendous empirical success has made multi-layer over-parameterised neural architectures

the standard first choice for several learning tasks in various fields, including medicine, email

filtering, speech recognition, computer vision, and marketing, among others (LeCun et al.,

2015).

Neural networks with millions of parameters can accurately approximate a wide range of

functions, a property named expressiveness (or expressivity). This is usually a desirable quality

as it allows the network to learn complex patterns and exhibit great flexibility. However,

conventional wisdom suggests that if a model can approximate any function easily, it is likely

to overfit the training examples and perform poorly when presented with new data. The

ability to extrapolate knowledge from a training data set and apply it effectively to previously

unseen instances is called generalisation. Despite being over-parameterised, neural networks

have demonstrated impressive generalisation capabilities across several tasks. The current lack

of a sound theoretical understanding of this phenomenon, and the subsequent difficulty in

providing a priori statistical performance guarantees, has resulted in the study of generalisation

properties of neural networks being an active area of research (Zhang et al., 2017, 2021).

The main focus of this thesis is on the analysis of expressive and generalisation properties

of over-parameterised neural networks.

1.1 Supervised learning framework

There are several approaches to machine learning, often divided into the three main categories

of supervised learning, unsupervised learning, and reinforcement learning, each suited to

different types of tasks and applications. In this context, supervised learning involves training

models on labelled data, unsupervised learning deals with finding patterns in unlabelled data,

and reinforcement learning entails trial-and-error interactions with an environment. The

present thesis will focus on the supervised learning framework.

We consider a space Z = X × Y, whose elements are pairs z = (x, y) called examples or

instances, made of a feature x ∈ X and its label y ∈ Y. According to the nature of the label

space, we speak of classification when Y is a discrete set, and of regression when the task

consists in predicting a continuous quantity. In the simplest scenario there is a ground truth



1.1. SUPERVISED LEARNING FRAMEWORK 3

deterministic map that associate each x ∈ X to a unique correct label y = f⋆(x). However, we

consider the general case where (x, y) are correlated via a probability measure PZ on Z.

The learning task is to build a function f : X → Y that, given a feature x, can predict its

label y. Usually, the algorithm’s output is a hypothesis h (belonging to some given space H),

which is understood to parameterise a function fh : X → Y. In order to gauge how well each

hypothesis performs on the examples in Z, we are given a loss function ℓ : H×Z → R. We

can interpret ℓ(h, z) as a measure of how far the model prediction fh(x) is from the actual

label y of x. Typical loss functions are the 0/1 loss (sometimes called misclassification loss) for

classification, which is defined as ℓ(h, z) = 1 if fh(x) ̸= y and 0 otherwise, and the quadratic

loss ℓ(h, z) = ∥fh(x)− y∥2/2 for regression. Ideally, one would like to find a hypothesis h that

minimises the population loss

LZ(h) = EPZ
[ℓ(h, Z)] . (1.1)

In practice, the law PZ is unknown and for our task we are only given a data set s =

{(xi, yi)}mi=1 ∈ Zm, consisting of m labelled examples, typically drawn from a distribution PS

on Zm. Often, we will assume that the training data set consists of m independent samples

from PZ , or from some noisy version of it. As we have only access to a reduced amount of

information about PZ , we cannot directly evaluate the population loss. A common proxy for

this quantity is the empirical loss, obtained by averaging ℓ on the training data set s,

Ls(h) =
1

m

∑

z∈s
ℓ(h, z) . (1.2)

A typical machine learning strategy is to consider an algorithm that attempts to minimise

the empirical loss, namely to find a hypothesis h⋆ such that, for all h ∈ H,

Ls(h⋆) ≤ Ls(h) .

From a practical perspective, computing exactly a global minimiser is intractable for most

problems of interest, as Ls is often a highly non-convex function of h. Consequently, the

standard approach consists of running computationally efficient optimisation algorithms that

return a proxy for h⋆.

In the training of neural networks, a typical choice is to opt for iterative first-order methods,
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which use the derivative of the optimisation objective Cs (usually equal to Ls or a regularised

version of it). A vanilla example is the gradient descent algorithm, where one fixes an initial

hypothesis h0 and then updates it iteratively as

hk+1 = hk − η∇Cs(hk) ,

where η is a hyper-parameter fixed before the training and called learning rate. Under suitable

regularity and convexity conditions on Cs, it is known that the gradient descent converges

to the global minimum h⋆ of the optimisation objective at a fast rate, i.e., polynomial time

(Bubeck, 2015). Although these assumptions are known not to hold in many practical settings,

in the context of machine learning, first-order methods are often highly effective and typically

sufficient to achieve good model performance. Variants of gradient descent, such as stochastic

gradient descent (SGD) or AdaGrad, are the de facto standard choice for the training of neural

networks (Goodfellow et al., 2016).

1.2 Neural networks

In a nutshell, a neural network is a parameterised function with a characteristic structure,

consisting in the sequential composition of elementary building blocks. To give a concrete

explicit example, we consider the case of a fully-connected feed-forward architecture. The input

vector x is mapped to its output y = F (x) by going through a sequence of transformations,

typically an affine map composed with a non-linear function. More precisely, let

F (x) = uL(x) ;

ul(x) = wlϕ(ul−1(x)) + bl ;

u0(x) = w0x+ b0 .

(1.3)

Each ul is a network’s layer, a vector whose component are usually referred to as nodes. The

internal layers {u0, . . . , uL−1} are the so-called hidden layers. The width of the layer l is

defined as the number of nodes of ul, and often denoted as nl, while the depth is the number

of hidden layers (i.e., L). The parameters of the model are h = {(wl, bl)}Ll=0: each wl is a

matrix, named weight, while every bl is a vector, called bias. ϕ denotes the activation function
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of the network, usually a real mapping that is applied component-wise to all the nodes of the

hidden layers. A typical example of activation function is the rectified linear unit (ReLU),

defined as ϕ(x) = max{0, x}.

As a matter of fact, most of neural networks used for practical applications have considerably

more complex architectures than the basic one outlined above. They often employ convolutional

layers, residual connections, batch normalisation, pooling, as well as other methods and

techniques. Nevertheless, at their core, they all rely on a sequential structure, where the input

undergoes a series of elementary transformations to produce the output.

As mentioned earlier, the training is usually performed via some gradient-based optimisation

method, which requires the practitioner to select an initial configuration h0 for the parameters.

Typically, this is done by drawing h0 from some simple distribution, as choosing its value

deterministically could potentially bias the networks towards unwanted symmetries (Goodfellow

et al., 2016). The network’s parameters are then updated in the direction of steepest descent

of the optimisation objective.

1.3 Infinite-width limit and Gaussian behaviour

Modern neural networks are made of layers featuring millions of parameters, making an exact

analysis of their learning dynamics unfeasible in practice. To address this issue, numerous

studies have attempted to identify effective strategies to gain a better understanding of the

learning process. One promising approach relies on analysing an approximation of the actual

model, which still retains its general behaviour but has the great advantage of being tractable

in practice. One example in this sense is the infinite-width asymptotics.

For a simple fully-connected feed-forward network in the form (1.3), the infinite-width

limit consists in taking each layer’s width nl to infinity. However, alternative width definitions

allow extending this framework to more general architectures. Different asymptotic regimes

for a neural network’s behaviour are observed depending on how the parameters and learning

rate scale with the width (see the discussion in Yang and Hu, 2021). This thesis will primarily

focus on the Gaussian regime, where the network’s output behaves, at the initialisation, as a

Gaussian process.

The first connection between neural networks and Gaussian processes was drawn by Neal
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(1995), who considered a fully-connected single-hidden-layer network whose parameters are

initialised following independent normal distributions. They showed that, before the training,

the output behaves as a centred Gaussian process1, labelled on the input space. This property

allows for the study of the output in terms of a covariance function, which only depends on the

network’s activation function and on the variances of weights and biases at the initialisation. In

a later work, Lee et al. (2018, 2019) established that a similar conclusion holds for multi-layer

fully-connected architectures, where the covariances can be computed recursively. These results

were then extended to networks with convolutional layers by Arora et al. (2019), Novak et al.

(2019), and Garriga-Alonso et al. (2019), and to more general architectures by Yang (2019b)

(introducing the tensor program formalism later expanded and popularised by a series of

papers on wide networks by the same author; Yang, 2019a, 2020a; Yang and Littwin, 2021;

Yang, 2020b; Yang and Hu, 2021; Yang et al., 2021). From a practical perspective, wide (but

finite-size) networks exhibit an almost Gaussian behaviour. This fact was shown empirically

by Lee et al. (2019, 2020) and various subsequent papers, while several works give finite size

corrections to the asymptotic limit (e.g., Antognini, 2019; Basteri and Trevisan, 2022).

In a nutshell, the output and each hidden node of an infinitely wide neural network behave

like independent Gaussian processes at the initialisation. The idea behind this result is quite

intuitive. To see things more explicitly, we consider a simple fully-connected feed-forward

architecture (1.3), where the parameters are initialised as

wl
ij ∼ N (0, σw

2/nl−1) ; bli ∼ N (0, σb
2) ,

with σw and σb denoting some positive standard deviations, n−1 the input dimension. In this

way, each node in the layer l is a sum of independent identically distributed random variables

coming from the previous layer. If the number of nodes in the layer l − 1 tends to infinity, by

the central limit theorem we get that, for each fixed input, the output has a Gaussian law.

However, as pointed out by Matthews et al. (2018), things are more delicate if we want to

conclude on the Gaussianity of the whole process. In particular, one shall pay attention to

the order with which the widths of different layers are taken to infinity, and to which type

1A Gaussian process labelled on X is a family of random variables {Tx : x ∈ X} such that for any
finite set {x1, . . . , xn} ⊂ X , (Tx1 , . . . , Txn) follows a multinormal distribution. Interestingly, the law of a
Gaussian process is entirely determined by its mean function M(x) = E[Tx] and its covariance function
Q(x, x′) = E[TxTx′ ]−M(x)M(x′).
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of convergence holds. Then, one has to deal with the fact that the input space might be

infinite, in general even uncountable, a question often neglected in the literature. In Matthews

et al. (2018), the authors formally proved that, when all the widths of the layers l ∈ [1 : L]

are brought to infinity simultaneously, the network’s output converges in law to a centred

Gaussian process, provided that the input space is countable. Further rigorous analysis can be

found in Yang (2019b,a), where the convergence is proven using the tensor programs formalism

for a wide range of architectures but under the hypothesis of a finite input set. Finally, in

later works, Hanin (2021) and Bracale et al. (2021) provided convergence proofs holding with

uncountable input spaces.

Having a good understanding of wide networks at the initialisation can be helpful in

practice. For instance, it can help set the optimal hyper-parameters for the training. For

example, a careful choice of σb and σw (the standard deviation for the parameters at the

initialisation) can lead to faster and better training for deep architectures (Schoenholz et al.,

2017; Hayou et al., 2019b). More recently, Yang et al. (2021) built on the infinite-width

asymptotic analysis to propose a hyper-parameter tuning strategy for large models.

As a final remark, when the learning rate is small enough (scales inverse-proportionally

with the width), an infinitely wide neural network obeys simple linear dynamics in functional

space. Indeed, the training evolution follows a kernel gradient descent governed by the so-called

neural tangent kernel (NTK). This result was first established by Jacot et al. (2018) and later

extended, refined, and generalised (e.g., Lee et al., 2019; Yang and Littwin, 2021).

1.4 Expressiveness

Intuitively, a large number of parameters leads to high expressive power. It has been known

since the late ‘80s that shallow neural networks (i.e., with arbitrary width and bounded depth)

are universal approximators (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989). This

means that for a variety of relevant functional classes F and for any required level of precision,

a wide enough shallow neural network can approximate all functions in F . Similar results

were later shown for architectures with fixed width and unrestricted depth (Lu et al., 2017;

Hanin and Sellke, 2018; Kidger and Lyons, 2020).

Recently, a popular research trend has been to compare the expressive power of deep versus
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shallow neural networks. For instance, Montufar et al. (2014) and Poole et al. (2016) showed

that a network’s expressiveness scales exponentially with the depth, whilst several works have

pointed out that it is possible to construct functions easily approximable by deep networks

but requiring far much more complex shallow architectures to achieve the same accuracy (e.g.,

Telgarsky, 2015, 2016; Cohen et al., 2016; Eldan and Shamir, 2016; Safran and Shamir, 2017;

Rolnick and Tegmark, 2018).

Although the above universality results imply that a deep and large network can almost

perfectly fit any data set, practical issues can arise when training very deep architectures.

This suggests that mere universal approximation results are not always enough to gauge the

actual expressiveness that a model can practically achieve (see Section 1.6.1 and Chapter

2 for further discussion). In a seminal work, Schoenholz et al. (2017) pointed out that the

network-equivalent Gaussian process of a wide architecture becomes trivial at the initialisation,

as the number of layers approaches infinity. In simple terms, each randomly initialised layer

adds noise to the input, and for a large number of layers this can cause the output to forget

about its input, becoming a constant or mere noise. This loss of input information during

the forward propagation is exponential in the depth and brings about trainability issues

(Schoenholz et al., 2017). Interestingly, a careful choice of the variances of the parameters at

the initialisation (Schoenholz et al., 2017; Hayou et al., 2019b), or conditions of orthogonality

on the initial weight matrices (Hu et al., 2020), allow the input information to propagate

deeper through the network and lead to better training results in practice.

1.5 Generalisation

In machine learning, generalisation refers to a model’s ability to perform accurately on new and

unseen examples after training on a limited data set. Until recently, conventional wisdom had it

that there must be a trade-off between expressiveness and generalisation, since a model with too

high expressive power could easily overfit noise in the training data, thereby failing to capture

the underlying meaningful patterns. Nonetheless, modern neural networks have challenged

this traditional belief: in spite of their over-parameterisation, they can generalise extremely

well. This fact has made apparent that a more comprehensive theoretical framework is needed,

as our current mathematical tools are insufficient to provide a satisfying understanding of this
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phenomenon.

Generalisation bounds are a fundamental tool that aims at quantifying the gap between

the expected performance of the algorithm on new data (the population loss LZ defined in

(1.1)) and the one on the training examples (the empirical loss Ls given by (1.2)). These

bounds are useful in practice, since they can help assess the effectiveness of machine learning

algorithms, compare different models, and guide the hyper-parameters tuning. Furthermore,

they play a crucial role in understanding theoretical underpinnings of machine learning, such

as the interplay between model complexity, input distribution, and sample size.

The first generalisation bounds relied on measures of the hypothesis space’s complexity,

such as VC dimension or Rademacher complexity (Vapnik, 2000; Bousquet et al., 2004).

However, these bounds are algorithm-independent by nature (i.e., they hold even for the

worst algorithm on the given hypothesis space), a fact that often makes them unsuitable for

dealing with over-parameterised neural networks (Shalev-Shwartz and Ben-David, 2014; Zhang

et al., 2017). To address this issue, recent approaches aim at providing algorithm-dependent

generalisation bounds, which differ from the traditional methods in that they focus on the

hypotheses likely to be selected instead of considering the complexity of the entire hypothesis

space H.

A number of these generalisation bounds rely on the concept of algorithmic stability, which

builds on the intuition that a hypothesis less dependent on the specific data set used for the

training is less susceptible to overfitting and will therefore generalise better. This thesis will

mainly focus on two approaches inspired by this principle, namely information-theoretic and

PAC-Bayesian bounds, which will be introduced in greater detail in the upcoming sections.

Several other methods that leverage the perspective of stability consider how much the output

of a learning algorithm is affected if a single element of the training data set is modified

or removed. This idea was put forth in the late ‘70s by Devroye and Wagner (1979) for

leave-one-out cross-validation and has more recently led to the concept of uniform stability,

proposed by Bousquet et al. (2004). Uniform stability has been shown to hold for a variety of

problems and algorithms (including support vector machines for regression and classification),

and can lead to generalisation bounds in high probability on the draw of the training data set

(Bousquet et al., 2004; Feldman and Vondrak, 2019; Bousquet et al., 2020). Several recent

studies have further refined this technique to establish bounds for iterative algorithms (e.g.,
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Elisseeff et al., 2005; Hardt et al., 2016; Charles and Papailiopoulos, 2018).

It is worth mentioning that the generalisation literature offers several approaches other than

stability, which can also be used in combination with the aforementioned methods. Among

these, we recall bounds based on margin arguments, where not only the predictor’s error

but also its confidence is taken into consideration (e.g., Novikoff, 1962; Cortes and Vapnik,

1995; Bartlett et al., 1998; Langford and Shawe-Taylor, 2002; Bartlett et al., 2005, 2017).

Additionally, there are bounds that leverage the chaining method (Dudley, 1967; Talagrand,

1996), a high-dimensional probability tool that has recently been applied to the PAC-Bayesian

(Audibert and Bousquet, 2004) and information-theoretic (Asadi et al., 2018; Asadi and Abbe,

2020; Clerico et al., 2022b) frameworks (see Section 1.6.3 and Chapter 4 for more details).

Lastly, it is worth mentioning the use of local complexity measures for the hypothesis space,

such as the local Rademacher complexity (Bartlett et al., 2005).

As a final remark, we shall note that the literature on generalisation bounds includes

other results that could not find space in the above overview, such as lower bounds on the

generalisation gap or excess risk bounds that estimate the discrepancy in performance between

the algorithm’s output and the optimal hypothesis h⋆ that minimises the population loss.

However, a discussion of these topics is beyond the scope of the present thesis and has hence

been omitted.

1.5.1 PAC-Bayes

The PAC-Bayesian theory provides a framework to establish generalisation guarantees for

randomised predictors. This entails considering an extension of the setting introduced in Section

1.1, dealing with stochastic algorithms that, given a training set s, produce a distribution

PH|s on H, rather than a hypothesis h. The PAC-Bayesian bounds are upper bounds on the

expected population loss, EPH|S [LZ(H)], that hold with high probability on S, the randomly

drawn training data set. The guiding principle is the idea of stability introduced earlier: a

distribution PH|S that does not depend too heavily on the specific training set S is likely to

yield good generalisation. In practice, this ‘dependence’ is often measured via the relative
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entropy,

KL(PH|S∥P⋆
H) =





EPH|S

[
log

dPH|S
dP⋆

H

]
if dPH|S ≪ dP⋆

H ;

+∞ otherwise,

between an arbitrary distribution P⋆
H (whose choice cannot rely on S) and the final distribution

PH|S . P⋆
H and PH|S are usually referred to as prior and posterior respectively, in analogy

with the Bayesian literature (see Germain et al. (2016) for a discussion on connections and

differences between the PAC-Bayesian framework and Bayesian inference).

The PAC-Bayesian theory originated in the seminal work of Shawe-Taylor and Williamson

(1997) and McAllester (1998). Its bounds are usually classified as either empirical or oracle.

In this thesis, we will concentrate solely on the former ones. We refer to Alquier (2021) for an

overview of the latter ones, which were introduced by Catoni (2003, 2004, 2007) and compare

the randomised predictor of interest to the hypothesis minimising the population loss.

It is often possible to explicitly evaluate the empirical PAC-Bayesian bounds, as long the

expected empirical loss EPH|S [LS(H)] and the relative entropy between prior and posterior

can be computed. The earliest of these results were derived by McAllester (1998, 1999) and

typically scale as O
(√

KL(PH|S∥P⋆
H)/m

)
, where m is the dimension of the training set. Later

works (Langford and Seeger, 2001; McAllester, 2003a; Maurer, 2004; Catoni, 2007; Tolstikhin

and Seldin, 2013; Mhammedi et al., 2019) proposed and discussed new bounds that scale at

the “fast rate” 1
m for small enough empirical losses. A more formal theory and a broader

framework, as well as novel bounds and techniques, were developed in Catoni (2004, 2007),

which after almost two decades still remain major references in the field, while Germain et al.

(2009) provided a “general recipe” to establish PAC-Bayesian bounds. The framework was also

applied to Gaussian process classification by Seeger (2002) and coupled with margin techniques

(e.g., Langford and Shawe-Taylor, 2002; McAllester, 2003b; Neyshabur et al., 2018; Biggs and

Guedj, 2022; Biggs et al., 2022), chaining methods (Audibert and Bousquet, 2004; Clerico

et al., 2022b), and sparsity argument (e.g., Dalalyan and Tsybakov, 2008; Alquier and Lounici,

2010; Alquier and Biau, 2013; Guedj and Alquier, 2013; Chérief-Abdellatif, 2020). Most of the

results mentioned so far apply to bounded losses for classification. Among the works dealing

with regression and unbounded losses, we mention Audibert (2004), Alquier (2008), Audibert

and Catoni (2011), Rivasplata et al. (2020), and Haddouche et al. (2021). We refer to Guedj

(2019) and Alquier (2021) for recent surveys of the PAC-Bayesian literature.



12 CHAPTER 1. INTRODUCTION

Recently, Dziugaite and Roy (2017) prompted a new surge of interest in the PAC-Bayesian

framework. They implemented the training of a stochastic neural network, whose parameters

follow independent Gaussian variables with learnable means and variances, by using a PAC-

Bayesian bound as the optimisation objective. Actually, the idea of training an algorithm by

optimising a PAC-Bayesian bound over a simple family of posterior (variational PAC-Bayes)

was not a novelty (e.g., Langford and Caruana, 2002; Germain et al., 2009; Alquier et al.,

2016). However, Dziugaite and Roy (2017) were the first to successfully apply it to obtain

non-vacuous bounds for over-parameterised multi-layer architectures. Follow-up works have

further improved these empirical bounds, with experiments on image recognition tasks, such

as MNIST, CIFAR, and ImageNet (e.g., Zhou et al., 2018; Pérez-Ortiz et al., 2021b,a; Clerico

et al., 2022a, 2023a). Chapter 3 focuses on some algorithms and techniques for this kind of

PAC-Bayesian training.

The tightest bounds from these experiments were achieved with the use of data-dependent

priors, which can be obtained by splitting the data set into two: one part is used to choose

a prior, and the other to tune the posterior and evaluate the bounds (a method originally

proposed by Seeger (2002) and Parrado-Hernández et al. (2012)). Other possible approaches

to make the prior data-dependent are the localisation technique (Catoni, 2007) and differential

privacy (Dziugaite and Roy, 2018). We refer to Dziugaite et al. (2021) for further discussion

on the role of data in the choice of the prior.

As a last remark, we mention disintegrated PAC-Bayesian bounds, holding in high proba-

bility for a realisation of a predictor drawn from the posterior distribution. They will be the

object of Chapter 5 and will be introduced in Section 1.6.4.

A simple concrete example To give a more tangible idea of what a PAC-Bayesian

bound looks like, we give an example that can be seen as the result of a refined union bound.

Assume that ℓ is bounded in [0, 1], fix δ ∈ (0, 1) and λ > 0, and let PS = P⊗m
Z . By Hoeffding’s

inequality (see, e.g., Boucheron et al., 2013), for any fixed h ∈ H (chosen independently of S)

PS

(
LZ(h) ≤ LS(h) +

1√
8m

(
λ+

log(1/δ)

λ

))
≥ 1− δ .

For a finite hypothesis space H = {h1 . . . hN}, via a simple union argument, we can obtain a

generalisation bound that holds uniformly for all the hypotheses, so that we can choose the
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best h according to the training set. We have

PS

(
∀h , LZ(h) ≤ LS(h) +

1√
8m

(
λ+

logN + log(1/δ)

λ

))
≥ 1− δ .

Refining the argument, one can extend the bound to the countable case (Bousquet et al., 2004).

This involves defining a prior measure P̂H on H, and yields

PS

(
∀h , LZ(h) ≤ LS(h) +

1√
8m

(
λ+

log(1/P̂H(h)) + log(1/δ)

λ

))
≥ 1− δ .

Note that this generalises the previous result: when H is finite, the uniform distribution

(P̂H(h) = 1/N for all h) leads to a factor logN .

In the uncountable case, things get somewhat trickier, as most hypotheses will likely have

a zero probability mass under P̂H . However, we can find something meaningful by considering

a stochastic algorithm that picks a distribution PH|S instead of selecting a single hypothesis.

We can then upper bound the expected value of the population loss as

PS

(
∀PH|S , EPH|S [LZ(H)− LS(H)] ≤ 1√

8m

(
λ+

KL(PH|S∥P̂H) + log(1/δ)

λ

))
≥ 1− δ ,

which was originally derived by Catoni (2003) and whose proof’s main ingredients are the

sub-Gaussianity2 of the bounded loss ℓ and the variational formulation of the relative entropy

(see, e.g., Boucheron et al., 2013). From this last result, we recover the bound for the countable

case by looking only at posteriors in the form PH|S = δh for h ∈ H.

1.5.2 Information theoretic bounds

The PAC-Bayesian bounds introduced in the previous section hold with high probability on

the draw of the training data set. An alternative approach to control the generalisation is to

look at guarantees in expectation under PS . This is the case for several information-theoretic

generalisation bounds. As the name suggests, this approach considers the generalisation

problem from an information-theory standpoint, viewing the algorithm as a noisy channel

connecting the training data set and the hypotheses. Inspired by the concept of stability

introduced earlier, these bounds build on the intuition that an excessive amount of shared

2A random variable U is σ-sub-Gaussian if logE[eλU ] ≤ λE[U ] + λ2σ2

2
, for all λ > 0.



14 CHAPTER 1. INTRODUCTION

information between h and s will likely result in poor generalisation.

Mathematically, the idea is quite simple: one needs to compare the joint law of H and S

(which we denote as PH,S) with the product of the two marginals, PH⊗S = PH ⊗ PS .
3 The

starting point is to notice that we can write the expected generalisation gap as

G = EPH,S
[LZ(H)− LS(H))] = EPH,S

[LS(H)]− EPH⊗S
[LS(H)] .

Under suitable regularity conditions on the loss, we can control this object in terms of how

much PH,S and PH⊗S are ‘far apart’.

The first bound of this kind, due to a 2016’s version of Russo and Zou (2019) and then

re-derived by Xu and Raginsky (2017) in a more general setting, is in the form

|G| ≤
√
I(H;S)

2m
, (1.4)

where I denotes the mutual information I(H;S) = KL(PH,S∥PH⊗S), and holds under the

assumption of sub-Gaussianity4 of ℓ(h, Z), under the examples’ distribution PZ for all h.

Several variants of (1.4) have been proposed in the literature, often to overcome the fact

that the mutual information bound is infinite for a deterministic algorithm. On the one hand,

different measures of the shared information between H and S have been proposed. For

instance, under suitable Lipschitz regularity for the loss, we can obtain bounds based on the

Wasserstein distance (Lopez and Jog, 2018; Wang et al., 2019), while conditions weaker than

sub-Gaussianity yield bounds building on Rényi α-divergences (Esposito et al., 2021). On

the other hand, several strategies allow for sharpening the mutual information bound. In

this line, we find bounds based on conditioning on a supersample (Steinke and Zakynthinou,

2020) or considering the mutual information between h and each training input (Bu et al.,

2019). Another possible approach makes use of the chaining technique, an idea first proposed

by Asadi et al. (2018) and that we further developed in Clerico et al. (2022b) (see Section

1.6.3 and Chapter 4 for more details). Connections with the PAC-Bayesian literature have

also been explored, for instance in Grunwald et al. (2021). Finally, Lugosi and Neu (2022)

uses arguments from convex analysis and online learning to build novel information-theoretic

3Here, the marginal PH is defined as the measure satisfying PH(A) = EPS [PH|S(A)], for any event A on H.
4See footnote 2.
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results.

We remark that these information-theoretic bounds are mostly theoretical tools, as they

are hard to evaluate in practice and involve expectations under the unknown training data

distribution PS . Nevertheless, they provide natural intuition on the mechanism of the learning

process, and, as a result, they represent a very active research area. Moreover, recent works

have built on them to derive empirical bounds for specific algorithms, such as Langevin

dynamics, stochastic gradient Langevin dynamics, and stochastic gradient descent (Bu et al.,

2019; Haghifam et al., 2020; Rodŕıguez-Gálvez et al., 2020; Neu et al., 2021).

A notable line of research around information-theoretic bounds concerns whether they can

characterise min-max rates5 for specific learning problems. For binary classification, although

the vanilla mutual information bound from Russo and Zou (2019) fails in this task for specific

hypothesis classes (Bassily et al., 2018), the conditionally mutual information bound by Steinke

and Zakynthinou (2020) achieves this goal (Haghifam et al., 2021). However, for problems

outside binary classification, Haghifam et al. (2023) recently showed that these bounds cannot

obtain min-max rates for stochastic convex optimisation. This fact has raised concerns on

whether information-theoretic and PAC-Bayesian approaches are suitable tools for the study

of generalisation for over-parameterised models and if refining and combining these approaches

with other techniques would overcome this issue.

1.6 Contributions

Overall, this thesis contributes to various aspects of deep learning and statistical learning theory,

introducing novel methods to enhance model performance and deepen our understanding of

the behaviour of over-parameterised neural networks.

The work presented in the chapters that follow led to five separate papers. The work on the

expressive power of infinitely wide and deep residual architectures that we published in Hayou

et al. (2021) is revisited in Chapter 2, with some omissions and supplementary results included

to emphasise my contributions. On the other hand, Chapters 3 to 5 report four papers in their

entirety. Chapter 3 includes Clerico et al. (2022a) and Clerico et al. (2023a), both discussing

5The min-max rate is a classical way to measure the ‘learnability’ of a problem. It characterises how fast the
population loss goes to zero, with the number of available training examples, for the best learning algorithm in
the worst-case scenario (i.e., when the target is the most difficult to learn given the available data).
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PAC-Bayesian training techniques that exploit the Gaussianity of a network’s output. Chapter

4 (Clerico et al., 2022b) establishes a framework to derive information-theoretic bounds based

on the chaining technique. Chapter 5 (Clerico et al., 2023b) proposes disintegrated PAC-

Bayesian bounds that leverage the network’s randomness at the initialisation of models trained

via descent algorithms. Finally, Chapter 6 summarises this thesis’s key results and outlines

possible avenues for future research.

1.6.1 Stable ResNets (Hayou et al., 2021)

The equivalent Gaussian process of a wide network’s output becomes trivial in the limit of an

infinite number of layers (Schoenholz et al., 2017). From an information-theoretic perspective,

the network is a noisy channel connecting input and output, the noise due to the random

initialisation sums up layer by layer and, as the depth of the architecture diverges, causes the

final output to forget its original input completely. This phenomenon manifests as follows: the

output is either a random constant or entirely chaotic (i.e., discontinuous almost everywhere),

a dichotomous behaviour often referred to as order-chaos phase transition. A consequence

of the output’s triviality at the initialisation is that networks in the infinite-depth regime

cannot be trained, at least with gradient-based algorithms: heuristically, a network which is

‘blind’ about its input cannot learn anything. More rigorously, as the number of layers goes

to infinity, the output’s gradient (with respect to the parameters) can be shown to vanish or

explode almost surely.

A reasonable attempt to prevent the input information’s loss is the introduction of skip

connections6 that map the identity from one layer to the next one. An architecture with this

property is usually called a residual network (ResNet). However, a vanilla implementation of

this approach translates into the output’s explosion as the depth grows.

In our work, we propose to overcome this issue by adding suitable layer- and depth-

dependent scaling factors to the architecture. As a simple example, consider a ResNet

6This means modifying (1.3) as ul = ul−1 + wlϕ(ul−1) + bl.
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F : Rp → Rq, defined as

F (x) = uL(x) ;

ul(x) = ul−1(x) +
1√
L

(
wlϕ(ul−1(x)) + bl

)
;

u0(x) = w0x+ b0 ,

where, at initialisation, wl ∼ N (0, σw
2/nl−1) and b

l ∼ N (0, σb
2), with n−1 = p.

In the infinite-width limit, each layer is associated with a centred Gaussian process, labelled

on the input space X . The covariance functions can be evaluated by recursion and, in the case

of a ReLU network (i.e., with ϕ : u 7→ max{0, u}), we can get explicit expressions for them.

In our work, we focus on studying the expressiveness of the output at the initialisation,

in the limit of infinite depth (L → ∞). Using functional analytic tools (reproducing kernel

Hilbert spaces and compact self-adjoint operators theory), we show that skip connections and

scaling factor together allows one to obtain a non-exploding and fully expressive output, in the

sense that the limiting Gaussian process can approximate any function in L2, with non-zero

probability. We then also show that the neural tangent kernel, describing the network’s

evolution during the training, is fully expressive, meaning that the model can fit any dataset.

Lastly, our empirical results, over a range of image recognition tasks, show that introducing

the scaling that we propose can improve the performance of the trained networks.

1.6.2 Gaussian PAC-Bayes (Clerico et al., 2022a, 2023b)

Several recent works (e.g., Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021a,b) have obtained

generalisation guarantees for stochastic classifiers trained by optimising a PAC-Bayesian

bound via gradient descent methods. Often, the model considered is a neural network, whose

parameters H are independently normally distributed, and the training consists in tuning their

means m and standard deviations s (let us call them hyper-parameters). The PAC-Bayesian

prior distribution is defined by the values of m and s at the initialisation, while the final values

of these hyper-parameters characterise the posterior.

On the one hand, in this simple setting, evaluating the relative entropy between prior and

posterior is particularly easy, as we are just considering multivariate normal distributions. On

the other hand, computing the expected empirical loss can be extremely tricky since, in general,
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the law of the output can be very complex. Consequently, the standard practice consists of

sampling, at each training training iteration, a realisation of the parameters H. Then, in the

training objective the expected empirical loss is replaced with its realisation. However, this

approach cannot work if we want to use the 0/1 loss7, which is constant almost everywhere

and hence yields a null gradient for each realisation of the parameters. As a practical solution,

a surrogate loss is often used in the training. However, it is worth noting that if we could

compute the expected empirical loss exactly, we would not need to rely on any surrogate loss,

as the 0/1 loss would bring a non-zero gradient. To have a more concrete intuition of this, we

can imagine what happens if we try to go down the stairs via gradient descent: a single point

(i.e., single realisation) on a horizontal step cannot decide the correct direction to go down,

but a continuous distribution of points has a global view of the stairs.

Wide stochastic networks (Clerico et al., 2023a) We establish that a shallow

stochastic network with a single hidden layer has a Gaussian output in the infinite-width limit.

More precisely, consider a sequence {F (n)}n∈N of stochastic networks Rp → Rq with increasing

width n, defined by

F (n)(x) =
1√
n
W

(n)
1 ϕ

(
1√
p
W

(n)
0 x

)
,

where ϕ is the activation function, and W
(n)
1 (respectively W

(n)
0 ) is a q × n (respectively

n× p) weight matrix, whose components are independent normal random variables with means

m
(n)
1 (respectively m

(n)
0 ) and standard deviations s

(n)
1 (respectively s

(n)
0 ). If we initialise all

components of m
(n)
1 and m

(n)
0 independently from a standard normal N (0, 1), and all the

components of s
(n)
1 and s

(n)
0 at 1, then we have that for each input x

F (n)(x) → N (M(x), Q(x))

as n→ ∞, in probability with respect to the random initialisation and in distribution with

respect to the intrinsic stochasticity of the network. The q-vector M(x) and the (q× q)-matrix

Q(x) are limits of analytic functions of the hyper-parameters.

Under the assumption of a lazy training regime, namely when the hyper-parameters do

not move too much from their initial values, the Gaussian limit holds true even during the

7ℓ(h, z) = 1 if fh(x) ̸= y and 0 otherwise.
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training. For instance, this occurs when the relative entropy between the prior and posterior

distributions (defined by the initial and final values of the hyper-parameters, respectively)

stays of order O(1) as n→ ∞. In particular, if the optimisation objective penalises the growth

of the relative entropy (as is the case with a PAC-Bayesian bound), then the network’s output

will be Gaussian throughout the whole training procedure.

Interestingly, we can exploit this Gaussian limit to perform a PAC-Bayesian training on

the 0/1 loss directly, without the need of a surrogate loss. Indeed, knowing the exact output

distribution allows one to compute both the expected empirical loss on the training data set

and its gradient with respect to the hyper-parameters. However, when we use a finite-width

network, the output’s law is only approximately Gaussian. In our work, we propose to train a

wide network as if its law was exactly Gaussian and analytically compute the gradient descent

step in this approximation. Then, once the training is complete, sampling multiple realisations

of the parameters we can obtain a probabilistic upper bound on the expected empirical loss,

and hence a rigorous generalisation guarantee. Our experiments on the MNIST dataset show

that this approach leads to tighter bounds than the standard PAC-Bayesian methods proposed

in previous studies (Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021a).

Conditionally Gaussian PAC-Bayes (Clerico et al., 2022a) A significant limitation

of the approach that we just presented is that it only ensures the output’s Gaussianity for a

shallow neural network with a single hidden layer. This is because the convergence result is

based on a central limit theorem that assumes the independence of the hidden nodes, which is

no longer true for a network with multiple hidden layers.

However, if the last layer’s parameters are normally distributed, the output is still Gaussian

when conditioned over all the hidden parameters (an idea also exploited in Biggs and Guedj,

2021). Leveraging this, we propose to sample the hidden layers’ parameters at each iteration.

Conditioned on this realisation, the output is Gaussian, and we can perform a gradient step

avoiding the need for a surrogate loss.

This conditionally Gaussian PAC-Bayesian training approach works for rather general

multi-layer stochastic architectures. In our experiments with MNIST and CIFAR10 with

convolutional networks, our method outperformed the previous state-of-the-art PAC-Bayesian

training results reported in Pérez-Ortiz et al. (2021a).
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1.6.3 Chained generalisation bounds (Clerico et al., 2022b)

Many of the information-theoretic bounds from the literature do not consider the dependencies

between different hypotheses. Indeed, it is often the case that if two hypotheses h and h′ are

“close” (according to some notion of distance on H), then they lead to similar generalisation

gaps (i.e., LZ(h)− Ls(h) ≃ LZ(h′)− Ls(h
′)), for most of the training data sets. In order to

take into account this property, Asadi et al. (2018) introduced a mutual information bound

that builds on the chaining technique.

Given a sequence of finer and finer discretisations Hk of the space H, we write as hk the

projection of a hypothesis h on Hk. The main idea behind the chaining is to rewrite the

quantity of interest (here, the generalisation gap) as a telescopic sum. Formally, we have

LZ(h)− Ls(h) = LZ(h0)− Ls(h0) +

∞∑

k=1

[(LZ(hk)− Ls(hk))− (LZ(hk−1)− Ls(hk−1))] ,

where one shall make a rigorous sense of the convergence. Asadi et al. (2018) established a

mutual information bound in the form

G = EPH,S
[LZ(H)− LS(H)] ≤

∞∑

k=1

εk−1

√
2I(Hk;S)/m ,

where each εk is the “length-scale” of the discretisation Hk. The main assumption for this

result is that the differences ℓ(Z, h)− ℓ(Z, h′) are ∥h− h′∥-sub-Gaussian8 under PZ . In this

way, we consider the dependencies between different hypotheses. Note that each term in the

right hand side contains the mutual information between a discretised hypothesis and the

training data set. These quantities are finite (as long as H is bounded), so this chained mutual

information bound can be finite even for a deterministic algorithm.

In our work, we investigate whether it is possible to obtain chained bounds that are not

based on the mutual information. First, we build an abstract framework encompassing several

information-theoretic bounds from the literature. Then, we show that a chained counterpart

corresponds to each of these results.

In order to make things more explicit, let us introduce a notion of function regularity.

Given a generic mapping D that takes two probability distributions P and P̂ on some space

8See footnote 2.
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A, and returns a positive real value (which we might interpret as a measure of dissimilarity

between P and P̂), we say that f : A → R is D-regular with respect to P if, for any P̂, we have

|EP[f ]− EP̂[f ]| ≤ D(P, P̂) .

If one can establish that the loss follows this definition of regularity, it is almost straightforward

to deduce a generalisation bound.

Theorem 1. Assume that s→ Ls(h) is D-regular with respect to PS, ∀h ∈ H. Then

|G| = |EPH⊗S
[LS(H)]− EPH,S

[LS(H)]| ≤ EPH
[D(PS ,PS|H)] .

Different choices of D allow for recovering several results from the literature. For instance,

the mutual information bound from Russo and Zou (2019) follows from the fact that a sub-

Gaussian function is D-regular with D(P, P̂) =
√
2KL(P̂∥P), while we can obtain a Wasserstein

bound from Lopez and Jog (2018) by using that a Lipschitz function is D-regular when D is

the 1-Wasserstein distance.

In order to obtain chained bounds, we need to control how much the loss changes when we

consider two distinct hypotheses. Under suitable conditions, it is enough to ask for a regularity

assumption on the loss’s gradient. Here, we extend the previous definition of D-regularity by

saying that a q-vector-valued function f is D-regular with respect to P if, for every v ∈ Rq

with ∥v∥ = 1, v · f is D-regular with respect to P.

Theorem 2 (Informal). Let H be convex and compact, and let ℓ be regular enough. If

s 7→ ∇hLs(h) is D-regular with respect to PS, ∀h ∈ H, then

|G| = |EPH⊗S
[LS(H)]− EPH,S

[LS(H)]| ≤
∞∑

k=1

εk−1EPH
[D(PS ,PS|Hk

)] .

In particular, this result shows that lifting the regularity assumption from the loss to its

gradient makes it possible to obtain a chained bound. This way, we can recover the chained

mutual information bound (Asadi et al., 2018) and establish the novel chained counterpart of

the Wasserstein bound from Lopez and Jog (2018).

The other main point addressed in our work is whether the chained bounds are tighter

than their unchained counterparts. There is no general answer to this question. However,
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although the assumptions required for the chained bounds are somewhat stronger, there are

situations where the chained bound performs much better. For instance, with the help of a

few simple toy models, we show that this is the case when PH is highly concentrated in a tiny

region of H.

1.6.4 Deterministic PAC-Bayes under gradient descent (Clerico

et al., 2023b)

One peculiarity of the PAC-Bayesian bounds is that they require the model to be stochastic,

which is not the standard setting in many cases. However, if we consider the case of the

so-called “deterministic” neural networks, the initialisation is usually drawn from some simple

distribution. In our work, we propose a PAC-Bayesian bound that only requires the model’s

initialisation to be random.

Most PAC-Bayesian bounds in the literature are in expectation (under the posterior).

However, there are also disintegrated results, which hold with high probability with respect

to the joint law of the training data set and the parameters (under the posterior). A simple

example is the following bound (Alquier, 2021), which requires the loss to be bounded in [0, 1]

and holds with probability higher than 1− δ on the pair (S,H):

LZ(H) ≤ LS(H) +
λ

8m
+

log
dPH|S
dP⋆

H
(H) + log 1

δ

λ
.

Here, P⋆
H is a data-agnostic prior, while PH|S any arbitrary posterior distribution absolutely

continuous with respect to P⋆
H .

Let us consider a training performed by continuous time gradient descent:

∂tHt = −∇C(Ht) , (1.5)

where C denotes some objective function (e.g., LS). This ODE defines a flow in the hypothesis

space and, in particular, induces a family of probability measures PHt , obtained as the push-

forwards of PH0 under this flow: for all t we have Ht ∼ PHt . Now, fix a time horizon T > 0

and consider the algorithm that outputs HT . If we say that H0 ∼ P⋆
H (i.e., the prior coincides

with the initialisation PH0), we get that the posterior PH|S coincide with PHT
, and sampling
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HT from it can be obtained by first sampling H0 from the prior PH0 , and then following the

ODE dynamics up to time T .

For simplicity, let us assume that, for all t, PHt admits a Lebesgue density ρt. Fixed T , we

have that with probability higher than 1− δ on (S,H0) ∼ PS ⊗ PH0 ,

LZ(HT ) ≤ LS(HT ) +
λ

8m
+

log ρT (HT )
ρ0(HT ) + log 1

δ

λ
.

From the continuity equation ∂tρt(h) = ∇ · (ρt(h)∇C(h)), with a little algebra we obtain

that ∂t(log ρt(Ht)) = ∆C(Ht), with ∆ denoting the Laplacian. This allows us to rewrite

log
ρT (HT )

ρ0(HT )
= log

ρ0(H0)

ρ0(HT )
+

∫ T

0
∆C(Ht)dt

and hence obtain the bound

LZ(HT ) ≤ LS(HT ) +
λ

8m
+

log ρ0(H0)
ρ0(HT ) +

∫ T
0 ∆C(Ht)dt+ log 1

δ

λ
. (1.6)

Usually, the term log ρ0(H0)
ρ0(HT ) can be easily evaluated, as it solely requires the knowledge of the

initialisation density ρ0. Moreover, in principle, the integral is computable as well, as we only

need the value of a local quantity (the Laplacian) along the trajectory followed by Ht during

the training.

The bound (1.6) is a simple instance of the more general results that our approach can

produce for the continuous-time dynamics. In our work, we also show that under suitable

smoothness conditions on the training objective, it is possible to obtain similar bounds for

discrete-time dynamics, such as the often-used stochastic gradient descent algorithm. We

discuss these and other results, and compare them with others from the literature.



Chapter 2

Stable and expressive ResNets

2.1 Preamble

Most of this chapter constitutes the core of Hayou et al. (2021), a paper accepted at AISTATS

2021, which is the outcome of a collaboration with two other graduate students in the Statistics

department: Soufiane Hayou and Bobby He. I contributed to the theoretical side of the project,

in particular, mostly on the study of expressiveness and universality.

My major contributions to Hayou et al. (2021) are probably Proposition A1 (corresponding

to Proposition 2 here), allowing for the extension of the universality results from the sphere to

a generic compact K ∈ Rp, the whole discussion about the uniform scaling and its continuous

limit, and the rigorous formulation of the duality universality/expressiveness (see Lemma 3 in

Hayou et al. (2021) and its stronger versions, Lemma 2 and Lemma 4, in this chapter).

In order to emphasise my actual contribution to the project, some of the results of Hayou

et al. (2021) are omitted: the study of a PAC-Bayesian bound for Gaussian process kernel

regression and the discussion on the explosion and stabilisation of the gradient, which were

entirely due to Soufiane. Also, the empirical results of Hayou et al. (2021) are only quickly

summarised at the end of this chapter, as they were mainly performed by Bobby, with solid

help from Soufiane.

In contrast, the findings presented in Section 2.5.1 are unpublished and were obtained

before our collaboration began. At that time, I was considering the expressiveness of uniformly

rescaled infinitely deep ResNets, by examining the network-equivalent Gaussian process

with elementary tools from functional analysis, without resorting to reproducing kernels.

24
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Additionally, the discussion on the equivalence between expressiveness and universality, as

well as some other expressiveness results presented here, are extensions of what was reported

in Hayou et al. (2021).

The details of my contribution to the paper can also be found at the end of this chapter.

2.2 Introduction

A popular approach for studying over-parameterised networks involves focusing on the limit of

infinite width. For fully-connected multi-layer architectures, this means taking the number

of nodes in each hidden layer to infinity. Although this is impossible to achieve in practice,

infinitely wide networks possess many interesting properties that can help grasp the complex

behaviour of large (but finite-size) networks. One remarkable fact is that, at the initialisation,

infinitely wide networks behave like Gaussian processes, a result first established by Neal

(1995) for the 1-layer case and later extended to multi-layer architectures (Lee et al., 2018;

Matthews et al., 2018; Lee et al., 2019). From a theoretical standpoint, a remarkable feature

of Gaussian processes is that their behaviour is fully captured by their mean and covariance

functions, which can be evaluated recursively layer by layer (Lee et al., 2018).

Interestingly, contrary to the naive belief “deeper is more expressive”, Schoenholz et al.

(2017) pointed out that the network-equivalent Gaussian process becomes trivial as the number

of layers of a network goes to infinity: the output forgets about the input, thus lacking

expressive power. From an information-theoretic perspective, each randomly initialised layer

acts as a noise source, and consequently, the output of the last layer loses all information from

the original input.

One natural way to tackle this issue is to introduce skip connections to propagate the input

information deeper into the networks. Architectures of this kind are usually referred to as

residual networks (in short, ResNets). However, standard ResNets are not a viable solution in

the large width and depth regime, primarily because the output tends to explode with depth.

Even when normalisation factors are added to prevent divergence, the dependence on the input

remains trivial. This fact implies the impossibility of effectively training deep networks unless

more involved and computationally expensive normalisation techniques are used (e.g., batch

normalisation).
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To address the above concerns, we introduce in Hayou et al. (2021) a new class of residual

networks, named stable ResNets, which we show to preserve expressiveness and trainability

even for diverging depth. The key idea is to introduce layer- and/or depth-dependent scaling

factors to the ResNet blocks, allowing for better control over the noisy contribution of each

layer. It is worth mentioning that the idea of a depth-dependent scaling had already been

previously proposed in the literature (De and Smith, 2020; Zhang et al., 2019). However, to the

best of our knowledge, prior to our work no analysis of the expressiveness of the infinite-depth

limit had been performed in this setting, and no layer-dependence had been considered.

This chapter provides a detailed exposition of our main theoretical findings. Section 2.3

presents basic definitions and properties of reproducing kernels and Gaussian processes. It

mainly serves as a recall of results from the related literature, an exception being the discussion

on kernels’ expressiveness (Definition 7, Lemma 2, and Lemma 4). Section 2.4 considers the

Gaussian limit of wide networks. Most of the results therein are well-known in the literature,

except for Section 2.4.3, where Proposition 1 is based on one of the main results (Proposition

A1) of our paper Hayou et al. (2021). The core of this chapter is Section 2.5, which introduces

and analyses stable ResNets. Section 2.5.6 briefly introduces the neural tangent kernel and

gives a quick overview of the behaviour of the stable ResNets in the NTK regime. Finally,

Section 2.5.7 quickly summarises the experimental results from Hayou et al. (2021), validating

our theory.

2.3 Mathematical preliminaries

For this whole section, unless otherwise specified, we let K be a compact set in Rp (with p a

positive integer) and µ a finite Borel measure on K. Moreover, x and x′ will always denote

arbitrary elements in K. Finally, the notation [a : b] denotes the set of integers in [a, b], where

a, b ∈ N and b ≥ a.

2.3.1 Kernels

The literature is rich in different (and sometimes contradicting) definitions of kernel. Usually,

given a set S, one defines a kernel as a real (or complex) function Q, on S × S, which is

symmetric and non-negative definite. However, in the present work, we will limit ourselves to
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studying continuous kernels on compact subsets of Rp (often referred to as Mercer’s kernels).

We have hence opted (as in (Hayou et al., 2021)) for a less general definition.

Definition 1 (Kernel). A kernel on K is a continuous function Q : K2 → R that is symmetric

in its arguments (i.e., Q(x, x′) = Q(x′, x) for all x, x′ ∈ K) and non-negative definite, meaning

that for all positive integers n ≥ 1, for all subsets K̂ = {x1 . . . xn} ⊂ K, the Gram matrix

(Q(xi, xj))i,j is non-negative definite.1

Kernels are closely related to integral operators.

Definition 2 (Induced integral operator). Let Q be a kernel on K and µ a finite Borel measure

on K. We define the induced integral operator Tµ(Q) on L2(K,µ) as

Tµ(Q)φ(x) =

∫

K
T (x, x′)φ(x′) dµ(x′) .

Lemma 1. Let Q : K2 → R be a continuous symmetric function. Given any finite Borel

measure µ on K, the induced operator Tµ(Q) is bounded, compact, and self-adjoint.2 Moreover,

Q is a kernel if, and only if, for all finite Borel measures µ on K, Tµ(Q) is non-negative

definite, which means ⟨Tµ(Q)φ,φ⟩ ≥ 0 for all φ ∈ L2(K,µ).

We refer to Section 2.6.1 for a proof of the above characterisation.

A classical result is the following decomposition (e.g., Paulsen and Raghupathi, 2016).

Theorem 3 (Mercer). Let Q be a kernel on K and µ a fully supported finite Borel measure

on K. Denote as {φn}n∈N and {ξn}n∈N the eigenfunctions and eigenvalues of Tµ(Q). The

operator Tµ(Q) is trace-class (i.e.,
∑

n∈N ξn < ∞), its eigenfunctions φn : K → R are all

continuous, and we can write

Q(x, x′) =
∑

n∈N
ξn φn(x)φn(x

′) ,

for all x, x′ ∈ K, the convergence of the sum being uniform on K2.

Note that the above decomposition depends on the choice of the measure µ. Moreover, the

result easily extends to the case of a not fully supported measure µ. Indeed, denoting with K̃

1We recall that a n× n matrix M is non-negative definite if for every n-vector v we have v⊤Mv ≥ 0.
2A bounded self-adjoint compact operator is a linear map T : L2(K,µ)→ L2(K,µ) that maps bounded sets

to bounded sets whose closure is compact, and such that for every φ,ψ ∈ L2(K,µ) we have ⟨Tφ, ψ⟩ = ⟨φ, Tψ⟩.
We refer to Lang (2012) for an overview of the theoretical properties of this class of operators.
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the support of µ, we have that K̃ is a closed subset of a compact set, and so it is compact.

Applying Theorem 3 to the restriction of Q on K̃, and extending its eigenfunctions continuously

to the whole K, we see that the only modification to be made is that the convergence will be

on the support of µ only.

There is an interesting link between kernels and Hilbert spaces.

Definition 3 (RKHS). For each kernel Q on K, there exists a unique (up to isomorphisms)

real Hilbert space HQ, with the following properties (Paulsen and Raghupathi, 2016):

• The elements of HQ are functions K → R.

• Denoting as ⟨·, ·⟩Q the inner product of HQ, for each x ∈ K there exists an element

kx ∈ HQ, such that h(x) = ⟨h, kx⟩Q for all h ∈ HQ.

• For all x, x′ ∈ K, ⟨kx, kx′⟩Q = Q(x, x′).

HQ is called the reproducing kernel Hilbert space (RKHS) of Q.

Generally, giving a concrete description of the RKHS associated with a kernel Q is not easy.

However, we can easily find an explicit form for the elements kx appearing in its definition, as

we have that kx : x′ 7→ Q(x, x′). In particular, we can say that HQ contains the linear span of

{x′ 7→ Q(x, x′)}x∈K , which turns out to be a dense subset of HQ, with respect to the norm

of HQ. Moreover, for any finite Borel measure µ on K, it can be shown that the RKHS of

Q contains the range of Tµ(Q). We refer to Paulsen and Raghupathi (2016) for proofs and

discussion of these properties.

We conclude this section by introducing the concept of feature map.

Definition 4 (Feature map). Let Q be a kernel on K and H an arbitrary real Hilbert space.

A feature map for Q is a continuous map Φ : K → H such that, for all x, x′ ∈ K,

Q(x, x′) = ⟨Φ(x),Φ(x′)⟩H .

Note that the request of continuity in the above definition is unnecessary, as ∥Φ(x)−Φ(x′)∥2H =

Q(x, x) +Q(x′, x′)− 2Q(x, x′), which vanishes whenever x→ x′ thanks to the continuity of

the kernel.
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It is straightforward that Φ : x 7→ kx is a feature map for Q, where kx : x′ 7→ Q(x, x′). This

is usually called the canonical feature map. Moreover, as a corollary of Theorem 3, we can

find feature maps K → ℓ2, usually referred to as Mercer’s representations (Kanagawa et al.,

2018): for any finite and fully supported3 µ, we consider

Φ : x 7→ {
√
ξn φn(x)}n∈N ∈ ℓ2 . (2.1)

2.3.2 Gaussian processes

We recall that a Gaussian vector is a finite collection of Gaussian random variables, such

that any linear combination of its elements is still normally distributed. This concept can be

extended to a family of Gaussian random variables indexed on a generic set S. In particular,

we will be interested in the case where S is a compact K ⊂ Rp.

Definition 5 (Gaussian process). A Gaussian process on K is a random function U : X → R,

such that for any finite subset K̂ ⊂ K, the family {U(x)}x∈K̂ is a Gaussian vector. A Gaussian

process U is said to be centred if E[U(x)] = 0, for all x ∈ K.

A Gaussian process can be fully characterised by its mean and covariance functions (Dudley,

2002). In particular, we can associate to each kernel Q a centred Gaussian process.

Definition 6 (Induced Gaussian process). Given a kernel Q on K, we define the induced

Gaussian process UQ as the centred Gaussian process on K whose covariance function is Q.

More explicitly, E[UQ(x)] = 0 and E[UQ(x)UQ(x
′)] = Q(x, x′) for all x, x′ ∈ K.

Mercer’s theorem (Theorem 3) allows us to write the Gaussian process induced by a kernel

as a converging sum, usually called Karhunen-Loève expansion.

Theorem 4 (Karhunen-Loève). Consider a kernel Q on K and fix a fully supported finite

Borel measure µ on K. Let {φn}n∈N and {ξn}n∈N be the eigenfunctions and eigenvalues of

the induced operator Tµ(Q) on L2(K,µ). Then, we can write

UQ =

∞∑

n=0

Zn

√
ξn φn , (2.2)

3Note that for a compact set K ⊂ Rp a fully supported finite Borel measure always exists. For instance,
we can find a sequence {xn}n∈N ⊂ K which is dense in K, and then define µ =

∑
n∈N 2−nδxn , where δx is the

Dirac measure with unit mass on x.
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with {Zn}n∈N a family of independent standard normal random variables. The convergence is

uniform on K and in squared mean: limN→∞ supx∈K E[(UQ(x)−
∑N

n=0 Zk
√
µn φn(x))

2] = 0.

Moreover, the sum converges in L2(K,µ) almost surely.

A proof of the above theorem can be found in the last chapter of Paulsen and Raghupathi

(2016), with the exception of the last statement (almost sure convergence), for which we refer

to the preliminary discussion in the introduction of Steinwart (2019).

2.3.3 Expressiveness and universality

The main focus of this chapter is to discuss the expressiveness of neural networks in their

Gaussian limit. Intuitively, the expressiveness of a Gaussian process can be interpreted as the

potential of the process to express a wide range of functions. In this section, we will make this

concept more rigorous.

A consequence of the almost sure L2-convergence in Theorem 4 is the fact that, for any

finite Borel measure µ on K, the samples from UQ are in L2(K,µ) with probability 1.4 We

might wonder how much of this space can be explored by the process. This is the motivation

for the next definition of expressiveness.

Definition 7 (Expressiveness). Fix a finite Borel measure µ over K. A kernel Q on K is

µ-expressive when, for all φ ∈ L2(K,µ) and all ε > 0, its induced Gaussian process UQ satisfies

P(∥UQ − φ∥2 ≤ ε) > 0 .

A kernel µ-expressive for all non-zero finite Borel measure µ on K is said to be fully expressive.

Theorem 4 implies that the µ-expressiveness of Q is directly linked to the strictly positive

definiteness of the operator Tµ(Q), as stated in the next lemma (see Section 2.6.1 for a proof).

Lemma 2. Let Q be a kernel and µ a non-zero finite Borel measure on K. Q is µ-expressive

if, and only if, Tµ(Q) is strictly positive definite, namely ⟨Tµ(Q)φ,φ⟩ > 0 for all non-zero

φ ∈ L2(K,µ).

Another way to characterise the expressiveness of a kernel is to look at the size of its

RKHS. In line with the previous literature (Micchelli et al., 2006; Steinwart, 2001), we call

4Note that this is true even if µ has not full support since the theorem applies on the support of µ, which is
compact.
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universal a kernel whose RKHS can approximate arbitrarily well any continuous function. To

make sense of this, first notice that the continuity of Q implies that HQ ⊆ C(K), the space of

continuous functions on K (Paulsen and Raghupathi, 2016).

Definition 8 (Universality). A kernel Q is said universal on K when its RKHS HQ is dense

in C(K), with respect to the uniform norm.

We stated in Lemma 1 that a kernel can be characterised by the fact that it induces non-

negative definite integral operators. Strictly positive definiteness corresponds to universality.

Lemma 3 (Sriperumbudur et al., 2011). Let Q be a kernel on K. Q is a universal kernel if,

and only if, for all non-zero finite Borel measures µ on K, Tµ(Q) is strictly positive definite,

namely ⟨Tµ(Q)φ,φ⟩ > 0 for all non-zero φ ∈ L2(K,µ).

As a corollary of Lemma 2 and Lemma 3, universality and full expressiveness are equivalent.

Lemma 4. A kernel Q on K is universal if, and only if, it is fully expressive.

We conclude by a useful characterisation of universality from Micchelli et al. (2006).

Lemma 5. Let Q be a kernel on K and Φ = {ϕn}n∈N : K → ℓ2 a feature map, namely

∑

n∈N
ϕn(x)ϕn(x

′) = Q(x, x′)

for all x, x′ ∈ K. Assume that the convergence of the above sum is uniform on K2 and that,

for all n ∈ N, ϕn : K → R is continuous. Then Q is universal if, and only if, the linear span

of the family {ϕn}n∈N is dense in C(K), with respect to the uniform norm.

We remark that the above lemma can be applied to the Mercer’s representation (2.1) induced

by a fully supported finite Borel measures on K.
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2.4 Gaussian limit for neural networks

2.4.1 Simple fully-connected neural networks

Consider a simple feed-forward fully-connected neural network F : Rp → Rq, defined via

F (x) = uL(x) ;

ul(x) =
σw√
nl
wlϕ(ul−1(x)) + σbb

l ;

u0(x) =
σw√
p
w0x+ σbb

0 ,

(2.3)

with both σb and σw strictly positive. We denote the width of ul as nl (so nL = q) and we

assume that all the parameters are randomly initialised as independent draws from a standard

normal distributino N (0, 1).

Since all the weight matrices and the bias vectors are random objects (at least at the

initialisation), every node uli maps the input x to a random variable uli(x). It easy to check

by induction that the components of ul(x) share the same distribution and are independent.

Hence, for each layer l ∈ [0 : L], we can define a random process U l on Rp, such that for every

input x and index i ∈ [1 : Nl], we have yli(x) ∼ U l(x).

Clearly, at the initialisation U0 is a Gaussian process, since it is a finite linear combination

of independent Gaussian processes, while for l ≥ 1 in general U l can be non-Gaussian.

However, we can always compute recursively means and covariances. First of all, as long as

E[ϕ(U l−1(x))] <∞, we are granted that E[U l(x) = 0]. Hence, under some weak hypothesis on

the tails of ϕ, U l is centred for all l ∈ [0 : L]. Moreover, we can get recursively the covariance

functions, at least when we can ensure that E[ϕ(U l−1(x))ϕ(U l−1(x′))] stays bounded. Denoting

as Ql the covariance function of U l, we have

Q0(x, x
′) = E[U0(x)U0(x′)] =

σw
2

p
x · x′ + σb

2 ;

Ql(x, x
′) = E[U l(x)U l(x′)] = σw

2 E[ϕ(U l−1(x))ϕ(U l−1(x′))] + σb
2 .

(2.4)
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2.4.2 Gaussian limit

Every node of an infinitely wide neural network behaves like a Gaussian process at the

initialisation. Intuitively, the idea behind this limit is quite simple. Each node in the layer l is

a sum of identically distributed random variables coming from the previous layer. When the

number of nodes in the layer l − 1 tends to infinity, we have a sum of infinitely many terms

and hence Gaussianity, thanks to the central limit theorem.5 The covariance of each layer can

be expressed recursively via (2.4).

This chapter focuses on ReLU networks, whose activation function is the rectified linear

unit ϕ : z 7→ max(0, z). In this case, there is an explicit form for E[ϕ(U(x))ϕ(U(x′))], where U

is a centred Gaussian process with covariance Q (Daniely et al., 2016). To clarify this point,

let us first define the correlation kernel of the process U , which is given by

C(x, x′) =
Q(x, x′)√

Q(x, x)Q(x′, x′)
. (2.5)

For all x, x′ ∈ Rp, when ϕ is the rectified linear unit we have

E[ϕ(U(x))ϕ(U(x′))] =
Q(x, x′)

2

(
1 +

f(C(x, x′))
C(x, x′)

)
,

where f : [−1, 1] → R is defined via

f : γ 7→ 1

π
(
√
1− γ2 − γ arccos γ) . (2.6)

Hence, the equivalent Gaussian processes of an infinitely wide ReLU network have covariances

given by

Q0(x, x
′) = σb

2 +
σw

2

p
x · x′ ;

Ql = σb
2 +

σw
2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1 ,

(2.7)

where Cl is defined as in (2.5).

5As a side note, we recall that things are more delicate as we want to show the convergence of a sequence of
stochastic processes; cf. the discussion in Section 1.3. However, to avoid unnecessary technicalities that are
out of the scope of this thesis, in the following we will freely speak of the equivalent Gaussian processes of the
layers of an infinitely wide network, meaning centred Gaussian processes whose covariance functions Ql can be
derived recursively, à la (2.4).
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2.4.3 Expressiveness for finite depth

We now focus on the expressiveness of each layer of an infinitely wide ReLU network. We

fix as input space a compact set K ⊂ Rp. For all l ∈ [0 : L], the covariance and correlation

functions (Ql and Cl) are kernels, as in Definition 1 (see Lemma 10 in Section 2.6.2).

Recalling the results and definitions of Section 2.3.3, we focus here on whether the kernels

Ql are universal, and hence fully expressive by Lemma 4. For sure, this is not the case for Q0.

Indeed, for any finite Borel measure µ on K, Tµ(Q0) has at most rank two. So, by Theorem 4,

the realisations of its induced Gaussian process lie in a 2-dimensional space. However, it turns

out that for all layers l ≥ 1, the kernel Ql is universal.

Proposition 1. Fixed any compact K ⊂ Rp, for l ∈ [1 : L], Ql is a universal kernel on K, as

in Definition 8.

The above proposition is a slight modification of Proposition 3 in our paper Hayou et al. (2021).

The proof (see Section 2.6.2) can be decomposed into two parts, which are peculiar to most of

the proofs of universality in this chapter. First, we show that Q1 is universal, then that the

universality of Ql−1 implies the universality of Ql. The first step is the most challenging and

can be seen as a corollary of the next result.

Proposition 2. Let K ⊂ Rp be compact. Let f̃ : γ 7→ γ
2 + f(γ) be defined on [−1, 1]. Then

f̃(C0), defined point-wise as f̃(C0)(x, x
′) = f̃(C0(x, x

′)), is a universal kernel on K.

The proof of the above proposition can be found in Section 2.6.1. The main idea is to use

the Stone-Weirstrass theorem (Lang, 2012) to show the density, in the space of continuous

functions, of the linear span of a feature representation of f̃(C0), and conclude by Lemma 5.

2.4.4 Infinite-depth limit

As mentioned earlier, having an excessively large number of layers in a wide neural network

often results in the output being either a random constant or almost certainly discontinuous,

thereby losing its connection with the input (Schoenholz et al., 2017; Hayou et al., 2019b). To

explain this phenomenon mathematically, we can look at the behaviour of the functions Ql

and Cl as l → ∞. All the diagonal elements of Ql (i.e., Ql(x, x) for x ∈ K) tend to some fixed

value q⋆ > 0, independent of x. At the same time, for x ̸= x′, Cl(x, x
′) approaches a fixed
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value c⋆ ∈ [−1, 1], which is independent of x and x′ (Schoenholz et al., 2017). The fact that

the final kernels lose their dependence on x and x′ implies that the input information gets

lost in the propagation through the network. The ordered behaviour (i.e., a random constant

output) comes about when c⋆ = 1, whilst c⋆ < 1 is at the origin of a highly discontinuous

output. The values of q⋆ and c⋆ are determined by the parameters σb and σw. However, for a

ReLU network only the ordered case is present.

Before proceeding further, it is worth clarifying how the completely inexpressive infinitely

deep network can relate to its fully expressive finite-depth counterpart. Indeed, the claims of

Section 2.4.3 might even be strengthened: one can show that there is an increasing hierarchy

for the RKHSs of the covariance functions, in the sense that HQl−1
⊆ HQl

(cf. the proof of

Proposition 1). However, there is no contradiction. To clarify this, recall Theorem 4 and its

notations. The contribution of each eigenfunction φn in the expansion (2.2) is weighted by

the square root of the eigenvalue ξn. When a kernel is fully expressive, all the ξn’s must be

strictly positive. This is indeed the case for all the Ql’s. However, a limit of strictly positive

definite operators is not necessarily strictly positive and might have null eigenvalues. This is

precisely what happens here, where only the first eigenvalue of the limiting kernel is non-zero.

As we add more and more layers to the network, the output collapses on φ0 (here, the constant

function) since the weighted contributions from all the other eigenfunctions vanish.

All the results discussed so far regard the state of the network at its random initialisation,

and one might think that the problems mentioned above become irrelevant after the training.

However, these same issues make it extremely difficult to train extremely deep networks, at

least with gradient-based algorithms. A very heuristic justification for this claim is that a

network that is unable to see its input cannot learn anything. More rigorously, this is reflected

by the fact that, as the number of layers goes to infinity, the gradient of the output (with

respect to the parameters) vanishes or explodes with probability 1, depending on whether

the network is in the ordered or chaotic phase (Schoenholz et al., 2017; Hayou et al., 2019b).

Moreover, the neural tangent kernel (see Section 2.5.6), describing the network’s evolution

during the training, becomes trivial as the depth diverges (Hayou et al., 2019a).



36 CHAPTER 2. STABLE AND EXPRESSIVE RESNETS

2.4.5 Residual networks

A natural attempt to prevent the loss of input information is the introduction of skip connections.

An architecture with this feature is usually called a residual network (ResNet). As a simple

example, let us consider

u0(x) = σb b0 +
σw√
p
w0 x ;

ul(x) = ul−1(x) + σb bl +
σw√
Nl−1

wl ϕ(u
l−1(x)) .

(2.8)

The only difference from (2.3) is the addiction of the term ul−1 in the evaluation of ul, which

will help propagate the input information through the network. However, we will soon see

that this is not enough to prevent a trivial limit as L→ ∞.

First, notice that the introduction of the skip connections does not affect the fact that each

layer of the network becomes a Gaussian process.6 We get, however, a slight modification for

the recurrence relation of the covariance functions, which now reads (see Hayou et al., 2021)

Q0(x, x
′) =

σw
2

p
x · x′ + σb

2 ;

Ql(x, x
′) = Ql−1(x, x

′) + σw
2 E[ϕ(U l−1(x))ϕ(U l−1(x′))] + σb

2 .

As before, things can be stated more explicitly for a ReLU network:

Q0(x, x
′) = σb

2 +
σw

2

p
x · x′ ;

Ql = Ql−1 + σb
2 +

σw
2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1 .

(2.9)

We want to focus on the infinite-depth limit. Nevertheless, the diagonal elements of Ql

explode as l → ∞. To see this, note that Cl(x, x) = 1 by (2.5), for all x ∈ Rp. Noticing

that f(1) = 0, we get that, for the diagonal elements of the covariance, the recursion reads

Ql = σb
2 + (1 + σw

2

2 )Ql−1. This leads to Ql ≥ (1 + σw
2

2 )lQ0, which clearly diverges for l → ∞.

We might fix this problem by considering a slightly different architecture. Fix a strictly

6The results in Yang (2019a) hold for a large class of architectures, including residual networks.
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positive parameter λ ∈ (δ, 1), with δ = 2/
(
1 + σw

2

2

)
, and consider the network

u0(x) = σbB0 +
σw√
p
W0 x ;

ul(x) = (1− λ)ul−1(x) + λ

(
σbBl +

σw√
Nl−1

Wl ϕ(u
l−1(x))

)
.

(2.10)

Now, the second equation in (2.9) becomes

Ql = (1− λ)2Ql−1 + λ2
(
σb

2 +
σw

2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1

)
. (2.11)

It is not hard to check that, in this case, the covariance Ql does not diverge. Also, the output’s

gradient (with respect to the network’s parameters) that explodes for the architecture (2.9))

is now stabilised. Nevertheless, a problem still occurs. For both (2.9) and (2.11), Cl tends to

the constant 1.7 As a consequence, even in this stabilised setting, an infinitely deep network

at the initialisation produces a trivial output, lying in the two-dimensional space spanned by

the constant function 1 and the function x 7→
√
Q(x, x). Moreover, a constant correlation also

leads to a trivial neural tangent kernel, and hence, despite the bounded gradient, the network

can only fit functions belonging to some small class.

2.5 Stable ResNets

In the previous sections, we have discussed how the output of an infinitely wide neural network

becomes trivial in the limit of infinite depth because too many noisy layers corrupt the input

information. Introducing skip connections is insufficient to solve the problem and yields a

divergent limit unless scaling factors are added. In this section, we show that it is possible

to rescale the contribution of each layer in a way that solves both the expressiveness and

trainability issues. We start with discussing a toy model, where we can show that the output

is fully expressive in the infinite-depth limit with elementary tools from functional analysis.

Later on, using the results of kernel analysis introduced in Section 2.3.3, we will establish the

universality for networks acting on a generic compact K ⊂ Rp. The whole analysis always

focuses on ReLU networks.

7It is enough to see that there is a single fixed point for the diagonal terms of Q in (2.11), and hence a single
fixed point (C = 1) for the correlation.
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2.5.1 A toy model

Let I ⊂ (0,+∞) be a compact interval and denote as ϕ : x 7→ max(0, x) the ReLU activation

function. For each L ≥ 1, we consider the following residual architecture, where all the layers

have width N ,

u0(x) = w0 x ;

ul(x) = ul−1(x) +
1√
L

(
σb bl +

σw√
N
wl ϕ(ul−1(x))

)
,

with x ∈ I. A part from the technical assumption that the layer 0 has no bias8, the difference

with the architecture (2.8) is the fact that now there is a factor 1/
√
L that weights the

contribution of each layer. Taking the limit L→ ∞, the introduction of this scaling brings a

renormalisation which allows for a finite and expressive output.

Note that now the recursion (2.9) gets slightly modified as

Q0(x, x
′) =

σw
2

p
x · x′ ;

Ql = Ql−1 +
1

L

(
σb

2 +
σw

2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1

)
.

(2.12)

As L→ ∞, the above relation can be seen as the discretised version of an ODE. Indeed, we

can rescale the index l as t(l) = l/L, so that t(0) = 0 and t(L) = 1. It is then natural, in the

limit of infinite depth, to consider t as a continuous variable, spanning the whole interval [0, 1],

and look at the continuous limit of (2.12):

q̇t(x, x
′) = σb

2 +
σw

2

2

(
1 +

f(ct(x, x
′))

ct(x, x′)

)
qt(x, x

′) ,

q0(x, x
′) = σw

2 x · x′
p

,

ct(x, x
′) =

qt(x, x
′)√

qt(x, x)qt(x′, x′)
.

(2.13)

In Section 2.5.3, we will state results of existence and uniqueness of the solution of the above

Cauchy problem, as well as uniform convergence in t and x of the discretised problem (2.12)

to (2.13). Moreover, we will show that, for all t ∈ [0, 1], both qt and ct are kernels in the sense

8This technical assumption is due to the elementary techniques involved in the proofs of the main results of
this section. However, the case with bias in every layer is a particular case of the analysis in Section 2.5.3.
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of Definition 1.

The existence and continuity of t 7→ qt(x, x
′) in [0, 1] (for all inputs x, x′) is enough to

claim that the output kernel q1 keeps bounded, despite the infinite number of layers. But what

about the expressiveness? It turns out that, denoted by ρ the standard Lebesgue measure on

I, the following holds.

Theorem 5 (Universality). For all t ∈ (0, 1], the kernel qt solving (2.13) is ρ-expressive.

Proof’s sketch. We refer to Section 2.6.3 for a full proof of the above result and only present a

brief sketch here. The idea consists of first showing that there is some expressiveness for small

t, then that the result can be preserved as t grows. By Lemma 2, the ρ-expressiveness of qt is

equivalent to the fact that the integral operator Tρ(qt) on L
2(I, ρ) is strictly positive definite.

Hence we need to show that, for all non-zero φ ∈ L2(I, ρ), we have ⟨qt φ,φ⟩ > 0 if t > 0. First,

we can look at what happens when t ≃ 0+, namely when t is greater than 0 but still very

small. Using the fact that c0 = 1 (at least with the current definition of q0) and f(1) = 0, we

can expand qt around t = 0 as

qt(x, x
′) = eσw

2t/2xx′ +
2σw

2

σb2
(
eσw

2t/2 − 1
)
+
σb

3σw
2

15π

|x− x′|3
(xx′)2

t5/2 + o(t5/2) .

A direct study the integral operator induced by (x, x′) 7→ |x−x′|3
(xx′)2 leads to the next result.

Proposition 3. For any non-zero φ ∈ L2(I, ρ), there is a tφ ∈ (0, 1] such that ⟨Tρ(qt)φ,φ⟩ > 0,

for all t ∈ (0, tφ).

Once established that there is some sort of strictly positive definiteness near t = 0, we need to

show that this is preserved as t grows. However, this is not hard since it can be proven that q̇t is a

kernel, so Tρ(q̇t) is non-negative definite. We can then show that d
dt⟨Tρ(qt)φ,φ⟩ = ⟨Tρ(q̇t)φ,φ⟩,

and hence the next proposition follows.

Proposition 4. For all φ ∈ L2(I, ρ), the map t 7→ ⟨Tρ(qt)φ,φ⟩ is non decreasing on [0, 1].

Propositions 3 and 4 are enough to prove the positive definiteness of qt.

To give a more concrete idea of the behaviour of our toy model, we report empirical results

from a network with depth 200 and width 200, mapping inputs in [0.1, 0.5] to real values.9

9Here, nL = 200 and the output of the network is y = uL · v, where v is a random vector whose elements are
independent and identically distributed as N (0, 1/L), so that the covariance function of the output corresponds
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Looking at the eigendecomposition of the final kernel QL, obtained numerically from (2.12), we

see in Figure 2.1 that the eigenvalues ξn decays polynomially, without vanishing. Moreover, it

is interesting that the eigenfunctions are reminiscent of the Fourier basis. We can compare the

analytical results with the actual behaviour of the network. The output can be decomposed

on the eigenbasis of QL. From Theorem 4, we expect the coefficients of this decomposition

to be independent realisations of centred Gaussian random variables whose variances are the

eigenvalues of QL. Hence, renormalising each coefficient by the square root of the respective

eigenvalue, we should obtain a list of independent draws from a standard normal distribution.

This is shown graphically by the histogram in Figure 2.2 (blue bins).

2.5.2 Layer- and depth-dependent coefficients

The previous toy example shows that getting a finite and expressive limit as the depth

grows is possible. The main idea is to rescale the various layers’ contributions to control the

initialisation’s noise. We achieved this by introducing a scaling factor 1/
√
L for all layers.

However, we can now consider a more general setting, where the scaling factors can depend

both on the depth of the network and on the layer index. We hence introduce the following

to the one of the last layer, namely QL.

Figure 2.1: Eigendecomposition of the output kernel. The input space I = [0.1, 0.5] has been
discretised in 251 points, and the eigenvalues and eigenvectors of the Gram matrix of QL on this
discretisation have been evaluated numerically. On the left are the eigenvalues plotted against their
rankings. Notice the asymptotic polynomial decay. On the right are the principal four eigenvectors,
showing a Fourier-like behaviour.
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Figure 2.2: On the top left the absolute value of the coefficients y ·φn, where y is the network’s output,
is plotted against n+ 1, showing an average decrease proportional to

√
ξn. The same coefficients are

renormalised on the bottom left, looking like independent draws from N (0, 1). This fact is confirmed in
the histogram on the right, where the blue bins represent the distribution of the normalised coefficients.
Noticing that the nodes of the outer layer L are independent random processes with the same law as
the output, we expect the renormalised coefficients of all the outer-layer nodes to be independent draws
from N (0, 1). This is confirmed by their empirical distribution (orange bins).

ResNet architecture:

u0(x) = σb b0 +
σw√
p
w0 x ;

ul(x) = ul−1(x) + λl,L

(
σb bl +

σw√
Nl−1

wl ϕ(u
l−1(x))

)
,

(2.14)

for some depth L ≥ 1 and non negative scaling coefficients {λl,L}l∈[1:L].

We are interested in the Gaussian infinite-width limit and, fixed L, we can find the

covariance functions of the network recursively:

Q0(x, x
′) = σb

2 +
σw

2

p
x · x′ ;

Ql = Ql−1 + λl,L
2

(
σb

2 +
σw

2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1

)
.

(2.15)

Recall that, for a standard ResNet architecture, the diagonal elements of the covariance

function explode exponentially with the depth: we had found in Section 2.4.5 that Ql(x, x) ≥

(1 + σw
2

2 )lQ0. This behaviour also entails that the network’s gradient (with respect to the

parameters) explodes with the depth (Zhang et al., 2017). The following Proposition shows

that introducing the scaling factors can stabilise the network’s output. We proved a similar

result for the network’s gradient in Hayou et al. (2021).

Proposition 5 (Output’s stability). Let K ⊂ Rp be a compact set. There exists a constant
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Γ > 0 such that, for all integers L ≥ 1, for any non-negative coefficients {λl,L}l∈[1:L], the

kernels Ql, given by (2.15), satisfy

sup
l∈[0:L]

sup
(x,x′)∈K2

|Ql(x, x
′)| ≤

(
Γ + σb

2
L∑

l=1

λl,L
2

)
e

σw
2

2

∑L
l=1 λl,L

2

.

Proof. Fix the depth L ≥ 1 and the scaling factors {λl,L}l∈[1:L]. It is enough to show our

claim for the diagonal terms since |Ql(x, x
′)| ≤

√
Ql(x, x)Ql(x′, x′) by the Cauchy-Schwarz

inequality. Fix x ∈ K and let Γ = supx′∈K Q0(x
′, x′). Define αl =

σw
2

2 λ2l,L and βl = σb
2λ2l,L,

so that Ql(x, x) = (1 + αl)Ql−1(x, x) + βl. By induction, one can show that for all l ∈ [1 : L]

Ql(x, x) = Q0(x, x)

l∏

k=1

(1 + αk) +
l∑

k=1

βk

k∏

j=1

(1 + αj) ≤
(
Q0(x, x) +

L∑

k=1

βk

)
L∏

k=1

(1 + αk) .

Hence we conclude using the fact that
∏L

k=1(1 + αk) ≤ exp
∑L

k=1 αk.

Now, let us consider a sequence of infinitely wide networks with increasing depths: for

each depth L ≥ 1, we fix the scaling factors {λl,L}l∈[1:L] and we consider the infinite-width

limit of (2.14). We say that this is a stable sequence when

sup
L≥1

L∑

l=1

λ2l,L <∞ . (2.16)

As a corollary of Proposition 5, this condition means that there is a uniform bound for all the

kernels of all the networks in the sequence. In particular, if we can define an infinite-depth

limit for this network sequence, we can expect all its kernels to be bounded.

However, in general, it can be hard to define a “limit” for a sequence of networks, no

matter whether or not it is a stable sequence. We will restrict our analysis to two kinds of

scalings, allowing us to easily make sense of the limit of infinite depth. The first case is the

uniform scaling, given by λl,L = 1/
√
L, for all L ≥ 1 and l ∈ [1 : L]. Since

∑
l,L λ

2
l,L = 1

for every L, (2.16) holds and hence the sequence is stable. Note that this setting is as in

Section 2.5.1. The other possibility that we consider is what we call a sequential scaling: we

fix a non-negative sequence {λl}l∈N, and for all L ≥ 1 and l ∈ [1 : L] we set λl,L = λl. The

corresponding sequence of networks will be stable if, and only if,
∑∞

l=1 λ
2
l <∞.

In the next two sections, we will discuss the uniform and sequential scalings, showing that



2.5. STABLE RESNETS 43

the infinite-depth limit is well-defined (at least in terms of covariance functions) and fully

expressive.

2.5.3 Uniform scaling

We consider a sequence of infinitely wide ResNets with increasing depth, whose architectures

are given by (2.14) with scaling coefficients λl,L = 1/
√
L, for all l ∈ [1 : L]. As we are

considering the Gaussian limit, from (2.15) we know that the kernels follow

Q0(x, x
′) = σb

2 +
σw

2

p
x · x′ ;

Ql = Ql−1 +
1

L

(
σb

2 +
σw

2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1

)
.

(2.17)

As we discussed for the toy model of Section 2.5.1, the layer index l can be rescaled as

l 7→ t(l) = l/L. When L→ ∞, it is natural to consider t as a continuous variable spanning the

interval [0, 1]. With this in mind, it makes sense to look at the continuous version of (2.17):

q̇t(x, x
′) = σb

2 +
σw

2

2

(
1 +

f(ct(x, x
′))

ct(x, x′)

)
qt(x, x

′) ,

q0(x, x
′) = σb

2 + σw
2 x · x′

p
,

ct(x, x
′) =

qt(x, x
′)√

qt(x, x)qt(x′, x′)
.

(2.18)

As stated in the following results, for any inputs x, x′ in a compact domain K, the solution

of the above Cauchy problem exists and is unique. Moreover, it is regular enough to ensure

that qt and ct are kernels, in the sense of Definition 1, for all t.

Lemma 6 (Existence and uniqueness). For any x, x′ in K, the solution of (2.18) is unique

and well defined for all t ∈ [0, 1]. The maps (x, x′) 7→ qt(x, x
′) and (x, x′) 7→ ct(x, x

′) are

Lipschitz continuous on K2 and ct takes values in [−1, 1]. Moreover, both qt and ct are kernels,

in the sense of Definition 1.

Clearly, for finite L, (2.18) is an approximation of (2.17). However, we have the following.

Lemma 7 (Convergence to the continuous limit). Let Ql|L be the covariance function of the
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layer l in a net of L+ 1 layers [0 : L], and qt be the solution of (2.18), then

lim
L→∞

sup
l∈[0:L]

sup
(x,x′)∈K2

|Ql|L(x, x
′)− qt=l/L(x, x

′)| = 0 .

The two statements above are proved in Section 2.6.4. Note that equivalent claims can be

stated (with analogous proofs) for the slightly different setting of Section 2.5.1.

The next result shows that the kernel qt is universal for t > 0. In particular, by Lemma 4,

these kernels are fully expressive, in the sense of Definition 7.

Theorem 6 (Universality). Let K ⊂ Rp be compact. For any t ∈ (0, 1], the solution qt of

(2.18) is a universal kernel on K.

Theorem 6 is proved in Section 2.6.5. The main idea is to show that the integral operator

Tµ(qt) is strictly positive definite for all finite Borel measure µ on K, and then use Lemma

3. For the proof of the positive definiteness of the integral operator, the main approach is

similar to the one of Theorem 5’s proof: first, one looks at the case t ≃ 0+; then, shows that

the property is not lost for larger t. The major difference, always referring to the proof of

Theorem 5, is in the technique used for studying the case t ≃ 0+, which is based on the fact

that q̇0 is universal, as a consequence of Proposition 2.

2.5.4 Sequential scaling

We fix a non-negative sequence {λl}l∈N, such that
∑

l≥1 λ
2
l <∞, and let λl,L = λl for all L ≥ 1

and l ∈ [1 : L]. The recursion (2.15) now reads

Q0(x, x
′) = σb

2 +
σw

2

p
x · x′ ;

Ql = Ql−1 + λl
2

(
σb

2 +
σw

2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1

)
.

(2.19)

Note that the discussion of Section 2.4.3 applies, so we have an equivalent of Proposition 1,

stating that, for all l ∈ N, the kernel Ql is universal. However, the stability of our sequence

implies that, as L→ ∞, we get the convergence to a universal kernel.

Proposition 6 (Convergence and universality). Fix a compact K on Rp, consider the sequence

of kernels on K defined in (2.19), with
∑

l≥1 λ
2
l <∞. The sequence converges uniformly on

K to a universal kernel Q∞.
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The proof does not present major technical difficulties and is reported in Section 2.6.6. We

remark that it leverages that Ql − Ql−1 is a kernel, which was not true for the stabilised

ResNet (2.11).

2.5.5 Expressiveness with no bias

So far, we have been considering only networks with biases. For ReLU architectures, this is a

fundamental assumption in order to achieve expressiveness on a generic compact. Indeed, the

output of a ReLU network with no bias is a positive homogeneous function of its input, which

means that F (αx) = αF (x) for all α ≥ 0. However, when restricting to the case K = Sd−1,

the unit sphere of Rp (for d ≥ 2), it is possible to obtain the same universality results for the

kernels, even when no bias is present.

Proposition 7. Let qt be the solution of the Cauchy problem (2.18) with σb = 0. Then, for

all t > 0, qt is universal on Sd−1. Let Ql be the solution of (2.19) with σb = 0. The sequence

{Ql}l≥0 converges uniformly to a universal kernel Q∞ on Sd−1, and for all l ≥ 2, the kernel

Ql is universal on Sd−1.

Contrary to most of our previous results of universality, we cannot rely on Proposition 2

to show the above claims. Indeed, our proof (see Section 2.6.7) relies on the expansion in

spherical harmonics, which, as suggested by its name, is peculiar to the sphere.

2.5.6 Neural tangent kernel

Most of the results discussed so far are limited to a network at its initialisation. However,

Jacot et al. (2018) showed that a particular choice of parametrisation for an infinitely wide

neural network leads to simple dynamics under a continuous time gradient descent training.

Indeed, it is possible to study the time evolution of the network’s output, which is governed

by a kernel gradient descent via the neural tangent kernel (NTK). The expressiveness of this

kernel is linked to the one of the network at the initialisation, and it is crucial to determine

which functions can be learnt.

The NTK of a neural network is defined as

Θ̂ij
h (x, x

′) = ∇F i
h(x) · ∇F j

h(x
′) , (2.20)
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where F i
h and F j

h are the i-th and j-th components of the network’s output, and ∇ denotes

the gradient with respect to the network’s parameters h. When trained via gradient descent

to optimise the empirical loss Ls (i.e., ∂tht = −∇Ls(ht))
10, the network follows the dynamics

∂tF
i
ht
(x) = − 1

m

∑

(x′,y′)∈s

∑

j

Θ̂ij
ht
(x, x′)∂

F j
ht

ℓ(h, y′) ,

where m is the dimension of the training data set s.

Jacot et al. (2018) showed that the NTK of a suitably randomly initialised feed-forward

architecture tends to a deterministic kernel, independent of h and constant during the training.

The limiting NTK is diagonal in the indexes i and j, and all its diagonal elements are equal.

In particular, we can represent it with a single scalar function Θ, which is symmetric in its

two arguments and, if continuous, is a kernel in the sense of Definition 1.

For completeness, we mention that the previous results hold under some additional technical

assumptions. In particular, a relevant role is played by the gradient independence assumption

(GIA), which requires the parameters used for the forward propagation to be independent of

those used in the backward propagation used to evaluate the gradient. However, for a broad

range of architectures, Yang (2020a,b) showed that this hypothesis holds if the parameters of

the network’s last layer are not shared with the other layers (simple GIA check). This is the

case for all the networks that we consider here.

The NTK characterises the class of functions that an infinitely wide network can learn. To

see this, consider the simple setting of a network with a real output that is trained with a

quadratic loss function: ℓ(h, z) = 1
2(Fh(x)− y)2, where z denotes the instance-label pair (x, y).

Let us write as Θ(X,X) the Gram matrix of Θ on s, namely the matrix (Θ(x, x′))z,z′∈s. The

network can fit any dataset s such that Θ(X,X) is non-singular. Indeed, denoting as g(X)

the vector {g(x)}z∈s (for a generic mapping g) and as Y the vector of labels {y}z∈s, we have

(Jacot et al., 2018)

Fht(x)− Fh0(x) = Θ(x,X)Θ(X,X)−1(Id− e−Θ(X,X)t)(Y − Fh0(X)) ,

which implies that Fht(X) converges to Y as t→ ∞. As a corollary of Lemma 3, whenever

10Here t represents the “training time”. h0 is the initial value of the parameters, which evolves as ht under
the training.
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Θ is a universal kernel (and s is a set of distinct elements), the matrix Θ(X,X) is strictly

positive definite (and hence non-singular), namely the network can learn any finite dataset.

As shown by Jacot et al. (2018), for an infinitely wide feed-forward network it is possible to

evaluate the NTK Θ recursively, by suitably defining a kernel Θl for each layer l. By slightly

adapting this approach, in Hayou et al. (2021) we showed that the NTK of a stable ReLU

ResNet is given by Θ = ΘL, where

Θ0 = Q0 ;

Θl+1 = Θl + λ2l+1,L

(
σb

2 +
σw

2

2

(
1 +

f(Cl)

Cl

)
Ql +

σw
2

2
(1 + f ′(Cl))Θl

)
.

(2.21)

With arguments equivalent to those in the proof of Lemma 10, we showed in Hayou et al.

(2021) that, for all l, Θl is a kernel, in the sense of Definition 1.

In the infinitely deep limit, the same problems affecting the covariance functions also occur

for the NTK: the limit becomes trivial for both residual and feed-forward architectures, and

it explodes in the unnormalised residual case (Hayou et al., 2019a). This is not the case for

the stable ResNets, which achieve a finite and fully expressive limit in both the uniform and

sequential case. We state this in the next proposition, which we proved in Hayou et al. (2021)

(see Propositions 8 and 9 therein) using the same techniques described in this thesis to prove

the results of universality.

Proposition 8 (Universal NTK; Hayou et al., 2021). Let σb > 0 and K ⊂ Rp be an arbitrary

compact, or σb = 0 and K = Sd−1. For the sequential scaling, ΘL converges uniformly over K2

to a universal kernel Θ∞ on K. For the uniform scaling, the NTK recursion (2.21) admits the

continuous formulation

θ̇t(x, x
′) = q̇t(x, x

′) +
σw

2

2
(1 + f ′(ct(x, x′))) θt(x, x′) ;

θ0 = q0 ,

where f ′ : γ 7→ − 1
π arccos γ. For every t > 0, θt is a universal kernel on K.
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2.5.7 A few comments on the empirical results

For the sake of conciseness, in this chapter we have focused on the theoretical results of

expressiveness that we established in Hayou et al. (2021). However, the paper also discusses a

few experimental results, highlighting the performance improvement brought about by uniform

and sequential scalings. The stable ResNets are compared with standard residual architectures

on three standard image-recognition tasks: CIFAR-10, CIFAR-100, and TinyImagenet. We

tested convolutional ResNets of different depths (32, 50, and 104) and found that the stable

ResNets consistently outperform their standard counterparts, with a performance gap which

tends to increase with the depth.

Moreover, we gave further experimental support to our theoretical findings in the context

of Gaussian process kernel regression, which can be applied directly to the kernels of the

infinite-width limit. We have compared the output covariance function of scaled and unscaled

ResNets architectures. The results on MNIST and CIFAR-10 show that the performance of

the kernels generated by our scaled architectures keeps almost unchanged while the depth

varies from 50 to 1000 layers. On the hand, the results coming from the kernels obtained via

standard ResNets suffer from degradation in test accuracy as the depth grows.

More details on the experimental settings and results can be found in Section 7 and

Appendix A7 of Hayou et al. (2021).

2.6 Omitted proofs

2.6.1 Kernels

Lemma 1. Let Q : K2 → R be a continuous symmetric function. Given any finite Borel

measure µ on K, the induced operator Tµ(Q) is bounded, compact, and self-adjoint. Moreover,

Q is a kernel if, and only if, for all finite Borel measures µ on K, Tµ(Q) is non-negative

definite, which means ⟨Tµ(Q)φ,φ⟩ ≥ 0 for all φ ∈ L2(K,µ).

Proof. Let Q : K2 → R be continuous and symmetric. Then, Tµ(Q) is a bounded compact

self-adjoint operator (Lang, 2012). Assume that Q is a kernel and fix a finite Borel measure µ

on K. Let K̃ denote the support of µ, which is a compact set since it is closed and in K. By
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Theorem 3, we can find continuous real functions {Fk}k∈N on K, such that for all x, x′ ∈ K̃

Q(x, x′) =
∞∑

k=0

Fk(x)Fk(x
′)

and the convergence is uniform on K̃2. The continuity of the Uk’s implies that they can be

seen as elements of L2(K,µ). Moreover, the uniform convergence on the support of µ, along

with the fact that µ(K) <∞, implies the convergence of the sum with respect to the L2(K,µ)

operator norm. In particular, Tµ(K) is a limit of non-negative definite operators, and hence it

is non-negative definite.

Now, assume that, for all finite Borel measure µ, Tµ(Q) is non-negative definite. Chosen a

finite set {x1 . . . xn} ⊂ K, in particular we have that µ =
∑n

i=1 δxi is a finite Borel measure

(where δx is the Dirac measure with unit mass on x ∈ K). Hence Tµ(Q) is equivalent to the

matrix (Q(xi, xj))i,j . We conclude that Q is a kernel.

Lemma 2. Let Q be a kernel and µ a non-zero finite Borel measure on K. Q is µ-expressive

if, and only if, Tµ(Q) is strictly positive definite, namely ⟨Tµ(Q)φ,φ⟩ > 0 for all non-zero

φ ∈ L2(K,µ).

Proof. Without loss of generality, we can suppose that µ is fully supported on K since, if

this is not the case, it is enough to consider the restriction to the support of µ, which is

still a compact set. Denote as {ξn}n∈N and {φn}n∈N the eigenvalues and the orthonormal

eigenbasis of Tµ(Q). For any φ ∈ L2(K,µ), by Theorem 4 we have that ∥∑N
n=0 Zn

√
ξn φn−φ∥22

converges in squared mean to ∥UQ −φ∥22, for N → ∞, where {Zn}n∈N are iid standard normal

random variables. Now, let φ =
∑N

n=0 an φn for some integer N ≥ 1 and some real coefficients

{a0 . . . aN}. We have (with convergence in squared mean)

∥UQ − φ∥22 =
N∑

n=0

(
Zn

√
ξn − an

)2
+

∞∑

n=N+1

ξn Z
2
n .

For n ∈ [0 : N ], we can define the interval In =

[
an√
ξn

− ε√
2(N+1)ξn

, an√
ξn

+ ε√
2(N+1)ξn

]
, so that,

for all z ∈ In we have (z
√
ξn − an)

2 ≤ ε2

2(N+1) . Since all these intervals are non-empty, we get

P

(
N∑

n=0

(
Zn

√
ξn − an

)2
≤ ε2

2

)
≥

N∏

n=0

P(Zn ∈ In) > 0 .
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On the other hand, we have that

δN = E

[ ∞∑

n=N+1

ξn Z
2
n

]
=

∞∑

n=N+1

ξn .

By Theorem 3, T (Q) is trace class and hence δN vanishes as N → ∞. By Markov’s inequality

P

( ∞∑

n=N+1

ξnZ
2
n ≥ ε2

2

)
≤ 2δN

ε2

and we can conclude that P(∥UQ − φ∥2 ≤ ε) > 0 for N large enough.

For a general φ =
∑∞

n=0 anφn, let φN =
∑N

n=0 anφn. Since {φn}n∈N is a basis of L2(K,µ),

fixed ε > 0, it is possible to find an N such that ∥φ−φN∥2 ≤ ε/2 and P(∥φN−UQ∥2 ≤ ε/2) > 0,

and so we conclude that Q is µ-expressive.

To show the other implication, assume that there is m ∈ N such that ξm = 0. Let V be the

closure in L2(K,µ) of the linear span generated by the eigenfunctions {φn}n̸=m. By Theorem

4, we know that P(UQ ∈ V ) = 1, and so P(∥UQ − φm∥2 < 1) = 0 and we conclude.

Lemma 8. Let C be a kernel on K, such that |C(z)| ≤ 1 for all z ∈ K. Consider a

non-negative real sequence {αn}n∈N, and assume that

g(γ) =
∞∑

k=0

αk γ
k

converges uniformly on [−1, 1]. Then, for all finite Borel measure µ on K, Tµ(g(C)) is a

non-negative definite compact operator, and in particular, g(C) is a kernel.

Proof. Fix a finite Borel measure µ on K and notice that g(C) is continuous and symmetric (as

a uniform limit of continuous and symmetric functions). Moreover, since the Taylor expansion

of g around 0 converges uniformly on [−1, 1], and since |C(z)| ≤ 1 for all z ∈ K, we have

that Tµ(g(C)) =
∑

k∈N αk Tµ(C
k), the sum converging with respect to the operator norm on

L2(K,µ). Due to the Schur product theorem, the product of two kernels is still a kernel.

Consequently, it is easy to prove by induction that Tµ(C
k) is non-negative definite for all k.

Hence Tµ(g(C)) is the converging limit of a sum of compact non-negative definite operators.

We conclude by Lemma 1.
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Lemma 9. The function f : [−1, 1] → R is an analytic function on (−1, 1), whose expansion

f(γ) =
∑

n∈N αn γ
n converges uniformly on [−1, 1]. Moreover, αn > 0 for all even n ∈ N,

α1 = −1/2 and αn = 0 for all odd n ≥ 3.

Proof. All claims are not hard to prove and are well known (e.g., Daniely et al., 2016).

Proposition 2. Let K ⊂ Rp be compact. Let f̃ : γ 7→ γ
2 + f(γ) be defined on [−1, 1]. Then

f̃(C0), defined point-wise as f̃(C0)(x, x
′) = f̃(C0(x, x

′)), is a universal kernel on K.

Proof. First notice that c0(x, x
′) = 1+ζ x·x′√

(1+ζ ∥x∥2)(1+ζ ∥x′∥2)
, where ζ = σw

2/σb
2. For n ∈ N,

define pn : (x, x′) 7→ c0(x, x
′)2n, with the convention that p0 ≡ 1. It is easy to verify that c0 is

a kernel. Consequently, pn is a kernel for all n since it is a product of kernels. From Lemma 9,

we can write

f̃(c0) =
∑

n∈N
αn pn ,

the sum converging uniformly on K2, with αn > 0 for all n ∈ N. By Lemma 8, f̃(c0) is a

kernel. Now, for each n, we have

pn(x, x
′) =

1

(1 + ζ ∥x∥2)n(1 + ζ ∥x′∥2)n
2n∑

k=0

ωk,n (x · x′)k ,

where the coefficients ωk,n are all strictly positive, explicitly ωk,n = ζk
(
n
k

)
. Expanding the

inner product x · x′, we can express pn in the form

pn(x, x
′) =

∑

J∈Jn

βJ,nAJ,n(x)AJ,n(x
′) ,

where Jn = {(j1 . . . jd) ∈ Nd :
∑d

i=1 ji ∈ [0 : 2n]}, all the coefficients βJ,n are strictly positive

and the AJ,n are defined as

AJ,n(x) =
x1

j1 . . . xd
jd

(1 + ζ ∥x∥2)n .

Hence we can write f̃(c0) as

f̃(c0)(x, x
′) =

∑

n∈N

∑

J∈Jn

αnβJ,nAJ,n(x)AJ,n(x
′) .
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For any n, n′ ∈ N, J ∈ Jn, J
′ ∈ Jn′ , it is clear that AJ,nAJ ′,n′ = AJ ′′,n+n′ , where J ′′ is some

element in Jn+n′ . As a consequence, the linear span of the family {AJ,n}n∈N,J∈Jn is an algebra

A (which is a subalgebra of C(K) since all the AJ,n are continuous). Moreover, A(0...0),0 ≡ 1,

so that A contains a constant, and it is straightforward to check that A separates points,

which means that for all distinct x, x′ ∈ K there exists a ∈ A such that a(x) ̸= a(x′). Then,

from the Stone-Weierstrass theorem (Lang, 2012), A is dense in C(K) with respect to the

uniform norm.

For all n ∈ N, all J ∈ Jn, let θJ,n =
√
αnβJ,n. Define a bijection ι : N → {(n, J) : n ∈

N, J ∈ Jn} and let Φn = θι(n)Aι(n). For all x ∈ K, we have that Φ(x) = {Φn(x)}n∈N ∈ ℓ2,

since pn(x, x) < ∞. We conclude that Φ is a feature map for f̃(c0), and the density of the

linear span of {Φn}n∈N allows us to claim that the kernel is universal on K (cf. Theorem 7 in

Micchelli et al., 2006).

2.6.2 Finite depth

Lemma 10. Define by recursions the functions Ql and Cl (from K2 to R) as

Q0(x, x
′) = σb

2 +
σw

2

p
x · x′ ;

Ql = αQl−1 + β

(
σb

2 +
σw

2

2

(
1 +

f(Cl−1)

Cl−1

)
Ql−1

)
;

Cl(x, x
′) =

Ql(x, x
′)√

Ql(x, x)Ql(x′, x′)
,

where α ≥ 0 and β > 0. For any l, Ql and Cl are kernels on K, in the sense of Definition 1.

Proof. It is straightforward to prove that Q0 is a kernel. Now let us show that if Ql is a kernel

for some l, then Cl is a kernel. Since Ql is symmetric, so is Cl. Moreover, one can easily check

that the diagonal elements of Ql are continuous and do not vanish. Hence Cl is continuous.

Moreover, the non-negative definiteness of Tµ(Ql) implies that Tµ(Cl) is non-negative definite

for any finite Borel measure µ, and so Cl is a kernel if Ql is.

We proceed by induction and assume that Ql−1 and Cl−1 are kernels. Then f(Cl−1) is

a kernel as well, by Lemmas 8 and 9, and Ql−1/Cl−1 : (x, x′) 7→
√
Q(x, x)Q(x′, x′) is also a

kernel. We conclude using the fact that the sum of two kernels is a kernel, and multiplying a

kernel for a positive constant also gives a kernel (Paulsen and Raghupathi, 2016).
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Proposition 1. Fixed any compact K ⊂ Rp, for l ∈ [1 : L], Ql is a universal kernel on K.

Proof. Fix l ∈ [1 : L]. From Lemma 8 and Lemma 9, we know that, f(Cl−1) is a kernel.

Moreover, using the fact that finite sum and point-wise multiplication of kernels are kernels

(Paulsen and Raghupathi, 2016), we obtain that σb
2 + σw

2

2

(
1 +

f(Cl−1)
Cl−1

)
Ql−1 is a kernel.

Now, notice that given two kernels, Q and Q′, their sum is a kernel whose RKHS satisfies

HQ+Q′ ⊇ HQ and HQ+Q′ ⊇ HQ′ (Paulsen and Raghupathi, 2016). Moreover, for any kernel Q,

for all α > 0, αQ is a kernel, and its RKHS coincides with the one of Q (up to a rescaling of

the norm). We hence conclude from (2.7) that HQl
⊇ HQl−1

. Thus, if we can show that Q1 is

universal, we also get the universality of Ql. From Proposition 2 (proved in the next section),

we have that C0 + f(C0) is universal. In particular, by Lemma 3, for all non-zero finite Borel

measure µ on K, Tµ(C0 + f(C0)) is strictly positive definite. Define R0 = Q0/C0. For all

x, x′ ∈ K, we have R0(x, x
′) =

√
Q0(x, x)Q0(x′, x′), which is easy to check to define a kernel.

Now, let us show that R0(C0 + f(C0)) is universal by Lemma 3. Indeed, for any non-

zero finite Borel measure µ on K, we have that Tµ(R0(C0 + f(C0))) is strictly positive

definite, since ⟨Tµ(R0(C0 + f(C0)))φ,φ⟩ = ⟨Tµ(C0 + f(C0))ψ,ψ⟩ for all φ ∈ L2(K,µ), where

ψ(x) =
√
Q0(x, x)φ(x). We conclude by noticing that Q1 − σw

2

2 R0(C0 + f(C0)) = σb
2 is a

kernel, and so the RKHS of Q1 must contain the one of R0(C0 + f(C0)).

2.6.3 Toy model

We recall that I ⊂ (0,∞) is a compact interval, and ρ is the standard Lebesgue measure on I.

Since ρ will be the only measure involved in the whole discussion on the toy model, we will

omit its explicit dependence. Moreover, to simplify the notations, we will make no distinctions

of notations between kernels on I and their induced operators, namely we will denote as Q

the integral operator Tρ(Q) induced by a kernel Q.

Proof of Proposition 3

Lemma 11. Let L2(I) = H0 ⊕ H1, where H0 = Span(1, id) in L2(I), with the notation

1 : x 7→ 1 and id : x 7→ x. For all t ∈ [0, 1] we can write a decomposition of qt as

qt = q0t ⊕ kt5/2(E +Bt)
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where k is a real positive constant, q0t : H0 → H0, E : H1 → H1, Bt : H1 → H1, and the

following properties hold:

• q0t is non-negative definite for all t ∈ [0, 1] and there exists a T ∈ (0, 1) such that q0t is

strictly positive for all t ∈ (0, T );

• E is strictly positive definite;

• limt→0 ∥Bt∥2 = 0.

Proof. Recall that f(c) = 1
π

(√
1− c2 − c arccos c

)
can be expanded around 1 as

f(c) =
2
√
2

3π
(1− c)3/2 +O

(
(1− c)5/2

)
.

This allows us to write an expansion of qt around t = 0. For any (x, y) ∈ I2 and t > 0

qt(x, y) = eσw
2t/2xy +

2σw
2

σb2

(
eσw

2t/2 − 1
)
+
σb

3σw
2

15π

|x− y|3
(xy)2

t5/2 + o(t5/2) .

Let us define the integral operators q̂0t and Ê on I, via

q̂0t (x, y) = eσw
2t/2xy +

2σw
2

σb2

(
eσw

2t/2 − 1
)
;

Ê(x, y) =
|x− y|3
(xy)2

. (2.22)

We can then write,

qt = q̂0t + k t5/2(Ê + B̂t) ,

where k > 0 and for all (x, y), B̂t(x, y) → 0 by definition. Moreover, t 7→ B̂t is a continuous

map with respect to the L2 operator norm, since qt is continuous (by a result equivalent to

Corollary 1). Hence limt→0 ∥B̂t∥2 = 0. q̂0t is supported in H0 and have range R(q0t ) ⊆ H0, so

it is well defined as an operator H0 → H0. Furthermore, q̂0t is strictly positive definite, on H0,

for all t ∈ (0, 1].

However, we cannot conclude yet, since Ê and B̂t are supported on the whole L2(I) and Ê

is not positive definite. Let us denote as P0 and P1 the projectors on H0 and H1 respectively.
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Define q0t : H0 → H0, E : H1 → H1, Bt : H1 → H1 as

q0t = P0qtP0 = q̂0t + k t5/2P0(Ê + B̂t)P0 ; E = P1ÊP1 ; Bt = P1B̂tP1 .

Clearly qt = q0t ⊕ k t5/2(E +Bt). We now need to check that the decomposition satisfies the

required properties. First, notice that ∥Bt∥2 ≤ ∥B̂t∥2 → 0, so ∥Bt∥2 → 0 for t → 0. Let us

now focus on E. By Lemma 12 (proved in a later section), Ê is compact and self-adjoint. The

same holds for E since it is (the restriction of) a conjugate of Ê under a compact self-adjoint

projector. Now consider φ ∈ H1 such that E φ = 0. We have that Ê φ(x) = α+ βx for some

real α and β. Now, applying the left inverse F̂ , defined in Lemma 12, we get φ = F̂ Ê φ = 0

and thus E is injective. We need to show that E is strictly positive definite, which is true

if and only if all its eigenvalues are strictly positive, by the spectral theorem for compact

self-adjoint operators (Lang, 2012). Let φ ∈ H1 be a normalized eigenfunction of E with

eigenvalue λ. Using the fact that qt is non-negative definite (by an equivalent of Lemma 6),

we have for all t > 0

⟨qt φ,φ⟩ = k t5/2⟨(E +Bt)φ,φ⟩ = k t5/2(λ+ ⟨Bt φ,φ⟩) ≥ 0 .

Since ⟨Bt φ,φ⟩ → 0 for t→ 0, we conclude that λ ≥ 0. The previously proven injectivity of E

shows that λ > 0.

Finally, as for q0t , it is straightforward to see that it is non-negative definite since qt is. On

the (non orthogonal) basis {1, id} of H0, q
0
t is represented by by a matrix in the form



e

σw
2

2 0

0 σw
4

σb
2 t


+ o(t) ,

which has rank 2 for t > 0 small enough. Hence the asymptotic strict positivity follows.

Lemma 12. The operator Ê defined by (2.22) induces a compact self-adjoint operator on

L2(I). The operator F̂ given by F̂ φ(x) = x2 d4

dx4 (x
2φ(x)) is well defined on the range R(Ê)

and is a left inverse of Ê on the whole L2(I).

Proposition 3. For any non-zero φ ∈ L2(I, ρ), there is a tφ ∈ (0, 1] such that ⟨qt φ,φ⟩ > 0,

for all t ∈ (0, tφ).
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Proof. With the notation of Lemma 11, it is enough to show that the statement holds for

φ ∈ H0 and φ ∈ H1. For φ ∈ H0, it is a straight consequence of the strict positivity of

q0t for t > 0 small enough. Now, fix a non-zero φ ∈ H1 and let p = ⟨E φ,φ⟩ > 0. Define

ε : [0, 1] → R as ε(t) = sups∈[0,t] ∥Bs∥2. By definition, ε is non-increasing and vanishes for

t→ 0. Then, there exists a tφ > 0 such that p > ε(tφ) ∥φ∥22, for all t ∈ [0, tφ). It follows that

⟨(E +Bt)φ,φ⟩ > 0, and so ⟨qt φ,φ⟩ > 0 for all t ∈ (0, tφ).

Proposition 4. For all φ ∈ L2(I, ρ), the map t 7→ ⟨qt φ,φ⟩ is non decreasing on [0, 1].

Proof. It is enough to show that for t ∈ [0, 1], q̇t is a non-negative definite operator, and then

conclude with the same argument we will use in the proof of Corollary 1. Notice that

q̇t = σb
2 +

σw
2

2
qt +

σw
2

2

f(ct)

ct
qt ,

also holds with the derivative taken with respect to the operator norm (by an equivalent of

Corollary 1).

Now fix φ ∈ L2(I). Since qt is non-negative (by an equivalent of Lemma 6), we can write

⟨q̇t φ,φ⟩ = σb
2|⟨1, φ⟩|2 + σw

2

2
⟨qt φ,φ⟩+

σw
2

2

〈
f(ct)

ct
◦ qt φ,φ

〉

= σb
2|⟨1, φ⟩|2 + σw

2

4
⟨qt φ,φ⟩+

σw
2

2

〈
ct/2 + f(ct)

ct
◦ qt φ,φ

〉

≥ σw
2

2

〈
g(ct)

ct
◦ qt φ,φ

〉
,

where g(ct) is the integral operator defined by g(ct)(x, y) = ct(x, y)/2 + f(ct(x, y)).

With a slight abuse of notation we denote with g the map [−1, 1] → R given by g(z) = z/2+f(z).

It is not hard to prove (see Lemma A8 in Hayou et al. (2021)) that the Taylor expansion of g

around 0 is convergent on [−1, 1], and all its coefficients are non-negative. Hence Lemma 8

applies, and g(ct) is non-negative definite.

To conclude it is enough to notice that g(ct)
ct

◦ qt = g(ct) ◦ qt
ct
. By definition of ct,

qt
ct
(x, y) =

√
qt(x, x) qt(y, y). Hence we have

⟨q̇t φ,φ⟩ ≥
σw

2

2
⟨g(ct)ψ,ψ⟩ ≥ 0 ,

where ψ(x) =
√
qt(x, x)φ(x).
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Lemma 12. The operator Ê defined by (2.22) is a compact self-adjoint operator on L2(I).

The operator F̂ given by F̂ φ(x) = x2 d4

dx4 (x
2φ(x)) is well defined on R(Ê) and is a left inverse

of Ê on the whole L2(I).

Proof. Ê is clearly compact and self-adjoint since (x, y) 7→ |x−y|3
x2y2

is a continuous real symmetric

map on I2.

Let Λ denote the L2(I) isomorphism Λφ(x) 7→ φ(x)/x2. With the notations of Lemma 13, we

have Ê = ΛE3Λ and F̂ = Λ−1F3Λ
−1. By Lemma 13, we conclude.

Lemma 13. For n ∈ N, let En be the integral operator on L2(I) defined via

Enφ : x 7→
∫

I
(x− y)nsign(x− y)φ(y) dy .

The following properties hold:

(a) The range R(En) is contained in Cn(I). If n ≥ q, for any φ ∈ L2(I), denoting

ψ = Enφ ∈ Cn(I), for k ∈ {1 . . . n}, ψ’s k-th derivative is given by

ψ(k) =
n!

(n− k)!
En−kφ .

(b) For all φ ∈ L2(I), ψ = E0φ is absolutely continuous and ψ′ = 2φ. As a consequence

R(En) ⊆ Hn+1(I) =Wn+1,2(I).

(c) On the whole L2(I), En admits a left inverse Fn, defined on Hn+1(I) as

Fnφ =
1

2n!
φ(n+1) .

(d) En is injective.

Proof. Let I = [A,B] and notice that the action of En can be rewritten as

En φ(x) =

∫ x

A
(x− y)nφ(y) dy +

∫ x

B
(x− y)nφ(y) dy .

(a) For n ≥ 1, since z 7→ zn sign z is Cn−1, standard tools from functional analysis show

that ψ = En φ ∈ Cn−1 and ψ(k) = n!
(n−k)!En−kφ for k ∈ {1 . . . n− 1}. Then, to show that En
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has range in Cn, it is sufficient to prove that E1 φ is C1 for all squared integrable φ. This can

be done explicitly from the definition of derivative since

E1 φ(x+ ε)− E1 φ(x) = εE0 φ(x+ ε) + 2 sign ε

∫ x+ε

x
(y − x)φ(y) dy .

E0 is continuous since both
∫ x
A φ(y)dy and

∫ x
B φ(y)dy are, and by Cauchy-Schwartz the last

term is bounded by 2∥φ∥2
√
ε3/3 = o(ε).

(b) The first statement is a straight consequence of Lebesgue’s differentiation theorem.

Then, applying (a), we get that the n-th derivative of ψ is absolutely continuous and so

ψ ∈ Hn+1(I).

(c) It follows directly from (a) and (b).

(d) For all φ in L2(I), En φ = 0 implies φ = FnEnφ = 0.

2.6.4 Continuous limit

Lemma 6. For any x, x′ in K, the solution of (2.18) is unique and well defined for all

t ∈ [0, 1]. The maps (x, x′) 7→ qt(x, x
′) and (x, x′) 7→ ct(x, x

′) are Lipschitz continuous on K2

and ct takes values in [−1, 1]. Moreover, both qt and ct are kernels in the sense of Definition 1.

Proof. First, notice that from (2.18) we can find, with few algebraic manipulations, an explicit

recurrence relation for the correlation Cl, defined in (2.5). For any x, x′ ∈ K we have

Cl+1(x, x
′) = Al+1(x, x

′)Cl(x, x
′) +

σw
2

2L

(
1 +

σw
2

2L

)−1

Al+1(x, x
′) f(Cl(x, x

′))

+
1

L

σb
2

√
Ql(x, x)Ql(x′, x′)

;

Al(x, x
′) =

√(
1− 1

L

σb2

Ql(x, x)

)(
1− 1

L

σb2

Ql(x′, x′)

)
.

(2.23)

We can find a Cauchy problem for the correlation directly from (2.18), or by noting that

Al(x, x
′) = 1− σb

2

2L

(
1

Ql(x,x)
+ 1

Ql(x′,x′)

)
+ o(1/L), for L→ ∞. With both approaches, we have

ċt(x, x
′) = σb

2
(
Gt(x, x

′)−At(x, x
′) ct(x, x′)

)
+
σw

2

2
f(ct(x, x

′)) ,

c0(x, x
′) =

σb
2 + σw

2 x · x′√
(σb2 + σw2 ∥x∥2)(σb2 + σw2 ∥x′∥2)

,
(2.24)
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where f is defined in (2.6) and

At(x, x
′) =

1

2

(
1

qt(x, x)
+

1

qt(x′, x′)

)
; Gt(x, x

′) =

√
1

qt(x, x) qt(x′, x′)
.

Note that for the diagonal terms qt(x, x), (2.18) reduces to q̇t = σb
2 + σw

2

2 qt, whose solution is

qt(x, x) = e
σw

2

2
t q0(x, x) +

2σb
2

σw2

(
e

σw
2

2
t − 1

)
= e

σw
2

2
t (σb

2 + σw
2 ∥x∥2) + 2σb

2

σw2

(
e

σw
2

2
t − 1

)
.

Now, fix z = (x, x′) ∈ K2 and let γ0 = c0(z) ∈ [−1, 1]. Consider f̄ : R → R, an arbitrary

Lipschitz extension of f to the whole R and define H : [0,∞)× R → R as

H(t, γ) = σb
2(Gt(z)−At(z) γ) +

σw
2

2
f̄(γ) .

H is Lipschitz continuous in γ and C∞ in t, so there exists τ > 0 such that the Cauchy

problem

γ̇(t) = H(t, γ(t)) ; γ(0) = γ0

has a unique C1 solution defined for t ∈ [0, τ). Noticing that

Gt(x, x
′)−At(x, x

′) = −1

2

(
1

qt(x, x)
− 1

qt(x′, x′)

)2

≤ 0 ,

we get that for all t1 such that γ(t1) = 1 we have γ̇(t1) ≤ 0, since f(1) = 0, and for all t−1 such

that γ(t−1) = −1 we have γ̇(t−1) = σb
2(Gt(x, x

′) + At(x, x
′)) + σw

2

2 > 0. As a consequence

γ(t) ∈ [−1, 1] for all t ∈ [0, τ) and we can take τ = ∞. In particular we get that (2.24) has a

unique solution t 7→ ct(z), defined for t ∈ [0, 1] and bounded in [−1, 1]. Consequently, (2.18)

has a unique and well-defined solution for all t ≥ 0.

Now notice that z 7→ c0(z) is Lipschitz on K2. let us denote as L0 a Lipschitz constant for

c0. Since both Gt and At are C
1, we can find real constants LG, LA and MA such that for all

z, z′ elements of K2

|Gt(z)− Gt(z
′)| ≤ LG ∥z − z′∥ ; |At(z)−At(z

′)| ≤ LA ∥z − z′∥ ; |At(z)| ≤MA .
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Let Lf be a Lipschitz constant for f . Using the fact that |ct| ≤ 1, we can write

|ċt(z)− ċt(z
′)| ≤ L1 ∥z − z′∥+ L2 |ct(z)− ct(z

′)| ,

where L1 = σb
2(LG + LA) and L2 = σb

2MA + σw
2

2 Lf . Now fix z and z′ and consider

∆(t) = ct(z)− ct(z
′). We have

|∆̇(t)| ≤ L1 ∥z − z′∥+ L2 |∆(t)| ; |∆(0)| ≤ L0 ∥z − z′∥ .

So,

|∆(t)| ≤
(
L1

L2

(
eL2 t − 1

)
+ L0 e

L2 t

)
∥z − z′∥ ,

meaning that ct (and so qt) is Lipschitz on L2.

Since the mapping (x, x′) 7→ qt(x, x
′) is continuous, it defines a compact integral operator

T (qt) on L
2(K) (Lang, 2012). Since qt is real and symmetric under the swap of x and x′, the

operator is self-adjoint. The same holds for ct. The fact that T (qt) is a non-negative operator

can be seen as a corollary of Lemma 7. Indeed, since a kernel induces it, every T (Ql|L) is

a non-negative definite operator. Hence, for each t ∈ [0, 1] it is enough to find a sequence

{ln, Ln}n∈N (where Ln ≥ 1 is an integer and ln ∈ [0 : Ln]) such that Ln → ∞ and ln/Ln → t.

By Lemma 7, T (Qln|Ln
) → T (qt) in the L∞ norm, and hence in L2, as we are on a compact

set. By Lemma 10, for all n ∈ N we have that T (Qln|Ln
) is non-negative definite. Since the

subspace of non-negative definite operators in L2 is closed with respect to the L2 operator

norm, we conclude. Now that we have established that T (qt) is non-negative definite, it follows

immediately that T (ct) is also non-negative. Since these results hold for any arbitrary finite

Borel measure µ on K, we can thus conclude by Lemma 1 that both qt and ct are kernels, in

the sense of Definition 1.

Corollary 1. Fix any finite Borel measure µ on K and recall the notation Tµ, introduced

in Section 2.3.1, for the integral operator induced by a kernel. The maps t 7→ Tµ(qt) and

t 7→ Tµ(ct), defined on [0, 1], are continuous and twice differentiable with respect to the operator

norm in L2(K,µ). Moreover, d
dtTµ(qt) = Tµ(q̇t),

d
dtTµ(ct) = Tµ(ċt),

d2

dt2
Tµ(qt) = Tµ(q̈t) and

d2

dt2
Tµ(ct) = Tµ(c̈t).

Proof. Consider the map (t, z) 7→ qt(z), defined on [0, 1]×K2, which is continuous with respect
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to z and C2 with respect to t, as one can easily check. Since K2 and [0, 1] are compact sets, it

follows that for any t

lim
s→t

sup
z∈I2

∣∣∣∣
qs(z)− qt(z)

s− t
− q̇t(z)

∣∣∣∣ = sup
z∈I2

lim
s→t

∣∣∣∣
qs(z)− qt(z)

s− t
− q̇t(z)

∣∣∣∣ = 0 .

Hence lims→t
qs−qt
t−s = q̇t uniformly on K2, and hence lims→t

Tµ(qs)−Tµ(qt)
t−s = Tµ(q̇t) in the

L2(K,µ) norm for operators, since K is compact. The proof for the second derivative works

similarly, using the fact that (t, z) 7→ qt(z) is continuous in z and C1 in t. As a consequence

of the above results, t 7→ Tµ(qt) is continuous and twice differentiable, with d
dtTµ(qt) = Tµ(q̇t)

and d2

dt2
Tµ(qt) = Tµ(q̈t).

The proof for Tµ(ct) is analogous.

Lemma 7 (Convergence to the continuous limit). Let Ql|L be the covariance function of the

layer l in a net of L+ 1 layers [0 : L], and qt be the solution of (2.18), then

lim
L→∞

sup
l∈[0:L]

sup
(x,x′)∈K2

|Ql|L(x, x
′)− qt=l/L(x, x

′)| = 0 .

Proof. We will show that the relation holds for ct and hence for qt. Let H, defined on [0, 1]×K2,

be such that ċt(z) = H(z, t, ct(z)). Explicitly, with the same notations as in (2.24),

H(z, t, γ) = σb
2(Gt(z)−At(z) γ) +

σw
2

2
f(γ) .

Define

τ(h) = sup
t,z

∣∣∣∣
ct+h(z)− ct(z)

h
−H(z, t, ct(z))

∣∣∣∣ .

Since t and z take values on compact sets, by uniform continuity, we can write

sup
t

sup
s∈[t,t+h]

|H(z, s, cs(z))−H(z, t, ct(z))| = o(h) ,

as h→ 0. Since τ can be written as τ(h) = 1
h supt,z

∣∣∣
∫ t+h
t (H(z, s, cs(z))−H(z, t, ct(z)) ds

∣∣∣, it

is clear that τ(h) → 0 for h→ 0. Now, for any integer L ≥ 1, let H̃L : K2× [0 : L− 1]× [−1, 1]
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be given by

H̃L(z, l, γ) = (Al+1|L(x, x
′)− 1)Lγ +

σw
2

2

(
1 +

σw
2

2L

)−1

Al+1|L(x, x
′) f(cl(x, x

′))

+
σb

2

√
Ql|L(x, x)Ql|L(x′, x′)

,

where,

Al|L(x, x
′) =

√(
1− 1

L

σb2

Ql|L(x, x)

)(
1− 1

L

σb2

Ql|L(x′, x′)

)
.

It is clear from (2.23) that H̃L has been defined so that Cl+1|L(z)−Cl|L(z) =
1
LH̃L(z, l, γ), for

all L ∈ [0 : L− 1] and all z ∈ K2. Using the explicit form of the diagonal terms of Q and q, it

can be easily shown that, for L→ ∞,

sup
(x,x′)∈K2

sup
l∈[0:L−1]

Al+1|L(x, x
′) = 1 +

σb
2

L
At=l/L(x, x

′) +O(1/L2) ;

sup
(x,x′)∈K2

sup
l∈[0:L]

σb
2

√
Ql|L(x, x)Ql|L(x′, x′)

= Gt=l/L(x, x
′) +O(1/L2) ,

where At and Gt are defined as in (2.24). As a consequence, we can find a constant M1 > 0

and an integer L⋆ > 0 such that, for all γ ∈ [−1, 1], for all z ∈ K2, for all L ≥ L⋆

|H̃L(z, l, γ)−H(z, l/L, γ)| ≤ M1

L
. (2.25)

Moreover, there exists a constant M2 > 0 such that for all z ∈ K2, all t ∈ [0, 1] and all pairs

(γ, γ′) ∈ [−1, 1]2

|H(z, t, γ)−H(z, t, γ′)| ≤M2∥γ − γ′∥ . (2.26)

Thanks to the two above uniform inequalities, we will now show that, for L ≥ L⋆,

sup
l∈[0:L]

sup
z∈K2

|Cl|L(x, x
′)− ct(l,L)(x, x

′)| ≤ τ̃(1/L)
eM2 − 1

M2
, (2.27)

where τ̃ : h 7→ τ(h) +M1h. To do so, fix L ≥ L⋆ and define ∆l = supz∈K2 |Cl|L(x, x′) −
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ct(l,L)(x, x
′)|. Using the definition of τ , (2.25) and (2.26) we get

|∆l+1| ≤
(
1 +

M2

L

)
|∆l|+

1

L
τ(1/L) +

M1

L
=

(
1 +

M2

L

)
|∆l|+

1

L
τ̃(1/L) .

At this point, using the fact that ∆0 = 0, it is easy to show by induction that

∆l ≤ τ̃(1/L)

(
1 + M2

L

)l − 1

M2
,

and so (2.27) follows. Finally, the uniform convergence of C to c implies the one of Q to q, so

we conclude.

2.6.5 Universality for the uniform scaling

To prove Theorem 6, the idea is to prove that for any finite Borel measure µ on K, the operator

Tµ(qt) is strictly positive definite if t > 0, and then use the characterization of universal kernels

from Lemma 3. To prove the strict positive definiteness, we will proceed in two steps. First we

show in Proposition 9 that, for all non-zero φ ∈ L2(K,µ), ⟨Tµ(qt)φ,φ⟩ > 0 for t small enough.

Then we use Proposition 10, which shows that d
dtTµ(qt) is non-negative definite.

Proposition 9. Fix any finite Borel measure µ on K, and assume that σb > 0. Given any

non-zero φ ∈ L2(K,µ), there exists a tφ ∈ (0, 1] such that ⟨Tµ(qt)φ,φ⟩ > 0, for all t ∈ (0, tφ).

Proof. From Corollary 1, we can expand Tµ(qt) around t = 0 as

Tµ(qt) = Tµ(q0) + t Tµ(q̇0) + o(t) = t Tµ

(
σb

2 +
σw

2

2
q0

)
+ Tµ((c0 + tf(c0))R0) + o(t) ,

o(t) being with respect to the operator norm, where we have defined the kernel R0 via

R0(x, x
′) = σw

2

2

√
(1 + ζ∥x∥2)(1 + ζ∥x′∥2). Since Tµ(q0) is non-negative, for any φ ∈ L2(I),

we have

⟨Tµ(qt)φ,φ⟩ ≥ ⟨Tµ((c0 + tf(c0))R0)φ,φ⟩+ o(t) =

(
1− t

2

)
⟨Tµ(c0)ψ,ψ⟩

+ t ⟨Tµ(f(c0)))ψ,ψ⟩+ o(t) ,

where ψ(x) = σw
√

(1 + ζ∥x∥2)/2φ(x). We conclude by the strict positivity of f̃(c0) on
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L2(K,µ), thanks to Proposition 2 and Lemma 3.

Proposition 10. For any finite Borel measure µ on K, for any t ∈ [0, 1], the operator Tµ(q̇t)

on L2(K,µ) is non-negative definite. In particular, for all φ ∈ L2(K,µ) we have

d

dt
⟨Tµ(qt)φ,φ⟩ ≥ 0 .

Proof. Fix µ and φ ∈ L2(K,µ). From (2.18) we can write

Tµ(q̇t) = Tµ

(
σb

2 +
σw

2

2
qt +

σw
2

2

f(ct)

ct
qt

)
.

By Lemma 6, Tµ(qt) is non-negative definite, so we can write

⟨Tµ(q̇t)φ,φ⟩ = σb
2|⟨1, φ⟩|2 + σw

2

2

〈
Tµ

(
ct + f(ct)

ct
qt

)
φ,φ

〉

≥ σw
2

2

〈
Tµ

(
f̃(ct)

qt
ct

)
φ,φ

〉
=
σb

2

2
⟨Tµ(f̃(ct))ψ,ψ⟩ ,

where f̃ : γ 7→ γ
2 + f(γ), for γ ∈ [−1, 1], and ψ(x) =

√
qt(x, x)φ(x). By Lemma 9, the Taylor

expansion of f̃ around 0 converges uniformly on [−1, 1], and all its coefficients are non-negative.

We conclude by Lemma 8 that Tµ(q̇t) is non-negative definite. Finally, to prove the inequality,

it is enough to recall that d
dtTµ(qt) = Tµ(q̇t) by Corollary 1, the derivative d

dt being with

respect to the operator norm on L2(K,µ).

Theorem 6 (Universality of qt). Let K ⊂ Rp be compact. For any t ∈ (0, 1], the solution qt

of (2.18) is a universal kernel on K.

Proof. By Lemma 3, it suffices to show that for any finite Borel measure µ on K, Tµ(qt) is

strictly positive definite for all t ∈ (0, 1]. Fix any nonzero φ ∈ L2(K,µ), define the map F on

[0, 1] by F (t) = ⟨Tµ(qt)φ,φ⟩. For any fixed t ∈ (0, 1], by Proposition 9 we can find s ∈ (0, t)

such that F (s) > 0. Since F is non decreasing by Proposition 10, we get that Ft > 0. Hence

Tµ(qt) is strictly positive definite.
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2.6.6 Univerality for the sequential scaling

Proposition 6. Fix a compact K on Rp, consider the sequence of kernels on K defined in

(2.19), with
∑

l≥1 λ
2
l <∞. The sequence converges uniformly on K to a universal kernel Q∞.

Proof. By Proposition 5 we know that Λ = supl≥0 supx,x′∈K |Ql(x, x
′)| < ∞. In particular,

from (2.15) we get that for each l ≥ 1

sup
x,x′∈K

|Ql(x, x
′)−Ql−1(x, x

′)| ≤ λl
2(σb

2 + σw
2Λ) ,

where we used that |Cl−1/Ql−1| ≤ Λ. From this, we conclude that the limiting kernel Q∞ is

well defined, and

sup
x,x′∈K

|Q∞(x, x′)−Ql(x, x
′)| ≤ (σb

2 + σw
2Λ)

∑

l′>l

λl
2 ,

which vanishes as l → ∞. Moreover, it is straightforward to show that Q∞ is a kernel, as it is

the unicorn limit of kernels.

Now, with the same arguments used for proving Proposition 1, we get that for any fixed l⋆,

the kernel Ql⋆ is universal. It now suffices to notice that for all l ≥ 1, Ql −Ql−1 is a kernel (cf.

the proof of Proposition 1), and that this fact implies that Q∞ −Ql⋆ is a kernel, as it is the

uniformly convergent sum of kernels. We can then conclude by the classical result that, given

two kernels Q and R, their sum Q+ R is a kernel, and its RKHS HQ+R includes both HQ

and HR (see for instance Theorem 6.24 in Paulsen and Raghupathi, 2016).

2.6.7 Universality on the sphere

Throughout this section, we denote as ν the standard spherical measure on Sd−1. To prove

Proposition 7, since σb = 0, we cannot use Proposition 2. We will hence state some preliminary

results.

Lemma 14. Let {An}n∈N be a family of compact non-negative operators on a separable Hilbert

space H. Let Rn be the range of An and assume that V = Span(
⋃

n∈NRn) is dense in H. Let
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{αn}n∈N be a strictly positive sequence such that the sum

A =
∑

n∈N
αnAn

converges in the operator norm. Then A is a compact strictly positive definite operator.

Proof. A is the convergent limit of a sum of compact self-adjoint operators; hence, it is compact

and self-adjoint. Now, fix an arbitrary non-zero h ∈ H. In order to prove that A is strictly

positive, it is enough to prove that ⟨Ah, h⟩ > 0. Denote by VN the linear span of
⋃

n∈[0:N ]Rn.

Since VN ⊆ VN+1 for all N , and
⋃

N∈N VN = V is dense in H, there exists a sequence {hN}N∈N

converging to h and such that hN ∈ VN for all N .

Now let us show that there must exist n⋆ ∈ N such that An⋆ h ̸= 0. Since limN→∞⟨h, hN ⟩ =

⟨h, h⟩ > 0, there must be a N⋆ such that ⟨h, hN⋆⟩ > 0 and so there exists n⋆ ∈ [0 : N⋆] and

hn⋆ ∈ Vn⋆ such that ⟨h, hn⋆⟩ ≠ 0. In particular, h is not orthogonal to Rn⋆ and can not lie in

the nullspace of An⋆ , using the fact that An⋆ is compact and self-adjoint and so its range and

its nullspace are orthogonal (Lang, 2012). Using the spectral decomposition of non-negative

compact operators, it is straightforward that An⋆ h ̸= 0 implies that ⟨An⋆ h, h⟩ > 0. Now, since

An is non-negative and αn > 0 for all n, we have

⟨Ah, h⟩ =
∑

n∈N
αn⟨An h, h⟩ ≥ αn⋆⟨An⋆ h, h⟩ > 0 ,

and so we conclude.

Lemma 15. For all n ∈ N, consider the kernel pn on Sd−1, defined by pn(x, x
′) = (x · x′)n,

and let Tν(pn) be the induced integral operator on L2(Sd−1, ν). Denoting as Rn the range

of Tν(pn), the subspace V = Span
(⋃

n∈NRn

)
is dense in L2(Sd−1, ν). Moreover, letting

V ′ = Span
(⋃

n∈NR2n

)
and V ′′ = Span

(⋃
n∈NR2n+1

)
, we have L2(Sd−1, ν) = V ′ ⊕ V ′′, the

overline denoting the closure in L2(Sd−1, ν).

Proof. To prove that V is dense, first notice that for each spherical harmonic Y 11, we can find

an operator in the form Tν(P (x · x′)), for a polynomial P , which has Y in its range. Since

the range of such an operator is trivially contained in V , it follows that V contains all the

11We recall that a useful orthonormal basis of L2(Sd−1, ν) is given by the spherical harmonics (see Appendix
H in Yang, 2019b for the derivation of several properties of these functions).
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spherical harmonics, and so it is dense in L2(Sd−1, ν). Now, note that for any even n and odd

n′ we have

∫

Sd−1

(x · z)n(z · x′)n′
dν(z) = 0 ,

by an elementary symmetry argument since it is the integral on the sphere of a homogeneous

polynomial of odd degree n + n′ in the components zi of z. It follows that V ′ and V ′′ are

orthogonal. Since their union V is dense, we conclude that L2(Sd−1, ν) = V ′ ⊕ V ′′.

Corollary 2. With the notations of Lemma 15, assume that a sequence {αn∈N} is such

that A =
∑

n∈N αn Tν(pn) converges with respect to the operator norm on L2(Sd−1, ν). Then

A = A′ +A′′, where A′ : V ′ → V ′ and A′′ : V ′′ → V ′′. Such a decomposition is unique and

A′ =
∑

n∈N
α2n Tν(p2n) ; A′′ =

∑

n∈N
α2n+1 Tν(p2n+1) ,

both sums converging with respect to the operator norm.

Proof. It is clear that A = A′ +A′′, when both A′ and A′′ are defind on the whole L2(Sd−1, ν).

Consider any φ ∈ L2(Sd−1, ν). We have A′φ ∈ V ′, since Tν(p2n)φ ∈ V ′ for all n. Analo-

gously, we can show that A′′φ ∈ V ′′. In order to conclude that we can consider the restrictions

of A′ and A′′ to V ′ and V ′′ respectively, it is enough to recall that, for compact self-adjoint

operators, the nullspace is the orthogonal of the closure of the range (Lang, 2012), so that the

nullspace of A′ contains V ′′ and the nullspace of A′′ contains V ′.

Corollary 3. Consider a kernel Q on the unit sphere Sd−1 ⊂ Rp, such that for all x, x′ ∈ Sd−1

Q(x, x′) =
∑

i≥0

αi(x · x′)i ,

where the αi’s are strictly positive coefficients, and the convergence is uniform on Sd−1. Then,

Tν(Q) is strictly positive definite.

Proof. This is a classical result (Schoenberg, 1942) that we can recover as a consequence of

Lemma 14 and Corollary 3.
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Lemma 16. The function f : [−1, 1] → R, defined in (2.6), is an analytic function on (−1, 1),

whose expansion f(γ) =
∑

n∈N αn γ
n converges uniformly on [−1, 1]. Moreover, αn > 0 for all

even n ∈ N, α1 = −1/2 and αn = 0 for all odd n ≥ 3. Moreover, the function g : [−1, 1] → R,

defined as g(γ) = f(γ)f ′(γ), is analytic on (−1, 1) and its expansion g(γ) =
∑

n∈N βn γ
n has

all the coefficients strictly positive and converges uniformly on [−1, 1].

Proof. The claims for f have already been proven in Lemma 9. As for g, the analyticity of f

implies the one of f ′, and it is easy to check the convergence on [−1, 1]. Moreover, all the odd

Taylor coefficients of f ′ are strictly positive, as the even coefficients of f are. It follows that

βn > 0 for all odd n.

Proposition 11. Given any non-zero φ ∈ L2(Sd−1, ν), there exists a tφ ∈ (0, 1] such that

⟨Tν(qt)φ,φ⟩ > 0, for all t ∈ (0, tφ).

Proof. The case σb > 0 has been already established in Proposition 9, hence suppose that

σb = 0. First recall (2.24), which now reads

ċt =
σw

2

2
f(ct) . (2.28)

Deriving once more, we have

c̈t = g(ct) , (2.29)

where g = ff ′ as in Lemma 16. Define the kernels pn, and the subspaces V ′ and V ′′ of

L2(Sd−1, ν), as in Lemma 15. By (2.28) and (2.29) we can write

ct = c0 + t ċ0 +
t2

2
c̈0 + o(t2) = c0 + t f(c0) +

t2

2
g(c0) + o(t2) .

Since σb = 0, we have that c0(x, x
′) = x · x′, so that c0 = p1. From Lemma 16, Tν(ċ0) =

∑
n∈N αn Tν(pn) and Tν(c̈0) =

∑
n∈N βn Tν(pn), both sums converging in the operator norm.

Moreover, αn > 0 for all even n and αn = 0 for all odd n ≥ 3, whilst βn > 0 for all odd n. In

particular, by Corollary 2 and Lemma 14, we deduce that the restriction of Tν(ċ0)|V ′ : V ′ → V ′

is well defined and strictly positive, and the same holds for the restriction Tν(c̈0)|V ′′ : V ′′ → V ′′.

Now fix a non-zero φ ∈ L2(Sd−1, ν). By Lemma 15, we can write φ = φ′+φ′′, with φ′ ∈ V ′,
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φ′′ ∈ V ′′ uniquely determined. First, suppose that φ′ ̸= 0. Using Corollary 1 and recalling

that c0 = p1, we get

⟨Tν(ct)φ,φ⟩ = t⟨Tν(ċ0)|V ′ φ
′, φ′⟩+ ⟨(1 + t α1)Tν(p1)φ

′′, φ′′⟩+ o(t) > 0 ,

for t small enough. On the other hand, for φ′ = 0, we have φ = φ′′ and so

⟨Tν(ct)φ,φ⟩ = ⟨(1 + t α1)Tν(p1)φ
′′, φ′′⟩+ t2

2
⟨Tν(c̈0)|V ′′ φ

′′, φ′′⟩+ o(t2) > 0

for t small enough. So, there is a tφ such that, for t ∈ (0, tφ), ⟨Tν(ct)φ,φ⟩ > 0. It follows

immediately that the same property is true for Tν(qt).

Lemma 17. Let Q be a kernel on Sd−1. Then Q is universal on Sd−1 if, and only if, Tν(Q)

is strictly positive definite on L2(Sd−1, ν).

Proof. If Q is universal, Tν(Q) is strictly positive definite by Lemma 3. On the other hand, if

Tν(Q) is strictly positive definite, it is known that its range contains all the spherical harmonics

(Yang and Salman, 2019). Since the RKHS generated by Q contains the range of Tν(Q) (see

Proposition 11.17 in Paulsen and Raghupathi, 2016), it contains the linear span of the spherical

harmonics, which is dense in C(Sd−1) (Kounchev, 2001). Hence Q is universal.

Proposition 7. Let qt be the solution of the Cauchy problem (2.18) with σb = 0. Then, for

all t > 0, qt is universal on Sd−1. Let Ql be the solution of (2.19) with σb = 0. The sequence

of these kernels converges uniformly to a universal kernel Q∞ on Sd−1, and for all l ≥ 2, the

kernel Ql is universal on Sd−1.

Proof. For the uniform scaling, we can proceed as in the proof of Theorem 6, using Proposition

10 and Proposition 11 we can show that Tν(qt) is strictly positive definite on L2(Sd−1, ν) for

all t ∈ (0, 1]. We conclude by Lemma 17 that qt is universal on Sd−1.

For the sequential scaling, first, we establish the universality of Ql, for l ≥ 2. To do so, we

first notice that for σb = 0, the recurrence relation (2.19) for the correlation kernel reads

Cl(x, x
′) = hl(Cl−1(x, x

′)) ,
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where

hl(c) = c+
λl

2σw
2

2

(
1 +

λl
2σw

2

2

)−1

f(c) ,

(cf. (2.23)). Since
(
1 + λl

2σw
2

2

)−1
< 1, by Lemma 16, we see that

hl(c) = α1,l c+
∑

k≥0

α2k,l c
k ,

where all the coefficients α that appear are strictly positive, and the convergence is uniform

on Sd−1. Moreover, it follows that for any l ≥ 1, we have that

hl+1(hl(c)) =
∑

k≥0

βk,l c
k ,

where all the coefficients βk,l are strictly positive, and again the convergence is uniform on

Sd−1. Since C2 = h2

(
h1

(
σw

2

p p1

))
, we conclude by Corollary 3 and Lemma 17 that C2 is

universal, and so is Q2. Using the same arguments of the proof of Proposition 1, we conclude

that for all l ≥ 2, Ql is ν-universal, and the sequence of these kernels converges to a ν-universal

limit Q∞.
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Abstract
The limit of infinite width allows for substantial simplifications in the analytical study of over-
parameterised neural networks. With a suitable random initialisation, an extremely large network
exhibits an approximately Gaussian behaviour. In the present work, we establish a similar result
for a simple stochastic architecture whose parameters are random variables, holding both before
and during training. The explicit evaluation of the output distribution allows for a PAC-Bayesian
training procedure that directly optimises the generalisation bound. For a large but finite-width
network, we show empirically on MNIST that this training approach can outperform standard PAC-
Bayesian methods.
Keywords: Infinite width; Gaussian limit; PAC-Bayes; Stochastic networks.

1. Introduction

In recent years, overparameterised artificial neural networks with millions of nodes have shown
remarkably good generalisation capabilities. This behaviour contradicts the traditional well-rooted
belief that overfitting is unavoidable when the trainable parameters far outnumber the size of the
training dataset. It also highlights how the complexity bounds from classical statistical learning
theory (Vapnik, 2000; Bousquet et al., 2004; Shalev-Shwartz and Ben-David, 2014) are manifestly
inadequate tools to assess the generalisation properties of modern neural architectures (Zhang et al.,
2021). As a consequence, the last couple of decades have seen the flourishing of novel results and
techniques, aiming to explain the undeniable success of overparameterised models.

A large number of trainable parameters makes the direct study of a network’s training dynamics
extremely challenging. However, things become more manageable when approximations are made,
as is the case in the limit of infinite width (Neal, 1995; Schoenholz et al., 2017; Yang, 2019; Hayou
et al., 2019; Lee et al., 2019; Sirignano and Spiliopoulos, 2020; De Bortoli et al., 2020; Hayou et al.,
2021). For a fully-connected feed-forward network, this limit consists in assuming that each layer
includes an infinite number of nodes, while alternative definitions of width allow for extensions of
this idea to encompass a vast range of architectures (Yang, 2019). Although unachievable in prac-
tice, infinitely wide networks feature the interesting property of behaving like Gaussian processes
at initialisation, when all the parameters are suitably randomly initialised. This fact enable us to
capture the output’s behaviour of large (but finite-size) models, both before (Matthews et al., 2018;
Lee et al., 2018) and during the training (Jacot et al., 2018).

In this work, we establish a similar asymptotic result for a simple stochastic architecture, featur-
ing a single hidden layer. For a stochastic network, the randomness is not limited to the initialisation
but is intrinsic in the parameters, which are treated as random variables. Specifically, here we as-
sume that each parameter follows an independent normal distribution. As the architecture’s width

© 2023 E. Clerico, G. Deligiannidis & A. Doucet.
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approaches infinity, we show that the network’s output becomes Gaussian, with mean and covari-
ance that can be derived from the means and standard deviations of the random parameters. We also
show that under a lazy-regime assumption, where the parameters stay close to their initial values,
this Gaussian behaviour is preserved throughout the training.

Part of the interest in studying stochastic networks is their role in the context of learning with
guarantees, where the goal is to provide an upper-bound on the generalisation error without making
use of any held-out test dataset. For long, in the overparameterised regime tight bounds could only
be achieved under strong, and often hardly verifiable, hypotheses (Allen-Zhu et al., 2019). However,
some promising non-vacuous results have been recently obtained by applying PAC-Bayesian meth-
ods to the training of stochastic classifiers (Dziugaite and Roy, 2017; Zhou et al., 2019; Pérez-Ortiz
et al., 2021; Biggs and Guedj, 2022; Clerico et al., 2022).

The PAC-Bayesian theory originated from the seminal work of Shawe-Taylor and Williamson
(1997), Shawe-Taylor et al. (1998), and McAllester (1998, 1999). We refer to Catoni (2007) for an
extensive monograph on the topic, and to Guedj (2019) and Alquier (2021) for recent introductory
overviews. It is a framework that provides upper bounds on the expected generalisation error of
stochastic classifiers, with high probability over the random draw of the training dataset. The un-
derlying idea is that if the distribution of the network’s parameters does not change much during the
training, then the learnt model should not be prone to overfit.

We call PAC-Bayesian training a procedure that aims to optimise a PAC-Bayesian bound. Often
this optimisation cannot be tackled directly, as the distribution of the network’s output is unknown,
and one needs to sample multiple realisations of the stochastic parameters (Dziugaite and Roy,
2017; Pérez-Ortiz et al., 2021). In this paper, we propose to train a shallow wide stochastic network
by exploiting the fact that it has an approximately Gaussian output. Notably, this approach allows
for the direct optimisation of PAC-Bayesian bounds, even when a non-differentiable loss function,
such as the 01-loss, is considered. We show empirically that the procedure that we present can bring
tighter bounds and outperform standard PAC-Bayesian training methods.

As a final remark, it is worth mentioning that this is not the first work suggesting to exploit the
output’s Gaussianity to train a stochastic network. For instance, Alquier et al. (2016) uses a similar
approach, but limited to a linear model for binary classification. Also, Clerico et al. (2022) built on
a preprint of the current paper to develop a Gaussian training method for multilayer architectures.

2. Stochastic networks

We consider a simple network Rp → Rq, consisting of a single hidden layer made of n nodes:

F (x) =W 1 ϕ(W 0x) , (1)

where W 1 is a q × n matrix, W 0 a n × p matrix, and ϕ the activation function. The network is
stochastic. This means that W 0 and W 1 are random variables and each time a new input is fed to
the network a new realisation of them is used to evaluate the output. Concretely, we let

W 1
ij =

1√
n
(s1ijζ

1
ij +m1

ij) ; W 0
jk = 1√

p(s
0
jkζ

0
jk +m0

jk) ,

where (ζ1ij)
j=1...n
i=1...q and (ζ0jk)

k=1...p
j=1...n are independent families of iid standard normal random variables.

We will henceforth call hyper-parameters the means m and the standard deviations s, which are
deterministic quantities when conditioned on their values at initialisation (possibly random).
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We are interested in the infinite-width limit of large n. We aim at showing that, as n → ∞, for
each fixed input x the network’s output F (x) converges to a multivariate normal, whose covariance
matrix Q(x) ∈ Rq × Rq and mean vector M(x) ∈ Rq are deterministic functions of the hyper-
parameters m and s. In short, for any fixed input x, we want to establish that

F (x) → N (M(x), Q(x)) .1 (2)

Note that, for two different inputs x and x′, F (x) and F (x′) are independent, as we assume that the
stochastic parameters of the model are re-sampled every time that a new input is provided.

As a remark, by taking the limit n → ∞ we mean considering a sequence of distinct networks
of increasing widths, all initialised and trained in the same way. To be rigorous, one ought to add
explicit superscripts (n) to the various quantities to stress their dependence on the network’s width.
So, one should actually write F (n), and say that its mean and covariance M (n) and Q(n) can be
expressed in terms of m(n) and s(n). What we will show is that, for each x, F (n)(x) → F (x) ∼
N (M(x), Q(x)), where M and Q are the limits of M (n) and Q(n). However, we believe that
stressing this explicit dependence on n would result in an excessively heavy notation. Therefore,
we will always omit the superscript (n), and we will freely speak of “infinite-width limit” of a
network, with the understanding that this has to be intended as the limit of a sequence of networks.

2.1. Infinite-width limit

We start by focusing on the hidden layer, which we denote as Y 0. Its nodes can be expressed as

Y 0
j (x) =

p∑

k=1

W 0
jkxk =

1√
p

p∑

k=1

s0jkζ
0
jkxk +

1√
p

p∑

k=1

m0
jkxk ,

for any fixed input x ∈ Rp. As the ζ0jk’s are iid standard Gaussian random variables, we have that

Y 0(x) ∼ N (M0(x), Q0(x)) .

This means that Y 0 is a n-dimensional multivariate normal, with mean vector and covariance matrix
given by

M0
j (x) =

1√
p

p∑

k=1

m0
jkxk ; Q0

jj′(x) = δjj′
1

p

p∑

k=1

(s0jkxk)
2 .

As Q0(x) is diagonal, all the components of Y 0(x) are independent, and we can actually write

Y 0
j (x) =

√
Q0

jj(x) ζ̄
0
j +M0

j (x) , (3)

where the ζ̄0j ’s are independent standard normals.
Now, define the random variable

Φ0
j (x) = ϕ(Y 0

j (x)) .

Clearly, we have Fi(x) =
∑n

j=1W
1
ijΦ

0
j (x). Expanding the components of W 1 we can write

Fi(x) =
1√
n

n∑

j=1

s1ijζ
1
ijΦ

0
j (x) +

1√
n

n∑

j=1

m1
ijΦ

0
j (x) .

1. Clearly, to be rigourous one needs to specify which kind of convergence is intended; see Propositions 3 and 4.
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For any fixed input x, in the limit n→ ∞, we have an infinite sum of independent random vari-
ables, which are not identically distributed. In order to establish the convergence to a multivariate
normal distribution, we need to control the variance and some higher moment of these variables,
and hence require that the hyper-parameters have the correct order of magnitude. This is the case
when the network is suitably initialised, and the result remains true during the training, as long as
the hyper-parameters stay close enough to their initial values.

Note that for any finite width n, we can explicitly evaluate the network’s meanM and covariance
Q. For the mean, we have

Mi(x) = E[Fi(x)] =
1√
n

n∑

j=1

m1
ijE[Φ0

j (x)] . (4)

As forQ(x), we haveQii′(x) = Cii′ [F (x)] = E[Fi(x)Fi′(x)]−E[Fi(x)]E[Fi′(x)], which becomes

Qii′(x) = δii′
1

n

n∑

j=1

(s1ij)
2E[Φ0

j (x)
2] +

1

n

n∑

j=1

m1
ijm

1
i′jV[Φ

0
j (x)] , (5)

where we used the fact that the nodes of the hidden layer are independent and so the covariance of
Φ0(x) is diagonal. Once we will have established that the limit of infinite width leads to a Gaussian
output, its mean and covariance will be given by the limit n→ ∞ of the above expressions.

We now state some rigorous results. The next proposition (see Appendix A for the proof) builds
on a central limit theorem for triangular arrays, due to Bentkus (2005).

Proposition 1 For any fixed input x and width n, define M(x) and Q(x) as in (4) and (5). Let
Z(x) ∼ N (M(x), Q(x)) and denote as C the class of measurable convex subsets of Rq. Let F be
defined as in (1). Then

sup
C∈C

|P(F (x) ∈ C)− P(Z(x) ∈ C)| ≤ κq1/4
B(m, s)√

n
,

where κ < 4 is an absolute constant and

B(m, s) ≤ q1/2
1
n

∑n
j=1

∑q
i=1(2|s1ij |3 + 8|m1

ij |3)E[|Φ0
j (x)|3](

1
n

∑n
j=1 E[Φ0

j (x)
2] mini=1...q(s1ij)

2
)3/2 .

In particular, if B(m, s) = o(
√
n) for n→ ∞, then F (x)− Z(x) → 0, in distribution.

As a corollary of the above result, if the stochastic network acts as a classifier, its performance is
related to the one of its Gaussian approximation.

Corollary 2 Assume that the network deals with a classification problem, where for each instance
x there is a single correct label y = f(x) ∈ {1 . . . q}. With the notation of Proposition 1, for each
fixed input x ̸= 0, define as f̂(x) = argmaxi=1...q Fi(x) and f̄(x) = argmaxi=1...q Zi(x). We have

|P(f̂(x) = f(x))− P(f̄(x) = f(x))| ≤ κq1/4
B(m, s)√

n
.

Proof For each k = {1 . . . q}, the set {z ∈ Rq : zk > maxi ̸=k zi} is convex. Hence the claim
directly follows from Proposition 1.

76



WIDE STOCHASTIC NETWORKS

2.2. Initialisation and lazy training

With a suitable random initialisation of the hyper-parameters, and in a lazy training regime, we show
that, as n → ∞, our stochastic network has a Gaussian limit, in the sense that the quantity B/

√
n

of Proposition 1 vanishes as n → ∞. For simplicity, we shall assume that the activation function
ϕ : R → R is Lipshitz continuous (although we do not need to specify the Lipschitz constant).

We let all the network hyper-parameters be independently initialised in the following way:

m0
jk ∼ N (0, 1) ; m1

ij ∼ N (0, 1) ;

s0jk = 1 ; s1ij = 1 ,
(6)

For convenience we write P̂ for the probability measure representing the above initialisation, while
P is the probability measure describing the intrinsic stochasticity of the network. These two sources
of randomness are always assumed to be independent.

Proposition 3 (Initialisation) Consider a sequence of networks of increasing width initialised ac-
cording to (6), and whose activation function ϕ is Lipshitz continuous. For any fixed input x ̸= 0,
defining B as in Proposition 1, we have B(m,s)√

n
→ 0, as n → ∞, in probability with respect to the

random initialisation P̂. More precisely, B(m, s) = O(1) wrt P̂, as n → ∞. In particular, at the
initialisation the network tends to a Gaussian limit, in distribution wrt the intrinsic stochasticity P
and in probability wrt P̂.

Proof’s sketch The proof is deferred to Appendix A. The main idea is that, since all the hyper-
parameters are independent under (6), the standard central limit theorem yields that the upper-bound
for B stated in Proposition 1 tends to a finite limit as n→ ∞.

The next proposition states that the limit will still be valid as long as the hyper-parameters do not
move too much from their initialisation (lazy training).

Proposition 4 (Lazy training) Fix a constant J > 0 independent of n, and assume that ϕ is
Lipshitz. For a network of width n, with initial configuration (m̃, s̃) drawn according to P̂ as in (6),
denote as BJ the ball

BJ =
{
(m, s) : ∥m0 − m̃0∥2F,2 + ∥m1 − m̃1∥2F,2 + ∥s0 − s̃0∥2F,2 + ∥s1 − s̃1∥2F,2 ≤ J2

}
,

where ∥ · ∥F,2 denotes the 2-Frobenius norm of a matrix. Let B be defined as in Proposition 1. For
any fixed input x ̸= 0 we have B(m, s) = O(1) as n → ∞, uniformly on BJ , in probability with
respect to the random initialisation P̂.

Proof’s sketch The proof is rather long and technical, and is deferred to Appendix A. However,
the idea is simple and consists in showing that, under the lazy training assumption (m, s) ∈ BJ , B
undergoes a change of order O(1) during the training. Since by Proposition 3 we know that B is of
order O(1) at the initialisation, we can conclude.

In the next section, we will see that the lazy training constraint can be restated in terms of a
bound on the Kullback-Leibler divergence between the initial and final distributions of the stochastic
parameters. This fact will allow us to ensure that the constraint is satisfied when training the network
to optimise a PAC-Bayesian objective.
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3. PAC-Bayesian framework

Consider a standard classification problem, where to each instance x ∈ X ⊆ Rp corresponds a
unique correct label y = f(x) ∈ Y = {1 . . . q}. The goal is to build an algorithm that is able to find
a good prediction of y given x. We assume that the x’s are distributed according to some probability
measure PX on X . To train our algorithm, we have access to a sample S = (Xh)h=1...m, which is
correctly labelled (for every Xh ∈ S we know f(Xh)). Each Xh is an independent draw from PX ,
so that PS = P⊗m

X . We let ℓ be the 01-loss:

ℓ(ŷ, y) =

{
0 if ŷ = y;
1 otherwise.

We let f̂w(x) denote the prediction for the instance x, for a network with parameter configuration
w. The empirical loss LS(w) = 1

m

∑
x∈S ℓ(f̂w(x), f(x)) is the average of the 01-loss on the

training set, while the true loss is LX(w) = EX [ℓ(f̂w(X), f(X))].
The PAC-Bayesian framework (McAllester, 1998, 1999; Catoni, 2007; Guedj, 2019; Alquier,

2021) deals with stochastic neural classifiers. We consider a prior probability measure P on the
random parameters, which has to be chosen independently of the specific realisation of the random
dataset S used for the training. After the training, the parameters will be described by a new proba-
bility measure Q (the so-called posterior), clearly S-dependent. The idea is that if P and Q are not
too “far” from each other, then the network will generalise well.

Under the posterior, we define the expected true loss LX(Q) = EW∼Q[LX(W )] and the ex-
pected empirical loss LS(Q) = EW∼Q[LS(W )]. The PAC-Bayesian bounds are upper bounds on
LX(Q), which hold with high probability on the random draw of the training set S. They usually
involve the expected empirical error LS(Q) and a divergence term in the form of the Kullback-
Leibler divergence between Q and P: KL(Q∥P) = EQ[log(dP/dQ)]. We will use the following
result, due to Langford and Seeger (2001) and Maurer (2004).

Proposition 5 Fix a data-independent prior P . With probability higher than 1 − δ on the choice
of the training set S = (Xh)h=1...m

2,

LX(Q) ≤ kl−1

(
LS(Q)

∣∣∣∣
KL(Q∥P) + log 2

√
m
δ

m

)
, (7)

for any posterior Q. Here, we have defined kl−1(u|c) = sup{v ∈ [0, 1] : kl(u∥v) ≤ c}, where
kl(u∥v) = u log u

v + (1− u) log 1−u
1−v .

We can hence devise the following training algorithm (McAllester, 1998):

• Fix δ ∈ (0, 1) and a prior P for the network stochastic parameters;

• Collect a sample S of m iid datapoints;

• Compute the optimal posterior Q minimising (7);

• Implement a stochastic network characterised by the law Q.

In practice, in essentially any realistic scenario the algorithm above cannot be implemented. Hence,
one has to simplify the problem requiring that P and Q belong to some simple class of distributions.

2. Here we assume that the training set S has size m ≥ 8.
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3.1. PAC-Bayesian training

Following the approach of Dziugaite and Roy (2017), we assume that both P and Q are multivariate
normal distributions with diagonal covariance matrices. In other words, the random parameters of
the network are independent normal random variables. For the posterior, m and s denote the N -
dimensional vectors of the means and the standard deviations, while m̃ and s̃ refer to the prior. In
short, P = N (m̃, diag(s̃2)) and Q = N (m, diag(s2)). In this Gaussian setting, KL(Q∥P) takes a
simple form:

KL(Q∥P) =
1

2

(∑

α

(
sα
s̃α

)2

−N +
∑

α

(
mα − m̃α

s̃α

)2

+ 2
∑

α

log
s̃α
sα

)
, (8)

where the index α runs over all the components of the hyper-parameters.
Now, the most troublesome term in (7) is LS(Q), which in general cannot be computed explic-

itly. However, we can obtain a Monte Carlo (MC) estimate L̂S(Q) of this quantity, by sampling a
few realisations of the parameters from Q.

Now, the idea is to perform a gradient descent (GD) optimisation on the PAC-Bayesian objective
(Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021). Note that (8) is differentiable with respect to
m and s (which are the trainable hyper-parameters of the posterior). However, L̂S(Q) has a null
gradient almost everywhere, as this is the case for LS(w) for each realisationw used in the estimate.
The standard way to overcome this issue is to use a surrogate of the 01-loss for the training, such
as some variant of the cross-entropy (Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021). Notably,
although L̂S(Q) has a null gradient, this is not the case for LS(Q) (see Section 4.1 and Figure 1
for more details). Hence, if we know exactly the output’s distribution of the stochastic network, we
might be able to use the 01-loss directly without the need of any surrogate. This is indeed the case
for the Gaussian limit, as we will see in the next section. In a similar spirit, Alquier et al. (2016)
studied the training of a linear binary classifier with Gaussian parameters.

It is worth mentioning that similar considerations hold when using an almost everywhere con-
stant activation function to train a stochastic network. In this regard, Germain et al. (2009); Letarte
et al. (2019); Biggs and Guedj (2021) developed an interesting variant of PAC-Bayesian training for
binary classifiers with the sign activation function (ϕ = sign). In that setting, the simple form of the
output of each layer allows for a more explicit expression of the distribution of the hidden nodes,
which permits overcoming the fact that the binary activation function is non-differentiable.

4. PAC-Bayesian training in the Gaussian limit

Instead of doing the standard PAC-Bayesian training with a surrogate loss, we can train our wide
stochastic network by assuming that its Gaussian approximation is exact. However, once completed
the training, we will need to evaluate the final bound without such an assumption.

At the initialisation, for a network initialised according to P̂ as in (6), the Gaussian approxima-
tion is asymptotically exact for large n. Moreover, the following lemma ensures that controlling the
KL divergence is enough to claim that the network is in the lazy training regime of Proposition 4.
Hence, a wide stochastic network is asymptotically Gaussian throughout its PAC-Bayesian training.

Lemma 6 Define the multivariate Gaussian distributions P = N (m̃, diag(s̃2)) = N (m̃, Id) and
Q = N (m,diag(s2)) for the parameters of a stochastic network. We have

∥m0 − m̃0∥2F,2 + ∥m1 − m̃1∥2F,2 + ∥s0 − s̃0∥2F,2 + ∥s1 − s̃1∥2F,2 ≤ 2KL(Q∥P) .
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Proof From (8), we conclude noticing that u2 − 1− 2 log u ≥ (u− 1)2, for all u > 0.

The rest of this section is organised as follows. First, we show that it is possible to get a non-
zero gradient from the expected 01-loss in the Gaussian limit. Then, we discuss how to evaluate
the gradients of the output’s mean and covariance with respect to the hyper-parameters. Finally, we
deal with how to obtain a rigorous PAC-Bayesian bound after the training.

4.1. Training with the 01-loss

Figure 1: When “going down the
stairs” via GD, each single realisation
lies on a horizontal step and has an
uninformative null gradient, but the
whole distribution has a global view
of the stairs and can find the good di-
rection.

For x ∈ X ⊆ Rp, we want to find the correct y = f(x)
among q possible labels i = 1, . . . , q. We consider a Gaussian
network with output F (x) ∼ N (M(x), Q(x)), whose ran-
dom prediction is f̂(x) = argmaxi=1...q Fi(x). Denoting as ℓ
the 01-loss, it is natural to aim at minimising E[ℓ(f̂(x), f(x))]
(where the expectation is over the stochastic parameters), since
this quantity is actually equal to the probability of making a
mistake for x: P(f̂(x) ̸= f(x)). As we want to tackle the
problem by performing gradient descent optimisation, if we
assume that we are able to differentiate M(x) and Q(x) with
respect to the network trainable hyper-parameters, all we need
is to evaluate ∇ME[ℓ(f̂(x), y)] and ∇QE[ℓ(f̂(x), y)].

Note that ℓ(f̂(x), y) has a null gradient almost everywhere
for any random realisation of the network. For this reason, a
non-stochastic network cannot be trained directly with the 01-
loss. However, this is not the case for a stochastic network.
The reason for that can be intuitively explained by thinking of
what happens if we try to “go down the stairs” with GD, as
illustrated in Figure 1. A single realisation of the network will
be a point on a horizontal step: there is no way to understand the right direction in order to go
down. However, if we consider the whole stochastic distribution of the network, it spreads over all
the steps, and it has a global view of the stairs. It is hence not surprising that the gradient of the
expected loss is non-zero.

For binary classification tasks, the expected 01-loss reads E[ℓ(f̂(x), 1)] = P(F2(x) > F1(x))
and E[ℓ(F (x), 2)] = P(F1(x) > F2(x)). These quantities can be computed exactly:3

E[ℓ(f̂(x), 1)] = Pζ∼N (0,1)

(
ζ >

M1(x)−M2(x)√
Q11(x) +Q22(x)− 2Q12(x)

)
;

E[ℓ(f̂(x), 2)] = Pζ∼N (0,1)

(
ζ >

M2(x)−M1(x)√
Q11(x) +Q22(x)− 2Q12(x)

)
.

Clearly, the two expressions above can be written explicitly in terms of the error function erf, as ζ
is distributed as a standard normal and P(ζ > u) = 1

2(1− erf (u/
√
2)). It is then straightforward to

see that E[ℓ(f̂(x), y)] is differentiable with respect to M and Q, with non-zero derivatives.

3. A similar result was already derived in Alquier et al. (2016) for a simpler linear classifier.
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When there are more than two classes, things become more complicated. It is however possible
to exploit the Gaussianity and obtain a MC estimator of the expected loss, whose gradient with
respect to M and Q is computable and not trivially zero. We refer to Appendix B for details.

4.2. Derivatives of M and Q

We have so far established that we can effectively differentiate the expected loss with respect to
M and Q. Still, to train the network we will need to evaluate the gradients with respect to the

hyper-parameters m and s. Now, recall that Φ0
k(x) is in the form ϕ(aζ + b), with a =

√
Q0

kk(x),

b = M0
k (x), and ζ ∼ N (0, 1). When the activation function ϕ is simple enough, E[ϕ(aζ + b)] and

E[ϕ(aζ + b)2] have closed-form expressions. Exploiting this fact, it is possible to evaluate the m0-
and s0-derivatives of M and Q, needed in order to train the network with gradient-based methods.
This if for instance the case for ϕ = ReLU and ϕ = sin (see Appendix C).

4.3. Final computation of the bound

Once completed the training, we need to abandon the Gaussian approximation to compute the final
bound. We will follow the same approach as Dziugaite and Roy (2017) and Pérez-Ortiz et al. (2021).

Let W1, . . . ,WN be N independent realisations of the whole set of network stochastic parame-
ters, drawn according to Q. For δ′ ∈ (0, 1), with probability at least 1− δ′ (Langford and Caruana,
2002)

LS(Q) ≤ kl−1
(
L̂S(Q)

∣∣ 1
N log 2

δ′

)
, (9)

where kl−1 is defined in Proposition 5 and we have defined L̂S(Q) = 1
N

∑N
h=1 LS(Wh). Since

kl−1 is increasing in its first argument, Proposition 5 yields that with probability at least 1− δ − δ′

LX(Q) ≤ kl−1

(
kl−1

(
L̂S(Q)

∣∣ 1
N log 2

δ′

) ∣∣∣∣
KL(Q∥P) + log 2

√
m
δ

m

)
. (10)

This method is often computationally very expensive, especially for large values of N . However,
using a standard re-parameterisation trick from Kingma et al. (2015) helps to speed-up the evalu-
ation, as it makes possible to obtain a realisation of the network by sampling only d + n standard
normals, instead of all the p× n2 × q stochastic parameters.

As a final remark, an alternative way to get an exact result from the Gaussian approximation
is to use an upper bound, such as the one in Corollary 2, to control the finite-size correction to the
expected empirical loss. However, for networks with O(103) hidden nodes, like those that we used
in our experiments, this last approach gives looser bounds compared to the method described above,
at least when the number N of samples used for the MC estimate L̂S(Q) is of order O(105).

5. Experimental results

In this section, we present some empirical results to validate our theoretical findings. First, we
compare the Gaussian predictions with the distribution of the output nodes of a wide stochastic
network. Then, we report the results obtained by training a stochastic network on MNIST, and
on a binary version of it, with our Gaussian method and with standard PAC-Bayesian procedures
like those from Dziugaite and Roy (2017) and Pérez-Ortiz et al. (2021). On both datasets, the
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Gaussian method led to tighter final generalisation bounds. The PyTorch code developped for this
paper is available at https://github.com/eclerico/WideStochNet. For the sake of
conciseness, we refer to Appendix D for an exhaustive account of the experimental details.

In order to keep the experimental setting as simple as possible, we opted for training only the
means m (keeping the standard deviations s fixed at their initial value), similarly to what was done in
Letarte et al. (2019). Moreover, coherently with the rest of this paper, all the networks that we used

Figure 2: Distributions of the three output nodes of a wide
stochastic network trained on a toy classification task. In black
the theoretical predictions.

had no bias. The PAC-Bayesian pri-
ors were chosen in a completely data-
independent fashion, and coincided
with the distribution of the network
at initialisation, as suggested by Dz-
iugaite and Roy (2017).

We start by considering a toy
dataset, whose datapoints were sam-
pled from three multivariate standard
normal distributions (labelled as 1,
2, 3) in R4, and then projected on
the unit sphere in R4. A stochas-
tic network with one hidden layer of
n = 1200 nodes was trained to pre-
dict from which of the three Gaus-
sian clusters each point comes. The
histograms in Figure 2 represent the
distributions of the network’s output
nodes, both before and after the train-
ing. They have been obtained for a
single example by sampling 106 real-

isations of the random parameters. The theoretical predictions of the Gaussian profiles are plotted
in black. The agreement with the histograms is striking, showing that the network is essentially
Gaussian already for O(103) hidden nodes.

We now focus on the experiments on a binary version of the MNIST dataset, where the training
dataset consisted ofm = 60000 images. We considered a stochastic network with n = 1200 hidden
nodes and ReLU activation function, initialised as in (6). We tried four training methods, based on
different training objectives. The three “standard” PAC-Bayesian procedures used the objectives

McAll = L̄S(Q) +

√
KL(Q∥P) + log 2

√
m
δ

2m
;

lbd =
L̄S(Q)

(1− λ/2)
+

KL(Q∥P) + log 2
√
m
δ

mλ(1− λ/2)
;

quad =



√

L̄S(Q) +
KL(Q∥P) + log 2

√
m
δ

2m
+

√
KL(Q∥P) + log 2

√
m
δ

2m




2

,

(11)

where L̄S(Q) is the expectation under Q of the empirical cross-entropy loss divided by log 2. The
objective McAll is from Dziugaite and Roy (2017), while quad comes from Pérez-Ortiz et al. (2021)
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and lbd was originally derived by Thiemann et al. (2017) and later used by Pérez-Ortiz et al. (2021).
In lbd, λ ∈ (0, 1) is also a trainable parameter.

As we are dealing with binary classification, for the “Gaussian” method (described Section 4),
the expected value LS(Q) of the 01-loss can be evaluated directly (see Section 4.1). We could hence
directly optimise (7), using the objective

invkl = kl−1

(
LS(Q)

∣∣∣∣
KL(Q∥P) + log 2

√
m
δ

m

)
. (12)

Table 1 illustrates the results of the experiment. The column “Bound” reports the values of the
PAC-Bayesian bound (10). For the upper bound (9) on the empirical error, we used N = 150000
independent realisations of the net, δ′ = 0.01, and δ = 0.025, so that the final generalisation bounds

Table 1: Binary MNIST

Method Bound Test error G Bound G Loss Penalty

invkl .1773 .0694±.0040 .1741 .0676 .0492

McAll .1978 .0456±.0025 .1947 .0428 .1006
lbd .1856 .0543±.0030 .1825 .0520 .0752
quad .1855 .0533±.0030 .1823 .0515 .0757

Table 2: MNIST

Method Bound Test Error G Bound G Loss Penalty

invkl .2807 .1083±.0039 .2773 .1114 .0821

McAll .4158 .3189±.0097 .4120 .3265 .0155
lbd .3736 .2639±.0085 .3699 .2717 .0216
quad .3735 .2637±.0083 .3698 .2716 .0217

hold with probability higher than
0.965 on the random selection of the
training set. The colum “Test Er-
ror” reports the average test error on
a held-out dataset and its standard
deviation. These values were eval-
uated on 10000 independent realisa-
tions of the test error. The two next
columns refer to quantities computed
within the Gaussian approximation:
“G Bound” is the bound given by
(7) and “G Loss” is the expected
01-loss. “Penalty” is the quantity
(KL(Q∥P) + log 2

√
m
δ )/m.

The “Gaussian” method yielded
a tighter final bound than the “stan-
dard” ones. Yet, the best test error is
achieved by McAll. It is worth not-
ing that the final bound obtained with
McAll is slightly worse than the one from Dziugaite and Roy (2017), where for a similar network
of 1200 hidden nodes a final bound of .179 was obtained, whilst our result is .1921. However, our
setting is simpler: our network has no bias, the standard deviations are not trained, and there is no
choice of the optimal prior among different initialisations.

Finally, we report the results of a similar experiment on the full MNIST dataset (with the original
10 labels). The network is essentially the same one used for binary MNIST, with 1200 hidden nodes
and ReLU activation function. The main difference is that now we have 10 output nodes. For the
“standard” methods, we trained on the same objectives (11) as before, although this time we used
a bounded version of the cross-entropy loss, as in Pérez-Ortiz et al. (2021). L̄S(Q) is the expected
value under Q of this bounded cross-entropy, averaged on the training set. The “Gaussian” method
used the objective (12), where LS(Q) is again the expected empirical 01-loss. Actually, as we were
dealing with more than two classes, we could not exactly compute the expected 01-loss, since we
do not have a simple closed-form expression for it, and we proceeded as described in Appendix B.

Table 2 reports the results of the experiment on the full MNIST dataset, where for the estimate
of the final bounds we again used N = 150000, δ′ = 0.01, and δ = 0.025. Once more, the
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“Gaussian” method obtained a tighter result, with almost a 0.1-gap with the bounds achieved by
the other procedures. This time, the “Gaussian” method also attained the tightest test error. It is
worth noticing that the PAC-Bayesian penalties of the standard methods are much lower than the
respective losses4, something that did not occur in Table 1. We conjecture that this behaviour is due
to the different rescaling of the cross-entropy loss. On the other hand, this is not the case for the
Gaussian method, as the loss does not require any rescaling.

6. Conclusions and perspectives

In the present work, we derive a Gaussian limit for a simple one-layer stochastic architecture, and
point out how this result can be used in practice for the PAC-Bayesian training of wide shallow
networks. First, we rigorously prove the validity of the limit at the initialisation and in a lazy
training regime. Then, we show empirically that the proposed training method can outperform
some standard PAC-Bayesian training procedures.

A main limitation of our approach is that it is limited to shallow networks with a single hidden
layer. Indeed, our approach to establish the Gaussian limit relies on the fact that the hidden nodes
are independent. This is not true anymore for any subsequent layer, and hence the CLT result that
we use is no longer applicable. It is however worth mentioning that all the covariance matrices of
the hidden layers are almost diagonal at the initialisation (as it is easy to check that the non-diagonal
elements scale as 1/

√
n) and a lazy-training constraint equivalent to the one in Proposition 4 might

be enough to help establishing a rigorous Gaussian limit holding for multilayer architectures. In
any case, even if one were able to use a limit theorem holding for the sum of weakly dependent
nodes, evaluating the output’s law of the network would require the knowledge of the (non-diagonal)
covariance matrices of the hidden layers.5 As we are looking at wide networks, the storage of these
matrices would require a considerable amount of computational memory. Nevertheless, it is still
possible to exploit our Gaussian PAC-Bayesian training ideas for multilayer architectures. This was
recently done by Clerico et al. (2022), which built on our work to obtain PAC-Bayesian bounds
using the fact that the network’s output is Gaussian when conditioned on the hidden layers.

As a final remark, in the present work we did not treat the case of a network with biases. This is
likely to be an elementary extension, which should not require much additional work.
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4. Training with longer time did not bring any relevant improvement, as the GD descent appeared to have already
stabilised.

5. Although the non diagonal elements are expected to scale as 1/
√
n, the fact that they usually appear in sums ofO(n)

terms can make their contribution non negligible. This was confirmed by a few empirical tests were we tried to only
consider the diagonal elements of the covariance matrices of the central layers, and obtained inconsistencies between
the predicted and the empirical output laws.
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Appendix A. Omitted proofs

Throughout this section we use several notations for the norms of vectors and matrices. For γ ≥ 1
and a vector v, ∥v∥γ = (

∑
i |vi|γ)1/γ . If A is a matrix, we define ∥A∥F,γ = (

∑
ij |Aij |γ)1/γ and

∥A∥γ = supv:∥v∥γ=1 ∥Av∥γ . We also recall that P denotes the intrinsic stochaticity of the network,
while P̂ is the randomness due to the initialisation. These two sources of stochasticity are always
supposed to be mutually independent. We denote as E the expectation wrt P, and as Ê the one wrt
P̂. Moreover we write Γ = OP̂(n

γ) to mean that lim supn→∞
|Γ|
nγ < ∞ in probability wrt P̂, and

Γ = ΩP̂(n
γ) for lim supn→∞

|Γ|
nγ > 0 in probability wrt P̂.

We want to prove a rigorous result of convergence to the Gaussian limit of wide stochastic
networks. We will essentially make use of the next result, due to Bentkus (2005).

Theorem 7 Let X1, . . . , Xn be independent random vectors in Rq, such that E[Xj ] = 0 for all
j. Let Y = 1√

n

∑n
j=1Xj and assume that the covariance matrix C[Y ] is non singular. Let Z ∼

N (0,C[Y ]). Denote as 1√
C[Y ]

the inverse of the positive square root of the matrix C[Y ], and let

Bj = E[∥ 1√
C[Y ]

Xj∥32] and B = 1
n

∑n
j=1Bj . Let C denote the class of all convex subsets of Rp.

Then, there exists an absolute positive constant κ < 4 such that

sup
C∈C

|P(Y ∈ C)− P(Z ∈ C)| ≤ κq1/4
B√
n
. (13)

Our goal is to prove a Gaussian limit as n→ ∞ for F (x), whose components are given by

Fi(x) =
1√
n

n∑

j=1

s1ijζ
1
ijΦ

0
j (x) +

1√
n

n∑

j=1

m1
ijΦ

0
j (x) .

Let us denote by Xj the q-dimensional vector Xj = (X1j . . . Xqj), with

Xij = s1ijζ
1
ijΦ

0
j (x) +m1

ij(Φ
0
j (x)− E[Φ0

j (x)]) .

Since all the ζ1ij’s and the Φ0
j ’s are independent, the Xj’s constitute a family of n centred indepen-

dent q-dimensional random vectors (wrt the intrinsic network stochasticity P).
Clearly, we have F (x) = E[F (x)] + 1√

n

∑n
j=1Xj . Let us define Y = 1√

n

∑n
j=1Xj . Note that,

for all x, the covariance matrix C[Y ] is given by Q(x) (defined in (5)), no matter if Y is Gaussian
or not. Using the same notations of Theorem 7, assuming that C[Y ] is non-singular, we have

sup
C∈C

|P(Y ∈ C)− P(Z ∈ C)| ≤ κq1/4
B√
n
.

To prove that the Y behaves as a Gaussian for large n, we will show that B = O(1) for large n. We
can easily upperbound each Bj as

Bj ≤
1

λ[Y ]3/2
E[∥Xj∥32] ,

where λ[Y ] > 0 is the smallest eigenvalue of C[Y ]. For simplicity, we have omitted the dependence
of these quantities on m and s. We will often do so throughout this section, in order to lighten the
notation.
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Define G = 1
n

∑n
j=1 E[∥Xj∥32] and Λ = 1

n

∑n
j=1 λ[Xj ]. Clearly, as the Xj’s are independent,

we have C[Y ] = 1
n

∑n
j=1C[Xj ]. In particular, we can easily find that λ[Y ] ≥ Λ.

We summarise what we have so far in the next lemma.

Lemma 8 With the notations introduced above, assuming that C[Y ] is not singular, we have

B ≤ 1

n

n∑

j=1

1

Λ3/2
E[∥Xj∥32] =

G

Λ3/2
.

Now, from Hölder’s inequality we have ∥Xj∥2 ≤ ∥1q∥6∥Xj∥3 = q1/6∥Xj∥3, and so

∥Xj∥32 ≤ q1/2∥Xj∥33 = q1/2
q∑

i=1

|Xij |3 . (14)

Then, with some simple algebraic manipulation, and applying Jensen’s inequality, we obtain

E[|Xij |3] ≤ (|s1ij |3E[|ζ1ij |3] + 8|m1
ij |3)E[|Φ0

j (x)|3] .

For convenience, we introduce the following notations

Hij = (2|s1ij |3 + 8|m1
ij |3)E[|Φ0

j (x)|3] ; Hj =

q∑

i=1

Hij ; H =
1

n

n∑

j=1

Hj ,

so that we have G ≤ q1/2H , since E[|ζ|3] = 2
√

2/π < 2 for ζ ∼ N (0, 1).
On the other hand, we can find a lowerbound for Λ as well. Indeed, first we can notice that

Cii′ [Xj ] = δii′(s
1
ij)

2E[Φ0
j (x)

2] +m1
ijm

1
i′jV[Φ

0
j (x)] .

The first term is a diagonal matrix, while the second one is non-negative definite. Hence we can
write

λ[Xj ] ≥ E[Φ0
j (x)

2] min
i=1...q

(s1ij)
2 .

Defining

Θ =
1

n

n∑

j=1

E[Φ0
j (x)

2] min
i=1...q

(s1ij)
2 ≤ Λ (15)

we have the following corollary of Lemma 8.

Corollary 9 With the same notations as above, if C[Y ] is non singular, we have

B ≤ q1/2
H

Θ3/2
.

Note that both H and Θ can be evaluated explicitly, given the parameters of the networks, as
long as ϕ allows for an explicit evaluation of E[|Φ0(x)|γ ], for γ = 1, 2, 3. This means that we can
give an exact upper bound to the finite-size error of the predicted 01-loss, for any configuration of
the network.

We can now prove Proposition 1 and Corollary 2 from the main text.
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Proposition 1 For any fixed input x and width n, define M(x) and Q(x) as in (4) and (5). Let
Z(x) ∼ N (M(x), Q(x)) and denote as C the class of measurable convex subsets of Rq. Let F be
defined as in (1). Then

sup
C∈C

|P(F (x) ∈ C)− P(Z(x) ∈ C)| ≤ κq1/4
B(m, s)√

n
,

where κ < 4 is an absolute constant and

B(m, s) ≤ q1/2
1
n

∑n
j=1

∑q
i=1(2|s1ij |3 + 8|m1

ij |3)E[|Φ0
j (x)|3](

1
n

∑n
j=1 E[Φ0

j (x)
2] mini=1...q(s1ij)

2
)3/2 .

In particular, if B(m, s) = o(
√
n) for n→ ∞, then F (x)− Z(x) → 0, in distribution.

Proof The result is a straight consequence of Theorem 7 and Corollary 9. Note that C[Y ] is non
singular as long as all the components of s are non-zero, so as long as the bound in the statement is
finite.

In the next section we show how, with a suitable random initialisation, we can assure that the
network has an almost Gaussian behaviour. Successively, we will show that this behaviour is pre-
served during training, as long as the hyper-parameters do not move too much from their initial
values.

A.1. Initialisation

We consider the random initialisation:

m0
jk ∼ N (0, 1) ; m1

ij ∼ N (0, 1) ;

s0jk = 1 ; s1ij = 1 ,
(6)

As now we have two sources of randomness (the initialisation and the intrinsic stochasticity of the
network) to avoid confusion we will denote as Ê, P̂, V̂ the expectations, probabilities and variances
with respect to the initialisation, whilst E, P and V refer to the network intrinsic stochasticity.

Lemma 10 Define H and Θ as in the previous section for a network with parameters (m, s) dis-
tributed according to P̂, as in (6). Assume that ϕ is Lipshitz continuous. Then, for any fixed x ̸= 0,
H → h > 0 and Θ → θ > 0 in probability as n → ∞, with respect to the random initialisation,
where both h and θ are finite.

Proof First notice that, fixed an input x ̸= 0 and fixed n, all the Φ0
j ’s are iid, with respect to P̂, as

all the components of m0 and the s0 are. As a consequence all the Hj’s are iid with respect to P̂
(note that they have different distribution for different n as the law of the Φ0

j ’s depends on n). Now,
thanks to the fact that ϕ is Lipshitz continuous, we have that lim supn→∞ V̂[Hj ] <∞. Hence, by a
standard application of the CLT for triangular arrays, we get that

H − Ê[H] =
1

n

n∑

j=1

(Hj − Ê[Hj ]) → 0
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in distribution, and hence in probability, as 0 is a constant. It is quickly verified that the limit
h = limn→∞ Ê[H] exists, finite and positive. The proof for Θ is analogous.

Now we can easily prove Proposition 3.

Proposition 3 Consider a sequence of networks of increasing width initialised according to (6),
and whose activation function ϕ is Lipshitz continuous. For any fixed input x ̸= 0, defining B as in
Proposition 1, we have B(m,s)√

n
→ 0, as n → ∞, in probability with respect to the random initiali-

sation P̂. More precisely, B(m, s) = O(1) wrt P̂, as n → ∞. In particular, at the initialisation the
network tends to a Gaussian limit, in distribution wrt the intrinsic stochasticity P and in probability
wrt P̂.

Proof It is a straight consequence of Lemma 10.

A.2. Lazy training

We have established that the Gaussian limit holds at initialisation. In the present section we will see
that, as far as the hyper-parameters of the network do not move too much from their initial values,
the limit keeps its validity.

Proposition 4 Fix a constant J > 0 independent of n, and assume that ϕ is Lipshitz. For a network
of width n, with initial configuration (m̃, s̃) drawn according to P̂ as in (6), denote as BJ the ball

BJ =
{
(m, s) : ∥m0 − m̃0∥2F,2 + ∥m1 − m̃1∥2F,2 + ∥s0 − s̃0∥2F,2 + ∥s1 − s̃1∥2F,2 ≤ J2

}
,

where ∥ · ∥F,2 denotes the 2-Frobenius norm of a matrix. Let B be defined as in Proposition 1. For
any fixed input x ̸= 0 we have B(m, s) = O(1) as n → ∞, uniformly on BJ , in probability with
respect to the random initialisation P̂.

Proof For convenience we will write with a tilde all the quantities relative to the network at initiali-
sation. We denote with a ∆ the difference between the final and the initial values of these quantities.
For instance, Θ = 1

n

∑n
j=1 E[Φ0

j (x)
2] mini=1...q(s

1
ij)

2, Θ̃ = 1
n

∑n
j=1 E[Φ̃0

j (x)
2] mini=1...q(s̃

1
ij)

2,
and ∆Θ = Θ− Θ̃.

We will show that for n → ∞, Θ = ΩP̂(1) and G = OP̂(1) uniformly on BJ , so that we can
conclude using that Λ ≥ Θ and Lemma 8.

Fix an input x. First, we need a bound on ∥∆Φ0(x)∥2 = ∥Φ0(x) − Φ̃0(x)∥2. We have that
Φ0(x) = ϕ(Y 0(x)). Hence, letting L be the Lipshitz constant of ϕ, we have ∥∆Φ0(x)∥2 ≤
L∥∆Y 0(x)∥2. Now, as ∆Y 0

j (x) =
1√
p

∑p
k=1∆m0

jkxk +
1√
p

∑p
k=1∆s0jkζ

0
jkxk, we have

∥∆Φ0(x)∥2 ≤
L√
p
(∥∆m0∥2 + ∥∆s0 ⊙ ζ0∥2)∥x∥2 ,

where ⊙ denotes the Hadamard product.
Notice that we have

E[∥∆s0 ⊙ ζ0∥22] ≤ E[∥∆s0 ⊙ ζ0∥2F,2] =
n∑

j=1

p∑

k=1

(∆s0jk)
2E[(ζ0jk)2] = ∥∆s0∥2F,2 ≤ J2
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uniformly in BJ , where as usual the expectation E is the one with respect to the intrinsic stochasticity
of the network, due to the ζ’s. We can define a constant C ≥ 0, independent of n, such that

E[∥∆Φ0(x)∥22] ≤
4L2J2∥x∥22

p
= C2

uniformly in BJ , as ∥∆m0∥2 ≤ ∥∆m0∥F,2 ≤ J .
Now, recalling the definition of Θ and using that s1 = 1 +∆s1, we have

Θ =
1

n

n∑

j=1

E[Φ0
j (x)

2] min
i=1...q

(s1ij)
2 ≥ 1

n

n∑

j=1

E[Φ0
j (x)

2](1− 2 min
i=1...q

|∆s1ij |) .

We will show that 1
n

∑n
j=1 E[Φ0

j (x)
2] → Θ̃ and 1

n

∑n
j=1 E[Φ0

j (x)
2] mini=1...q |∆s1ij | → 0.

First notice that
∣∣∣∣
1

n
E[∥Φ0(x)∥22]−

1

n
E[∥Φ̃0(x)∥22]

∣∣∣∣ ≤
2

n
E[|Φ̃0(x) ·∆Φ0(x)|] + 1

n
E[∥∆Φ0

j (x)∥22] .

We know that 1
nE[∥Φ̃0(x)∥22] = Θ̃ by definition. On the other hand we have

2

n
E[|Φ̃0(x) ·∆Φ0(x)|] ≤ 2

n
E[∥Φ̃0(x)∥2∥∆Φ0(x)∥2]

≤ 2C√
n

(
1

n
E[∥Φ̃0(x)∥22]

)1/2

=
2CΘ̃1/2

√
n

= OP̂(1/
√
n) .

Since 1
nE[∥∆Φ0

j (x)∥22] ≤ C2/n, we have that 1
n

∑n
j=1 E[Φ0

j (x)
2] − Θ̃ → 0 uniformly in BJ , in

probability with respect to the random initialisation P̂.
We still need to show that 1

n

∑n
j=1 E[Φ0

j (x)
2] mini=1...q |∆s1ij | → 0. Again we can decompose

the term in Φ0 and we have

1

n

n∑

j=1

E[Φ0
j (x)

2] min
i=1...q

|∆s1ij |

=
1

n

n∑

j=1

(E[Φ̃0
j (x)

2] + 2E[Φ̃0
j (x)∆Φ0

j (x)] + E[∆Φ0
j (x)

2]) min
i=1...q

|∆s1ij | .

Clearly, for every j we have mini=1...q |∆s1ij | ≤ J , and so we can write

1

n

n∑

j=1

E[Φ0
j (x)

2] min
i=1...q

|∆s1ij | ≤
1

n

n∑

j=1

E[Φ̃0
j (x)

2] min
i=1...q

|∆s1ij |

+
2J

n
(E[|Φ̃0(x) ·∆Φ0(x)|] + E[∥∆Φ0(x)∥22])

uniformly in BJ . We know already that 1
n(2E[|Φ̃0(x) ·∆Φ0(x)|] + E[∥∆Φ0(x)∥22]) = OP̂(1/

√
n).

As for the other term, we have

1

n

n∑

j=1

E[Φ̃0
j (x)

2] min
i=1...q

|∆s1ij | ≤
1√
n


 1

n

n∑

j=1

E[Φ̃0
j (x)

4]




1/2


n∑

j=1

min
i=1...q

(∆s1ij)
2




1/2

.
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Using an argument analogous to that in the proof of Proposition 3, we have that 1
n

∑n
j=1 E[Φ̃0

j (x)
4]

has a finite limit (in probability wrt P̂). On the other hand, we have

n∑

j=1

min
i=1...q

(∆s1ij)
2 ≤

n∑

j=1

q∑

i=1

(∆s1ij)
2 = ∥∆s1∥2F,2 ≤ J2 .

We have thus obtained that 1
n

∑n
j=1 E[Φ̃0

j (x)
2] mini=1...q |∆s1ij | = OP̂(1/

√
n), and so we can con-

clude that Θ = ΩP̂(1), uniformly in BJ and in probability wrt the random initialisation P̂.
Now, we will show that G = OP̂(1). We have

G =
1

n

n∑

j=1

E[∥Xj∥32] ≤
4

n

n∑

j=1

E[∥X̃j∥32] +
4

n

n∑

j=1

E[∥∆Xj∥32] .

Let us write Xj = Uj + Vj , with Uj = (ζ1ijΦ
0
j (x))i=1...q and Vj = (m1

ij(Φ
0
j (x)−E[Φ0

j (x)]))i=1...q.
Then ∥∆Xj∥32 ≤ 4(∥∆Uj∥32 + ∥∆Vj∥32).

First, denoting as ζ1j and ∆s1j the vectors (ζ1ij)i=1...q and (∆s1ij)i=1...q, we can write

∆Uj = ∆Φ0
j (x)ζ

1
j + Φ̃0

j (x)∆s1j ⊙ ζ1j +∆Φ0
j (x)∆s1j ⊙ ζ1j ,

where ⊙ represents the Hadamart product. Φ0 and ζ1 are independent and E[|ζ|3] = 2
√
2/π < 2

for ζ ∼ N (0, 1), so we have

E[∥∆Uj∥32] ≤ 54(q3/2E[|∆Φ0
j (x)|3] + E[|Φ̃0

j (x)|3]E[∥∆s1j∥32] + E[|∆Φ0
j (x)|3]E[∥∆s1j∥32]) .

Using that ∥∆Φ0(x)∥33 ≤ ∥∆Φ0(x)∥32 ≤ C3, we have that

1

n

n∑

j=1

q3/2E[|∆Φ0
j (x)|3] ≤

q3/2C3

n

uniformly in BJ . Then we can notice that ∥∆s1j∥2 ≤ ∥1q∥3∥∆s1j∥6 = q1/3∥∆s1j∥6 by Hölder’s
inequality. Hence

1

n

n∑

j=1

E[|Φ̃0
j (x)|3]E[∥∆s1j∥32] ≤

q∥∆s1∥3F,6√
n


 1

n

n∑

j=1

E[|Φ̃0
j (x)|6]




1/2

≤ qJ3

√
n


 1

n

n∑

j=1

E[|Φ̃0
j (x)|6]




1/2

= OP̂(1/
√
n)

uniformly in BJ , where the last equality comes from the usual argument that 1
n

∑n
j=1 E[|Φ̃0

j (x)|6]
has a finite limit in probability (with respect to the random initialisation).

Finally, we can notice that |Φ0
j (x)| ≤ ∥Φ0(x)∥2 ≤ C for all j, so that

1

n

n∑

j=1

E[|∆Φ0
j (x)|3]E[∥∆s1j∥32] ≤

q1/2

n
C3∥∆s1∥3F,3 ≤

q1/2C3J3

n
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uniformly in BJ , where we used that ∥∆s1j∥2 ≤ ∥1q∥6∥∆s1j∥3 = q1/6∥∆s1j∥3 by Hölder’s inequal-
ity, and that ∥∆s1∥F,3 ≤ ∥∆s1∥F,2 ≤ J . We can hence conclude that

1

n

n∑

j=1

E[∥∆Uj∥32] = OP̂(1/
√
n)

uniformly in BJ .
Now we need to bound ∥∆Vj∥2. Letting m1

j = (m1
ij)i=1...q and δΦ0

j (x) = Φ0
j (x)−E[Φ0

j (x)], it
can be easily shown that

∥∆Vj∥2 ≤ |δΦ̃0
j (x)|∥∆m1

j∥2 + |∆δΦ0
j (x)|∥m̃1

j∥2 + ∥∆m1
j∥2|∆δΦ0

j (x)| .

So we have

1

n

n∑

j=1

E[∥Vj∥32] ≤
27

n

n∑

j=1

E[|δΦ̃0
j (x)|3]∥∆m1

j∥32

+
27

n

n∑

j=1

E[|∆δΦ0
j (x)|3]∥m̃1

j∥32 +
27

n

n∑

j=1

E[|∆δΦ0
j (x)|3]∥∆m1

j∥32 .

Starting from the first term, we have that

n∑

j=1

E[|δΦ̃0
j (x)|3]∥∆m1

j∥32 ≤




n∑

j=1

E[|δΦ̃0
j (x)|6]




1/2


n∑

j=1

∥∆m1
j∥62




1/2

.

From Hölder’s inequality we have ∥∆m1
j∥2 ≤ ∥1q∥3∥∆mj∥6 = q1/3∥∆mj∥6 and hence

1

n

n∑

j=1

E[|δΦ̃0
j (x)|3]∥∆m1

j∥32 ≤
q∥∆m1∥3F,6√

n


 1

n

n∑

j=1

E[|δΦ̃0
j (x)|6]




1/2

≤ qJ3

√
n


 1

n

n∑

j=1

E[|δΦ̃0
j (x)|6]




1/2

= OP̂(1/
√
n)

uniformly in BJ , as 1
n

∑n
j=1 E[|δΦ̃0

j (x)|6] tends in probability (wrt the random initialisation) to a
finite limit.

Proceeding analogously, and noting that theL-Lipschitzianity of ϕ implies that E[|∆δΦ0
j (x)|3] ≤

8L3E[|∆Y 0
j (x)|3], we get

1

n

n∑

j=1

E[|∆δΦ0
j (x)|3]∥m̃1

j∥32 ≤
8C3

√
n


 1

n

n∑

j=1

E[∥m̃1
j∥62]




1/2

= OP̂(1/
√
n)

uniformly in BJ , and again we used the fact that 1
n

∑n
j=1 E[∥m̃1

j∥62] converges in probability (wrt the
random initialisation) to a finite quantity to show that the above expression is of order OP̂(1/

√
n).
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Finally, in a similar way we get

1

n

n∑

j=1

E[|∆δΦ0
j (x)|3]∥∆m1

j∥32 ≤
8qJ3C3

n

uniformly in BJ . We can hence conclude that

1

n

n∑

j=1

E[∥Vj∥32] = OP̂(1/
√
n)

and so that, as n→ ∞, G ≤ OP̂(1), uniformly in BJ and in probability with respect to the random
initialisation. This ends the proof.

Appendix B. Multiclass classification (q > 2)

In the framework of Section 4.1, things get more complicated when there are more than two classes.
We can write

E[ℓ(f̂(x), i⋆)] = P
(
Fi⋆(x) ≤ max

i ̸=i⋆
Fi(x)

)
= 1− P

(
Fi⋆(x) > max

i ̸=i⋆
Fi(x)

)
.

Hence, given a q-dimensional Gaussian vector Y ∼ N (M,Q), we need to find an estimate of
P(Yi⋆ > maxi ̸=i⋆ Yi).

The most trivial estimator would consist of sampling different realisations of Y and then give a
MC estimate. However, as we are interested in the gradient of the expected loss, this method will
not work. Indeed, the gradient of this estimate is the sum of the gradients of the 01-loss of each
sample. As all these gradients are null, we do not obtain anything informative. We have thus to
proceed in a less naive way.

Let us assume that i⋆ = q (the largest label). Hence, we will focus on P(Yq > maxi<q Yi).
With a Cholesky-like algorithm, we can find a lower triangular matrix A such that Y ∼ AX +M ,
where X ∼ N (0, Id). We have Yi =

∑q
i′=1Aii′Xi′ +Mi and Aiq = 0 for i = 1 . . . (q − 1), while

Aqq > 0. For i < q, we can write

P(Yq > Yi) = P

(
Xq >

q−1∑

i′=1

Aii′ −Aqi′

Aqq
Xi′ +

Mi −Mq

Aqq

)
.

Let us define the (q− 1) dimensional random vector X̃ as X̃ = ÃX + M̃ , where Ã is a (q− 1)× q

matrix and M̃ is a (q − 1) vector, whose elements are given by Ãii′ =
Aii′−Aqi′

Aqq
and M̃i =

Mi−Mq

Aqq

repectively. With this notation, we have P(Yq > Yi) = P(Xq > X̃i). Now, we have gained that Xq

is independent from all the other Xi’s, and so from all the X̃i’s. In short, (Xq|X̃) = Xq ∼ N (0, 1).
So, we can write

P
(
Yq > max

i<q
Yi

)
= P

(
Xq > max

i<q
X̃i

)
= E

[
P
(
Xq > max

i<q
X̃i

∣∣∣∣X̃
)]

.

94



WIDE STOCHASTIC NETWORKS

Now, if we let ψ(u) = 1
2(1− erf (u/

√
2)), we get

P
(
Yq > max

i<q
Yi

)
= E

[
ψ

(
max
i<q

X̃i

)]
.

We can estimate the above expression with MC sampling. Note that it is almost everywhere differ-
entiable with respect to the components of M and Q (as the Cholesky transform is differentiable)
and the gradient with respect to M and Q is not trivially null.

Finally, for a general i⋆ ∈ {1, . . . , q}, we can get P(Yi⋆ > maxi ̸=i⋆ Yi) by simply performing a
swap of the two labels i⋆ and q, and then apply the method for i⋆ = q.

Appendix C. Expected values for ReLU and sin activations

Let a > 0, b ∈ R, ζ ∼ N (0, 1). The following formulae are easily verified by direct calculations:

E[sin(aζ + b)] = e−a2/2 sin b ;

E[sin(aζ + b)2] =
1

2
(1− e2a

2
cos(2b)) ;

E[ReLU(aζ + b)] =
ae−b2/(2a2)

√
2π

+
b

2

(
1 + erf

b

a
√
2

)
;

E[ReLU(aζ + b)2] =
abe−b2/(2a2)

√
2π

+
1

2
(a2 + b2)

(
1 + erf

b

a
√
2

)
.

Appendix D. Experimental details

In all the experiments, the training consisted of optimising some PAC-Bayesian bound via SGD
with momentum parameter 0.9. The PAC parameter δ was always chosen equal to 0.025. We only
performed the training of the means m and all the networks considered had no bias. The priors
corresponded to the initialisation of the network (6). Note that in our implementation, the scaling
factors 1/

√
p and 1/

√
n were absorbed in the hyper-parameters, so that we performed the gradient

descent on µ0 = m0/
√
p and µ1 = m1/

√
n (the standard deviations were kept fixed).

For the binary MNIST experiments, the digits from 0 to 4 were relabelled as 0 and those from 5
to 9 as 1. The training dataset used was the standard one for MNIST, consisting of m = 60000 dat-
apoints. For the “standard” PAC-Bayesian methods, the objectives used are those reported in (11).
For the objective lbd we proceeded by alternating the optimisation of the network hyper-parameters
with that of λ, as in Pérez-Ortiz et al. (2021), always enforcing λ ∈ (0, 1). The “Gaussian” training
was performed with the optimisation objective (12). All of these methods were used to train the
same stochastic network, initialised as in (6). We tried two different learning rate (LR) schedules,
the first consisting of 10000 epochs with LR η = 10−5 and the second of 100 epochs with η = 10−2,
followed by 1000 epochs with η = 10−3 and 5000 epochs with η = 10−4. In Table 1 in the main
text we report the results of the training schedule achieving the tightest bound, that is the multi-LR
schedule for invkl and quad, and the single-LR schedule for McAll and lbd.

For the full MNIST experiments, again we used the standard training dataset with m = 60000
datapoints. For the “standard” methods, LS(Q) in (11) was a bounded version of the cross-entropy:
we fixed p0 = 10−5 and constrained the probabilities in the definition of the cross-entropy to be
greater or equal than p0, see (Pérez-Ortiz et al., 2021) for more details. In this way, the loss is
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bounded by log(1/p0), and by rescaling it of the same factor we can get a loss bounded in [0, 1].
LS(Q) is the empirical average of this quantity on the training dataset. As we previously did for the
binary MNIST experiment, during the training we estimated LS(Q) by sampling once per iteration
the hyper-parameters of the network. The “Gaussian” method used the objective (12), where LS(Q)
is the expected empirical 01-loss. As we are dealing with multiclass classification we do not have
a simple expression for the 01-loss, so we used the method described in Appendix B. Per each
iteration, the loss was evaluated by an MC estimate averaging 104 independent realisations. For all
the methods, the training consisted of 10000 epochs with learning rate η = 10−5.
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Abstract

Recent studies have empirically investigated
different methods to train stochastic neural
networks on a classification task by optimis-
ing a PAC-Bayesian bound via stochastic gra-
dient descent. Most of these procedures need
to replace the misclassification error with a
surrogate loss, leading to a mismatch be-
tween the optimisation objective and the ac-
tual generalisation bound. The present paper
proposes a novel training algorithm that op-
timises the PAC-Bayesian bound, without re-
lying on any surrogate loss. Empirical results
show that this approach outperforms cur-
rently available PAC-Bayesian training meth-
ods.

1 INTRODUCTION

Understanding generalisation for neural networks is
among the most challenging tasks for learning theo-
rists (Allen-Zhu et al., 2019; Kawaguchi et al., 2017;
Neyshabur et al., 2017; Poggio et al., 2020; Zhang
et al., 2021). Only a few of the theoretical tools devel-
oped in the literature can produce non-vacuous bounds
on the error rates of over-parametrised architectures,
and PAC-Bayesian bounds have proven to be among
the tightest in the context of supervised classification
(Ambroladze et al., 2007; Langford and Shawe-Taylor,
2003; McAllester, 2004). Several recent works have
focused on algorithms aiming to minimise a general-
isation bound for stochastic classifiers by optimising
a PAC-Bayesian objective via stochastic gradient de-
scent; see e.g. Alquier et al. (2016); Biggs and Guedj
(2021); Clerico et al. (2021); Dziugaite and Roy (2017);
Letarte et al. (2019); Pérez-Ortiz et al. (2021a,b); Zhou

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

et al. (2019). Most of these studies use a surrogate loss
to avoid dealing with the zero-gradient of the misclas-
sification loss. However, there are exceptions, such
as Biggs and Guedj (2021) and Clerico et al. (2021),
which rely on the fact that an analytically tractable
output distribution allows for an estimate of the mis-
classification error with a non-zero gradient with re-
spect to the trainable parameters of the classifier.

Clerico et al. (2021) treat the case of a stochastic net-
work with a single hidden layer. They prove a Central
Limit Theorem (CLT) ensuring the convergence of the
output distribution to a multivariate Gaussian, whose
mean and covariance can be evaluated explicitly in
terms of the network deterministic hyper-parameters.
However, this result cannot be straightforwardly ex-
tended to the multilayer case, as the nodes of the
deeper layers are not independent and so the CLT
might not apply. Moreover, even assuming that the
output is Gaussian, the computational cost of this
method is prohibitive for deep architectures.

In Biggs and Guedj (2021), the focus is on a stochastic
binary classifier whose output is of the form sign(w ·a),
where w is a Gaussian vector and a is the output of
the last hidden layer. The explicit form of the con-
ditional expectation of the network’s output (condi-
tioned with respect to a) allows for a PAC-Bayesian
training method applicable to arbitrarily deep net-
works. Nevertheless, this approach is only suitable for
binary classification and cannot be easily extended to
the multiclass case.

In the present work, we conjugate the two above ideas:
in order to train the network with a method inspired
by the Gaussian PAC-Bayesian approach from Clerico
et al. (2021), we exploit the output’s Gaussianity that
can be obtained by conditioning on the previous layers,
as in Biggs and Guedj (2021). This training procedure
can be applied to a fairly general class of stochastic
classifiers, overcoming some of the main limitations of
the two aforementioned works, namely the single hid-
den layer and the binary classification setting. The

∗ Correspondence to: clerico@stats.ox.ac.uk
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main requirement for our method to be valid is that
the parameters of the last linear layer are indepen-
dent Gaussian random variables. Additionally, as we
are not relying on any CLT result to obtain the Gaus-
sianity, we do not need the network to be very wide
for the algorithm to work. Consequently, the approach
we propose can be computationally much cheaper than
the one from Clerico et al. (2021).

We empirically validate our training algorithm on
MNIST and CIFAR10 for a range of architectures,
testing both data-dependent and data-free PAC-
Bayesian priors. We compare our results to those
from Pérez-Ortiz et al. (2021a), as, to our knowl-
edge, these are currently the tightest empirical PAC-
Bayesian bounds available on these datasets. Our
novel approach outperforms their standard PAC-
Bayesian training methods in all our experiments.

2 BACKGROUND

2.1 PAC-Bayesian framework

In a standard classification problem, to each instance
x ∈ X ⊆ Rp corresponds a true label y = f(x) ∈
Y = {1, . . . , q}. A training set S = (Xk)k=1,...,m is
correctly labelled: for every Xk ∈ S we have access to
Yk = f(Xk). Each Xk is an independent draw from
a fixed probability measure PX on X , so that S ∼
PS = P⊗m

X . We consider a neural network, namely a
parameterised function F θ : Rp → Rq. For each input
x, the network returns a prediction ŷ, defined as the
largest output’s node index:

ŷ = f̂θ(x) = argmaxi∈{1,...,q}F
θ
i (x) .

The goal is to train the net to make good predictions,
exploiting the information in S to tune the parameters.

Define the misclassification loss as

ℓ(ŷ, y) =

{
0 if y = ŷ ;

1 otherwise.
(1)

For a given configuration θ of the network parame-
ters, we call empirical error the empirical mean of the
misclassification loss on the training sample: ES(θ) =
1
m

∑
x∈S ℓ(f̂

θ(x), f(x)). This quantity can be explic-
itly evaluated, as we have access to the true labels
on S. Therefore, it can be seen as an estimate for the
true error EP(θ) = EX [ℓ(f̂θ(X), f(X))] = PX(f̂θ(X) ̸=
f(X)), which in general cannot be computed exactly.

The PAC-Bayesian bounds are upper bounds on the
true error, holding with high probability on the choice
of the training sample S; see e.g. Alquier (2021);
Catoni (2007); Guedj (2019); McAllester (1998, 1999).
A main feature of the PAC-Bayesian framework is that

it requires the network to be stochastic, that is we are
dealing with architectures whose parameters θ are ran-
dom variables.

Let us fix P, a probability measure for the parame-
ters θ. We assume that P is data-independent, in the
sense that it has to be selected without accessing the
information in the training sample S. In line with
most PAC-Bayesian literature, we will refer to P as
the prior distribution. For a stochastic network, the
training consists in efficiently modifying the distribu-
tion of θ. This leads to a new distribution Q on the
parameters, usually referred to as the posterior dis-
tribution. The main idea behind the PAC-Bayesian
theory is that if the posterior Q is not “too far” from
the prior P, then the network should not be prone to
overfitting. The essential tool to measure this “dis-
tance” between the prior and posterior distributions is
the Kullback–Leibler divergence, defined as

KL(Q∥P) =

{
Eθ∼Q

[
log dQ

dP (θ)
]

if Q ≪ P ;

+∞ otherwise.

The PAC-Bayesian bounds are upper bounds on the
expected value of the true classification error EP with
respect to the posterior Q. Two main ingredients con-
stitute these bounds: the expected empirical error un-
der Q and a complexity term, involving the divergence
KL(Q∥P). For simplicity, we will introduce the nota-
tions EP(Q) = Eθ∼Q[EP(θ)] and ES(Q) = Eθ∼Q[ES(θ)].
The next proposition states some frequently used
PAC-Bayes bounds (Langford and Seeger, 2001; Mau-
rer, 2004; McAllester, 1999; Pérez-Ortiz et al., 2021a;
Thiemann et al., 2017).

Proposition 1. Fix δ ∈ (0, 1), a data-independent
prior P, and a training set S = (Xk)k=1,...,m drawn
according to PS. Define

Pen = 1
m

(
KL(Q∥P) + log 2

√
m

δ

)
; (2)

kl−1(u|c) = sup{v ∈ [0, 1] : kl(u∥v) ≤ c} , (3)

where kl(u∥v) denotes the KL divergence between two
Bernoulli distributions, with means u and v respec-
tively. Then, with probability at least 1 − δ on the
random draw of the training set, for any posterior Q
each of the following quantities upper bounds EP(Q):1

B1 = kl−1 (ES(Q)| Pen) ; (4a)

B2 = ES(Q) +
√
Pen /2 ; (4b)

B3 =
(√

ES(Q) + Pen /2 +
√
Pen /2

)2
; (4c)

B4 = inf
λ∈(0,1)

1
1−λ/2 (ES(Q) + Pen /λ) . (4d)

1For (4a) we additionally assume that S has size m ≥ 8.
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In the above proposition, the bound B1 is always the
tightest. Moreover, all the above bounds are still valid
if the empirical classification error ES is replaced by
the empirical average of any loss function ℓ̃ in [0, 1].

So far, we have assumed the prior P to be data-
independent. However, empirical evidence shows that
using a data-dependent prior can lead to much tighter
generalisation bounds, see e.g. Ambroladze et al.
(2007); Dziugaite and Roy (2018); Dziugaite et al.
(2021); Parrado-Hernández et al. (2012); Pérez-Ortiz
et al. (2021b). Indeed, the actual requirement for the
bounds (4) to hold is that P is independent of the sam-
ple S used to evaluate ES(Q). Hence, one can split the
dataset S into two disjoint sets, S(1) and S(2), use S(1)

to train the prior, and obtain the data-dependent ver-
sions of the PAC-Bayesian bounds from Proposition

1, by redefining Pen = (KL(Q∥PS(1)) + log
2
√
m2

δ )/m2

and replacing ES(Q) with ES(2)(Q). For instance (4a)
becomes

EP(Q) ≤ kl−1

(
ES(2)(Q)

∣∣∣∣
KL(Q∥PS(1)) + log

2
√
m2

δ

m2

)
,

(5)
where m2 ≥ 8 is the size of S(2).

2.2 PAC-Bayesian training

Ideally, one would like to implement the following pro-
cedure (McAllester, 1998):

• Fix the PAC parameter δ ∈ (0, 1) and a prior P
for the network stochastic parameters;

• Collect a sample S of m iid data points, according
to PS = P⊗m

X , and label it correctly;
• Compute an optimal posterior Q minimising a
generalisation bound, such as (4a);

• Implement a stochastic network whose random
parameters have distribution Q.

Unfortunately, in most realistic non-trivial scenarios,
it can be extremely hard to compute and sample from
an optimal posterior Q (Guedj, 2019). A possible ap-
proach consists in using Markov chain Monte Carlo
(Alquier and Biau, 2013; Dalalyan and Tsybakov,
2012; Guedj and Alquier, 2013), sequential Monte
Carlo or variational methods (Alquier et al., 2016),
in order to approximately sample from the Gibbs pos-
terior, which can be shown to be the optimal Q when
the PAC-Bayesian bound is linear in the empirical loss
(Catoni, 2007). However, these methods can often be
inefficient, especially in the case of deep architectures
and large datasets.

An alternative approach relies on simplifying the prob-
lem by constraining P and Q to belong to some sim-
ple distribution class. A common choice is to focus on
the case of multivariate Gaussian distributions with

diagonal covariance (Dziugaite and Roy, 2017; Pérez-
Ortiz et al., 2021a): all the parameters are indepen-
dent normal random variables. Conveniently, in this
case the law of the random parameters can be easily
expressed in terms of their means and standard de-
viations. These are deterministic trainable quantities
that we will call hyper-parameters and denote by p.
Furthermore, with this choice of P and Q, the KL di-
vergence between prior and posterior takes a simple
closed-form. Denoting as m and s (resp. m̃ and s̃) the
means and standard deviations of the posterior (resp.
prior), we have

KL(Q∥P) =
1

2

∑

k

s2k − s̃2k
s̃2k

+
1

2

∑

k

(
mk − m̃k

s̃k

)2

+
∑

k

log
s̃k
sk
,

where the index k runs over all the stochastic param-
eters of the networks.

Now, the idea is to tune the hyper-parameters p =
(m, s) to minimise a PAC-Bayesian bound, such as
(4a). A natural way to proceed is to perform a numer-
ical optimisation via stochastic gradient descent, an
approach originally proposed by Germain et al. (2009)
and Dziugaite and Roy (2017), and referred to as PAC-
Bayes with BackProp by Pérez-Ortiz et al. (2021a).
First, we fix a PAC-Bayesian bound as our optimi-
sation objective. As previously mentioned, this will
be an expression involving a complexity term and the
empirical error (Pen and ES(Q) respectively). We will
hence denote it as B(ES(Q), Pen). Generally, an ex-
plicit form for ES(Q) is not available, but sampling
from Q easily provides an unbiased estimate ÊS(Q) of
this quantity. However, we cannot perform a gradient
descent step on B(ÊS(Q), Pen). Indeed, ÊS(Q) has a
null gradient almost everywhere, as it is the average
over a finite set of realisations of the misclassification
loss, which is constant almost everywhere (Pérez-Ortiz
et al., 2021a). In order to overcome this problem, it
is common to use a surrogate loss function (usually a
bounded version of the cross-entropy) instead of the
misclassification loss; see e.g. (Dziugaite and Roy,
2017) and (Pérez-Ortiz et al., 2021a,b). However, this
creates a mismatch between the optimisation objective
and the actual target bound.

It is worth noting that the zero-gradient problem is
due to the particular form of the estimate ÊS(Q) and in
general ES(Q) has a non-zero gradient (Clerico et al.,
2021). Indeed, as it will be shown in Section 3, a dif-
ferent choice of estimator for ES(Q) can allow training
the network without the use of any surrogate loss.
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2.3 Stochastic network and notations

Consider a stochastic classifier featuring several hidden
layers and a final linear layer. We denote H(x) the
output of the last hidden layer when the input is x, ϕ
the activation function (here applied component-wise),
and W and B the weight and bias of the linear output
layer. The output of the network will be

F (x) =Wϕ(H(x)) +B , (6)

where we wrote F instead of F θ to simplify the nota-
tion. Since the network is stochastic, W , B, and H(x)
are random quantities. We denote FL the σ-algebra
generated by the last layer’s stochasticity, and FH the
one due to the hidden layers.

We will henceforth assume the following:

• FL ⊥⊥ FH, that is the two σ-algebras are inde-
pendent;

• W and B have independent normal components.

We can thus express the stochastic parameters of the
last layer in terms of a set of deterministic trainable
hyper-parameters m and s:

Wij = ζWij s
W
ij +mW

ij ; Bi = ζBi sBi +mB
i ,

where the ζ are all independent standard normal ran-
dom variables N (0, 1).

For the hidden layers, we do not require any strong
assumption: essentially, we need to be able to sample
a realisation h(x) of H(x), to evaluate the KL diver-
gence between prior and posterior, and to differentiate
both KL and h(x) with respect to the trainable deter-
ministic hyper-parameters. However, for the sake of
simplicity, in the rest of this paper we will assume that
all the parameters of the hidden layers have indepen-
dent normal laws, as in Clerico et al. (2021); Dziugaite
and Roy (2017); Pérez-Ortiz et al. (2021a). All the ar-
chitectures used for our experiments are indeed in this
form. We refer to the supplementary material (Section
SM3) for the extension of our results on more general
architectures.

3 COND-GAUSS ALGORITHM

We present here a training procedure to optimise a
PAC-Bayesian generalisation bound without the need
for a surrogate loss. The two main ideas are the fol-
lowing:

• An unbiased estimate of ES(Q) and its gradient
can be evaluated if the output of the network is
Gaussian, as in Clerico et al. (2021);

• If the parameters of the last layer are Gaussian,
the output of the network is Gaussian as well

when conditioned on the nodes of the last hidden
layer, as pointed out by Biggs and Guedj (2021).

3.1 Gaussian output

Fix an input x and assume that the network’s output
F (x) follows a multivariate normal distribution, with
mean vector M(x) and covariance matrix Q(x). For
our purposes, we can suppose that Q(x) is diagonal,
meaning that the components of the output are mu-
tually independent (we refer to Section 4.1 in Clerico
et al. (2021) for the discussion of the general case). Let
us denote V (x) the diagonal of Q(x), consisting of the
output’s variances, so that

EQ[Fi(x)] =Mi(x) ; VQ[Fi(x)] = Vi(x) .

The stochastic prediction of our classifier is ŷ = f̂(x) =
argmaxi∈{1,...,q} Fi(x). In order to compute ES(Q), for

each input x ∈ S we shall evaluate EQ[ℓ(f̂(x), f(x)].
As ℓ is the misclassification loss (1), this is simply the
probability of making a mistake for the input x. Let-
ting y = f(x) and ŷ = f̂(x), we have

EQ[ℓ(ŷ, y)] = PQ(ŷ ̸= y) = PQ

(
Fy(x) ≤ max

i ̸=y
Fi(x)

)
.

(7)
In the case of binary classification, the above expres-
sion has a simple closed-form. Indeed, if we consider
for instance the case y = 1, we have

PQ(ŷ ̸= 1) = PQ(F2(x)− F1(x) ≥ 0)

= P

(
ζ ≤ M2(x)−M1(x)√

V1(x) + V2(x)

)
,

where ζ ∼ N (0, 1). This can be expressed in terms
of the error function erf, as the cumulative distribu-
tion function of a standard normal is given by ψ(u) =
P(ζ ≤ u) = 1

2 (1 + erf(u/
√
2)). Notice that the above

expression no longer suffers from vanishing gradients,
as ψ′ ̸= 0.

For multiple classes (q > 2), (7) does not have a simple
closed-form. However, we can easily find Monte Carlo
estimators that also bring unbiased estimates for the
gradient with respect to M and Q.

Proposition 2. Denote the cumulative distribution
function of a standard normal random variable as ψ :
u 7→ 1

2 (1 + erf(u/
√
2)). Fix x, let y be its true label,

and ŷ the network’s stochastic prediction. Define

L1 = ψ

(
max
i ̸=y

Fi(x)−My(x)√
Vy(x)

)
;

L2 = 1−
∏

i̸=y

ψ

(
Fy(x)−Mi(x)√

Vi(x)

)
,
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where F (x) ∼ N (M(x),diag(V (x))). Then

EQ[L1] = EQ[L2] = PQ(ŷ ̸= y) ,

EQ[∇L1] = EQ[∇L2] = ∇PQ(ŷ ̸= y) ,

where the gradient is with respect to all the components
of M(x) and V (x).
In particular, by sampling realisations of L1 or L2, we
can get unbiased Monte Carlo estimators of the mis-
classification loss and its gradient.

3.2 Conditional Gaussianity

In practice, the output of a stochastic network is gen-
erally not Gaussian. However, we can overcome this
issue by conditioning on the hidden layers, similarly to
what was done by Biggs and Guedj (2021).

Recall that the network’s output is given by (6):

F =Wϕ(H) +B ,

where the explicit dependence of H on x is omitted
to make the notations lighter. Conditioned on the
stochasticity of the hidden layers FH, F follows a nor-
mal multivariate distribution, as

F =Wϕ(H) +B ∼ N (M(H), Q(H)) .

We can easily evaluateM(H) and Q(H) in terms of m
and s. We have

Mi(H) = EQ[Fi|FH] =
∑

j

EQ[Wij ]ϕ(Hj) + EQ[Bi]

=
∑

j

mW
ij ϕ(Hj) +mB

i

and Qij(H) = δijVi(H), with

Vi(H) = VQ[Fi|FH] =
∑

j

VQ[Wij ]ϕ(Hj)
2 + VQ[Bi]

=
∑

j

(sWij ϕ(Hj))
2 + (sBi )

2 .

Finally, we note that by iterated expectations

EQ[ℓ(f̂(x), f(x))] = EQ[EQ[ℓ(f̂(x), f(x))|FH]] .

In particular, if we draw the hidden parameters and
get a realisation h of H, we obtain an unbiased esti-
mate 1

m

∑
x∈S E[ℓ(f̂(x), f(x))|H(x) = h(x)] of ES(Q),

where each term E[ℓ(f̂(x), f(x))|H(x) = h(x)] can be
estimated with the methods from Section 3.1, since
F (x) is a multivariate Gaussian when conditioned on
H(x) = h(x).

3.3 Training algorithm

We sketch here the Cond-Gauss training algorithm.
First, we fix a PAC-Bayesian bound B as the opti-
misation objective. Then, we initialise the determin-
istic hyper-parameters of our network, and we select
this configuration as the prior. Finally, we split our
dataset into batches S1, . . . , SK . To train the network,
we iterate over the batches and, similarly to what is
done in most PAC-Bayesian training methods based on
stochastic gradient descent, we sample the network’s
parameters at each batch iteration. However, we only
perform this sampling for the hidden layers and not
for the final linear layer. In this way, for each x in the
batch, we have a realisation h(x) of the last hidden
layer’s output. Conditioned on H = h, the output is

Algorithm 1 Cond-Gauss PAC-Bayesian training

Require:
p̃ = (p̃H, p̃L) ▷ Initial hyper-parameters (defining the prior)
S ▷ Training set of size #S
δ ∈ (0, 1) ▷ PAC parameter
η, T ▷ Learning rate and number of epochs

Ensure:
Optimal p parameterizing the posterior

1: procedure Cond-Gauss
2: pH ← p̃H

3: pL = (m, s)← p̃L

4: for t← 1 : T do
5: Sample θH ∼ QH

pH ▷ Sample the parameters of the hidden layers

6: h = h(S, θH) ▷ Evaluate the last hidden layer’s output for all x ∈ S
7: M =M(h,m) = mWϕ(h) +mB ▷ Evaluate the conditional mean of the output
8: V = V (h, s) = (sWϕ(h))2 + (sB)2 ▷ Evaluate the conditional variance of the output

9: ÊS(Qp) = E(M,V ) ▷ Evaluate ÊS(Qp) from M and V as in Section 3.1

10: B̂ = B(ÊS(Qp), Pen) ▷ Evaluate the estimate B̂ of the PAC-Bayesian objective B
11: p← p− η∇pB̂ ▷ Perform the gradient step

12: return p
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Gaussian and we can proceed as discussed earlier to
get an estimate ÊSk

(Q, h) of ES(Q). After that, we

can obtain an estimate B̂ of the target bound B, by
replacing ES(Q) with ÊSk

(Q, h). Finally, we compute

the gradient of B̂ with respect to the trainable hyper-
parameters, and we perform the gradient step.

If we want to use a data-dependent prior, we simply
split the dataset into two subsets S(1) and S(2), and
then use S(1) to learn P. For instance, we might train
the prior using ÊS(1)(Q) as optimisation objective or
tuning only the prior’s means by treating the network
as if it was deterministic, similarly to what was done in
Pérez-Ortiz et al. (2021a). Once the prior’s training
is complete, we perform the Cond-Gauss algorithm,
replacing S with S(2).

The training procedure is summarised in Algorithm 1,
where, for the sake of simplifying the notation, it is as-
sumed that the whole training set forms a single batch.
For convenience, we introduce the superscripts H and L

to refer to the hidden layers and the last layer, respec-
tively. Thus, we denote as θ = (θH, θL) the random
parameters of the network, where θH are the parame-
ters in the hidden layers, while θL = (W,B) are those
of the last layer. Similarly, pH are the deterministic
hyper-parameters relative to the hidden layers, whilst
pL = (m, s) are those of the last layer. We introduced
the subscript p for the posterior Q, to stress the fact
that it is determined by the hyper-parameters, and we
denoted by QH the marginal posterior distribution for
the hidden layers. Finally, the tilde notation repre-
sents the values at initialisation.

As a final remark, kl−1 is currently not implemented
in most of the standard deep learning libraries. Yet,
it can be easily computed numerically with few iter-
ations of Newton’s method, as in Dziugaite and Roy
(2017). Nevertheless, most of the empirical studies
on PAC-Bayesian gradient descent optimisation (see
e.g. Dziugaite and Roy (2017) and Pérez-Ortiz et al.
(2021a)), do not use as objective (4a), in order to avoid
computing ∇kl−1. However, since this gradient can be
expressed as a function of kl−1 itself, we were able to
optimise (4a) in our experiments (see Section SM4 in
the supplementary material for further details).

3.4 Unbiasedness of the estimates

One might wonder whether the estimates of B and its
gradient are actually unbiased. Notably, this is indeed
the case if the chosen PAC-Bayesian objective B is an
affine function of the empirical error, as (4b) and (4d).

Proposition 3. Assume that B is locally Lipschitz in
the hidden stochastic parameters θH, and that ∇θHB

Figure 1: Experimental evidence that the bound (4a) is

almost affine in the region where ÊS(Q) concentrates. The
network used was the one achieving the best generalisation
bound in our experiment on MNIST with data-dependent

priors. 10000 realisations of ÊS(Q) were sampled. Their
distribution is summarized by the histogram above the
zoomed portion of the plot. The black dot is the bound for

the average value found for ÊS(Q), while the green error
bar has a total width of 4 empirical standard deviations.

In the region where ÊS(Q) concentrates, the bound and its
linearised version almost coincide. Along the green error
bar, the bound’s slope has a relative variation of ±0.8%.

is polynomially bounded.2 If B(ES(Q), Pen) is affine
in ES(Q), then we have E[B̂] = B and E[∇B̂] = ∇B,
the gradient being with respect to the trainable hyper-
parameters p.

Although this unbiasedness property does not hold for
objectives not affine in ES(Q), if ÊS(Q) concentrates
enough around ES(Q) we can linearise B̂ as

B̂ ≃ B + (ÊS(Q)− ES(Q)) ∂EB .

Then, both B̂ and ∇B̂ are essentially almost unbiased
estimates. Considering the good performance of our
method in the experiments we ran, we conjecture that
this is indeed what happens in practice with (4a) and
(4c). Figure 1 gives some empirical support to this
hypothesis. We refer the reader to the supplementary
material (Section SM2) for additional discussion and
empirical evidence on this subject.

3.5 Final evaluation of the bound

In order to evaluate the final generalisation bound, we
need the exact value of ES(Q) once the training is com-
plete. As this cannot be computed, we use an empirical
upper bound, as done for instance in (Dziugaite and
Roy, 2017).

2These are mild technical assumptions, verified in all
the experimental settings considered in this paper.
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Let θ1, . . . , θN be N independent realisations of the
whole set of the network stochastic parameters, drawn
according to Q. An unbiased Monte Carlo estimator
of ES(Q) is simply given by

ẼS(Q) =
1

N

N∑

n=1

ES(θn) .

As shown by Langford and Caruana (2002), for fixed
δ′ ∈ (0, 1), with probability at least 1− δ′ we have,

ES(Q) ≤ kl−1
(
ẼS(Q)

∣∣ 1
N log 2

δ′

)
,

where kl−1 is defined in (3). We conclude from Propo-
sition 1 that, with probability higher than 1− (δ+ δ′),
we have

EP(Q)

≤ kl−1

(
kl−1

(
ẼS(Q)

∣∣ 1
N log 2

δ′

) ∣∣∣KL(Q∥P)+log 2
√

m
δ

m

)
,

(8)

as kl−1 is an increasing function of its first argument.

4 NUMERICAL RESULTS

We tested the Cond-Gauss algorithm empirically on
the MNIST and the CIFAR10 datasets (Deng, 2012;
Krizhevsky, 2009). In the literature, several works
benchmark various PAC-Bayesian algorithms on these
and other datasets (Biggs and Guedj, 2021; Clerico
et al., 2021; Dziugaite and Roy, 2017, 2018; Letarte
et al., 2019; Pérez-Ortiz et al., 2021a,b). To our knowl-
edge, in the case of over-parameterised deep neural
networks, the bounds from Pérez-Ortiz et al. (2021a)
are currently the tightest on both MNIST and CI-
FAR10. Thus, in order to assess our Cond-Gauss
method by comparing their results with ours, we de-
cided to mimic some of their multilayer convolutional
architectures3, although our training schedules, as well
as the prior’s training procedures and the choice of
initial variances, differed from theirs. All the gener-
alisation bounds obtained with our training algorithm
were tighter than those reported by Pérez-Ortiz et al.
(2021a).

We illustrate below some of our main empirical re-
sults. All the final generalisation bounds are obtained
from (8), or its natural variant based on (5) for data-
dependent priors. We always use δ = 0.025 and
δ′ = 0.01 as in Pérez-Ortiz et al. (2021a), so that

3The only difference between their architectures and
ours is that we sometimes swapped the order between the
application of the activation function and the max pooling.
This fact was merely accidental, but we believe that it did
not significantly affect our results.

the final generalisation bounds hold with probability
greater or equal to 0.965. For all the bounds but those
in Figure 2, we fixed N = 150000 as in Pérez-Ortiz
et al. (2021a).

We refer to Section SM5 in the supplementary ma-
terial for the full results and the missing experimen-
tal details. The PyTorch code developed for this pa-
per is available at https://github.com/eclerico/

CondGauss.

4.1 MNIST

For our experiments on MNIST, we only used the stan-
dard training dataset (60000 labelled examples) for
the training procedure. We tested a 4-layer ReLU
stochastic network, whose parameters were indepen-
dent Gaussians. The architecture was composed of
two convolutional layers followed by two linear layers.

We first experimented on data-free priors. We com-
pared the performance of the standard PAC-Bayes
with BackProp training algorithm (S), where the mis-
classification loss is replaced by a bounded version of
the cross-entropy loss as in Pérez-Ortiz et al. (2021a),
and the Cond-Gauss algorithm (G). We used the four
training objectives from (4):

invKL : kl−1(ES(Q)|Penκ) ;
McAll : ES(Q) +

√
Penκ/2 ;

quad : (
√

ES(Q) + Penκ/2 +
√
Penκ/2)

2 ;

lbd : 1
1−λ/2 (ES(Q) + Penκ/λ) ,

where the KL penalty is defined as

Penκ =
κ

m

(
KL(Q∥P) + log

2
√
m

δ

)
. (9)

The factor κ in (9) can increase or reduce the weight
of the KL term during the training. For the last objec-
tive, lbd, the parameter λ takes values in (0, 1) and is
optimised during training, similarly to what was done
in Pérez-Ortiz et al. (2021a).4

The network was trained via SGD with momentum.
During training, at the end of each epoch, we kept
track of the bound (4a)’s empirical value to pick the
best epoch at the end of the training.

In Figure 2 we report the values of the bounds for
different training settings with data-free priors on
MNIST. As evaluating the true bound via (8) can be
extremely time-consuming when N = 150000, the val-
ues reported in the figure are obtained for N = 10000.

4In our experiments, we initialised λ at 0.5 and then
doubled the number of epochs, alternating one epoch of
λ’s optimisation with one of optimisation for m and s.
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Figure 2: Results for MNIST with random prior. Each
dot is the PAC-Bayesian bound obtained via (8) with
N = 10000. The marker shape represents the training
method (in the legend, ‘G’ stands for our method, ‘S’ for
the standard one), and the colour represents the training
objective. Different columns indicate different momentum
values, penalty factor κ, and initial variance for the prior.
The initial prior’s means were the same for all the different
training possibilities. The values higher than 0.285 are not
reported.

The Cond-Gauss algorithm always achieved the best
performance. Note that some of the bounds in the
figure are substantially tighter than the best value re-
ported in Pérez-Ortiz et al. (2021a), namely .2165.
Perhaps unexpectedly, this is sometimes the case even
for the standard PAC-Bayes with BackProp algorithm,
although it happened for training settings that were
not tried therein, namely with the invKL objective or
κ = 0.5.

In Table 1 we report the final generalisation bounds
with N = 150000, evaluated via (8). For each method,
we selected the training achieving the best bound in
Figure 2. The Cond-Gauss procedure achieved bet-
ter results than the standard algorithm with all the
objectives. Quite surprisingly, the tightest bound was
achieved by the lbd objective. The column ‘emp err’
reports the empirical error on the training dataset, ob-

Table 1: PAC-Bayesian bounds for MNIST - data-free
prior

method emp err test err Pen (2) bound

S McAll .0670 .0900±.0047 .0320 .1916
S lbd .0636 .0623±.0013 .0413 .1606
S quad .0622 .0577±.0031 .0420 .1594
S invKL .0438 .0407±.0022 .0560 .1495

G McAll .0472 .0435±.0024 .0477 .1446
G lbd .0279 .0272±.0016 .0669 .1348
G quad .0399 .0374±.0021 .0518 .1380
G invKL .0356 .0340±.0019 .0556 .1355

tained when computing the final bounds. The test er-
rors provided in the column ‘test err’ are evaluated on
the standard held-out test dataset of MNIST, by aver-
aging over 1000 realisations of the random network’s
parameter. We also report the empirical standard de-
viation of this estimate. Interestingly, the test error
on the held-out dataset often resulted smaller than
the empirical error on the training dataset. We do
not have an explaination for this fact, which might be
a mere coincidence and did not occur in most of the
experiments with data-dependent priors.

For the data-dependent priors, we used 50% of the
dataset to train P and the remaining 50% to train
Q. We always used the Cond-Gauss algorithm for
both prior and posterior. All the posteriors were
trained with the invKL objective and κ = 1, whilst
for the prior, we experimented with different objec-
tives, penalty factors κ, and dropout values. The final
best generalisation bound was .0144, about 7% better
than the tightest one from Pérez-Ortiz et al. (2021a)
for the same architecture, .0155. However, it is inter-
esting to note that the role of the posterior’s training
seems to be quite marginal, as, in our experiments,
the prior already achieved a quite low empirical er-
ror on the posterior’s dataset, .0108, which could be
improved only to .0104 by tuning the posterior. The
results of the whole experiment can be found in Table
SM1 in the supplementary material.

4.2 CIFAR10

As we had done for the MNIST dataset, for CIFAR10
we used only the standard training dataset (50000 la-
belled images) for the training procedure. We trained
a 9-layer architecture (6 convolutional + 3 linear lay-
ers) and a 15-layer architecture (12 convolutional + 3
linear layers). We experimented with data-dependent
priors only, training P with 50% of the data for the
9-layer classifier, and with both 50% and 70% of the
data in the case of the 15-layer one.

The results for the 9-layer architecture are reported
in Table 2. Note that the best bound that we ob-
tained in this setting was .2066, a result much tighter
than the one reported by Pérez-Ortiz et al. (2021a),
.2901. After some preliminary experiments, we chose
to train both priors and posteriors via the Cond-Gauss
algorithm with the invKL objective. We used a small
factor κ for the prior to avoid regularising too much,
whilst κ was 1 for the posterior. We tried different val-
ues for the dropout and the factor κ in the training of
the prior, as reported in Table 2. We trained via SGD
with momentum for both prior and posterior. For P,
we used a schedule much longer than the one usually
chosen for the prior in the literature. Essentially, this
is because we were not just training the means of the
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Table 2: CIFAR10 - 9 layers - Prior learnt on 50% of the dataset

Prior Posterior

tma dob pfc ivd l1e l2f pg tma l1e l2f th pg bi

G invKL 0 .01 .001 .0196 .2233 3.778 G invKL .0196 .2211 .2251±.0021 4.696 .2376
G invKL 0 .005 .001 .1127 .2797 3.778 G invKL .1126 .2782 .2814±.0019 4.319 .2953
G invKL .1 .01 .001 .0536 .1930 3.778 G invKL .0536 .1912 .1952±.0020 4.484 .2066
G invKL .1 .005 .001 .0266 .1930 3.778 G invKL .0266 .1913 .1933±.0019 4.520 .2067

a tm: Training method.
b do: Dropout probability for the prior’s training.
c pf: Penalty factor κ for the prior’s training objective.
d iv: Initial value of the prior’s variances.
e l1: Empirical error estimate on the prior dataset.

f l2: Empirical error estimate on the posterior dataset.
g t: Test error±standard deviation (from 1000 realisations).
h p: KL penalty Pen (2) in 10−4 units.
i b: Final PAC-Bayesian bound.

random parameters, but the variances as well. How-
ever, in this way we could already obtain for the priors
competitive empirical errors on the posterior’s dataset.
Like with the MNIST dataset, the improvement due
to the posterior’s training was minimal.

For the 15-layer architecture, the full results and de-
tails are reported in Table SM2 in the supplementary
material. Quite interestingly, to train P, it was neces-
sary to introduce an initial pre-training for the prior’s
means, as the Cond-Gauss algorithm alone could not
significantly decrease the training objective. First,
we initialised the means with an orthogonal initiali-
sation, as suggested in Hu et al. (2020). Then we opti-
mised them by training a deterministic network (with
the same architecture) using the cross-entropy loss on
the prior’s dataset. Finally, via the Cond-Gauss algo-
rithm, we completed the prior’s training and proceeded
with the posterior’s tuning. The best final bounds ob-
tained were .1855, with the prior learnt on 50% of the
dataset, and .1595, when 70% of the dataset was used
to train P. Again, these values are tighter than those
from Pérez-Ortiz et al. (2021a).

4.3 Summary

To summarise our results, Table 3 compares our best
PAC-Bayesian generalisation bounds with those from
Pérez-Ortiz et al. (2021a). The column ‘C-G’ features
the best bounds we could obtain with the Cond-Gauss

Table 3: Comparison of our PAC-Bayesian bounds with
those from Pérez-Ortiz et al. (2021a)

dataset architecture prior C-G P-O

MNIST 4 layers data-free .1348 .2165
MNIST 4 layers 50% .0144 .0155

CIFAR10 9 layers 50% .2066 .2901
CIFAR10 15 layers 50% .1855 .1954
CIFAR10 15 layers 70% .1595 .1667

algorithm in our experiments. The figures in the col-
umn ‘P-O’ are the tightest bounds reported in Pérez-
Ortiz et al. (2021a) for the same architectures and
datasets. All the PAC-Bayesian generalisation bounds
in the table hold with probability at least 0.965 on the
choice of the training dataset.

5 CONCLUSION

We have introduced the Cond-Gauss training algo-
rithm, which allows the optimisation of PAC-Bayesian
bounds without relying on the use of a surrogate loss.
Taking an estimate of the actual target bound as the
optimisation objective is a natural choice. As con-
firmed by our experiments on the MNIST and the
CIFAR10 classification tasks, it also leads to tighter
bounds than the current state-of-the-art bounds ob-
tained via PAC-Bayes with BackProp.
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M. Pérez-Ortiz, O. Risvaplata, J. Shawe-Taylor, and
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Supplementary material

SM1 PROOFS

Proposition 2. Denote the cumulative distribution function (CDF) of a standard normal as ψ : u 7→ 1
2 (1 +

erf(u/
√
2)). Fix a pair x, y and let

L1 =ψ

(
max
i̸=y

Fi(x)−My(x)√
Vy(x)

)
,

L2 =1−
∏

i ̸=y

ψ

(
Fy(x)−Mi(x)√

Vi(x)

)
,

where F (x) ∼ N (M(x),diag(V (x))). Then

E[L1] = E[L2] = P(ŷ ̸= y) , (SM1)

E[∇L1] = E[∇L2] = ∇P(ŷ ̸= y) , (SM2)

where the gradient is with respect to all the components of M(x) and V (x).

Proof. We start by showing that E[L1] = P(ŷ ̸= y). We have

P(ŷ ̸= y) = P
(
Fy(x) < max

i ̸=y
Fi(x)

)
= E

[
P
(
Fy(x) < max

i ̸=y
Fi(x)

∣∣∣∣{Fi(x)}i ̸=y

)]
= E[L1] .

For L2 again we first use conditioning w.r.t. Fy(x)

P(ŷ ̸= y) = E
[
P
(
Fy(x) < max

i̸=y
Fi(x)

∣∣∣∣Fy(x)

)]
= 1− E

[
P
(
Fy(x) ≥ max

i̸=y
Fi(x)

∣∣∣∣Fy(x)

)]
.

As the events {Fy(x) ≥ Fi(x)|Fy(x)}i ̸=y are independent, we can write

P(ŷ ̸= y) = 1− E


∏

i ̸=y

P
(
Fi(x) ≤ Fy(x)

∣∣∣∣Fy(x)

)
 = E[L2] ,

and so (SM1) is proved.

Now, to show (SM2), we need to prove that it is possible to swap expectation and differentiation for both L1

and L2. For L2 everything is straightforward, as it is a smooth function of M and V (as all the components of
V are assumed to be strictly positive) and its gradient can be easily bounded (uniformly in some neighbourhood
of (Mi(x), Vi(x))i ̸=y) by a function of Fy(x) with finite expectation. Hence we can apply Leibniz integral rule.

For L1, this is the case only for ∂My and ∂Vy , as maxi ̸=y
Fi(x)−My(x)√

Vy(x)
=

max i ̸=y{Fi(x)}−My(x)√
Vy(x)

is smooth in My and

Vy, and its gradient can be easily bounded (uniformly in some neighbourhood of (My(x), Vy(x))) by a function
of (Fi(x))i ̸=y with finite expectation. However, for any j ̸= y, the integrand is not everywhere differentiable wrt
Mj and Vj . Yet, we can still swap expectation and differentiation using Proposition SM1, detailed below.

The two results that follow are well known in the literature, and restated here for convenience. For completeness
we give a proof for both of them. Denote as ρm,s the density of a normal random variable with mean m and
standard deviation s. For convenience we let ρ = ρ0,1. All integrals

∫
are over R.

The next proposition is essentially a reformulation of Price’s theorem (Price, 1958).

Proposition SM1. Let Z ∼ N (0, 1) and X = sZ +m. Let g : R → R be a locally Lipschitz function with a
polynomially bounded derivative. Then

∇m,sEX∼N (m,s2)[g(X)] = EZ∼N (0,1)[∇m,sg(sZ +m)] .
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Proof. Recall that ∂mρm,s(x) = x−m
s ρm,s(x) and ∂sρm,s(x) = (x−m)2−s2

s3 ρm,s(x). Let z = sx + m, then
ρm,s(x)dx = ρ(z)dz. Note that by the local Lipschitzianity g′ is defined almost everywhere. Since it is polyno-
mially bounded, the expectation E[∇m,sg(sZ+m)] makes sense. Note moreover that g is polynomially bounded
as g′ is.

We start by proving the equality for the m-derivative. We have

∂mE[g(X)] = ∂m

∫
ρm,s(x)g(x)dx =

∫
(∂mρm,s(x))g(x)dx ,

by Leibniz integration rule, as ρm,s is smooth in its arguments and the continuity and polynomial boundedness
of g ensure that

∫
x→ ∂mρm,s(x))g(x) dx is well defined and finite. Now, we have

∫
(∂mρm,s(x))g(x)dx =

∫
x−m

s2
ρm,s(x)g(x)dx =

∫
z

s
ρ(z)g(sz +m)dz .

From Lemma SM1 below, we get
∫
z

s
ρ(z)g(sz +m)dz =

∫
1

s
ρ(z)sg′(sz +m)dz =

∫
ρ(z)g′(sz +m)dz .

Now, as g′(sz +m) = ∂mg(sz +m) we conclude that

∂mE[g(X)] = E[∂mg(sZ +m)] .

For the s-derivative, the proof is essentially analogous. Proceeding as above, we have

∂sE[g(X)] =

∫
(∂sρm,s(x))g(x)dx =

∫
(x−m)2 − s2

s3
ρm,s(x)g(x)dx =

∫
z2 − 1

s
ρ(z)g(sz +m)dz .

Again from Lemma SM1 we find that

∫
z2 − 1

s
ρ(z)g(sz +m)dz =

∫
ρ(z)zg′(sz +m)dz .

We conclude that
∂sE[g(x)] = E[∂sg(sz +m)] ,

since ∂sg(sz +m) = zg′(sz +m).

The next lemma states Stein’s identity (Stein, 1981) and a straightforward corollary.

Lemma SM1. Let Z ∼ N (0, 1), and g : R → R a locally Lipschitz function with a polynomially bounded
derivative. Then

E[Zg(Z)] = E[g′(Z)] ,
E[(Z2 − 1)g(Z)] = E[Zg′(Z)] .

Proof. The first equality, known as Stein’s identity, is established using integration by parts:

0 =

∫
(ρ(z)g(z))′dz =

∫
ρ′(z)g(z)dz +

∫
ρ(z)g′(z)dz =−

∫
zρ(z)g(z) +

∫
ρ(z)g′(z)dz ,

where we used that g′ exists almost everywhere as g is locally Lipschitz, and that both g and g′ are polynomially
bounded, so all integral are finite and well defined. Now take h(z) = zg(z). Then we have h′(z) = zg′(z) + g(z)
and so

E[Z2g(Z)] = E[Zh(Z)] = E[h′(Z)] = E[Zg′(Z)] + E[g(Z)] ,

which is the second equality.

Proposition 3. Assume that B is locally Lipschitz in the hidden stochastic parameters θH, and that ∇θHB is
polynomially bounded. If B(ES(Q), Pen) is an affine function of ES(Q), then we have E[B̂] = B and E[∇B̂] = ∇B,
the gradient being with respect to the trainable hyper-parameters p.
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Proof. By linearity it is sufficient to show that E[ÊS(Q)] = ES(Q) and E[∇ÊS(Q)] = ∇ES(Q). Note that,
following the discussion of Section 3.1, we can write ÊS(Q) =

∑
x∈S Êx where

Êx = E(M(x, θH, pL), V (x, θH, pL), ξ) ,

for some suitable function E. If we are dealing with binary classification the variable ξ can be omitted, otherwise
it represents the random draws needed to obtain the estimate L1 or L2 (defined in Proposition 2).

Define Ex = E[Êx], the expectation being over ξ and θH. By Proposition 2 (if we are dealing with multiclass
classification, otherwise by definition) we get that ES(Q) =

∑
x∈S Ex. Consequently we have

ES(Q) =
∑

x∈S

E[Êx] = E[ÊS(Q)] .

Now, to show the unbiasedness of the gradient, it is enough to show that for all x ∈ S

∇pEx = E[∇pÊx] .
First, again by Proposition 2 we can write

E[∇pÊx] = E[∇pE[Êx|FH]] = E[∂(M,V )
∂p E[∇M,V Êx|FH]] = E[∂(M,V )

∂p ∇M,V E[Êx|FH]] = E[∇pE[Êx|FH]] .

Now, E[Êx|FH] is the probability that a component of a Gaussian vector with mean M and covariance diag(V )
is smaller than the maximum of the other components (cf. Section 3.1). This is a smooth function of M and V ,
which in turn are smooth functions of the last layer’s hyper-parameters pL. As a consequence we can write

∇pLEx = E[∇pLE[Êx|FH]] = E[∇pL Êx] .
As for the hidden hyper-parameters, since we are assuming that all the hidden stochastic parameters are inde-
pendent Gaussian random variables, we can apply Proposition SM1, which brings

∇pHEx = E[∇pHE[Êx|FH]] = E[∇pH Êx] ,
thus concluding our proof.

SM2 A NOTE ON UNBIASEDNESS

The previous results state that the gradient estimates used in the Cond-Gauss algorithm are unbiased, as long
as the bound is affine in the empirical error. Under suitable regularity conditions, this ensures that stochas-
tic gradient descent algorithms converge to a stationary point of the objective (Khaled and Richtárik, 2020).
However, among the four bounds (4) that we used in our experiments, only (4b) and (4d) are actually affine.
We argue here that in most cases of interest ÊS(Q) is concentrated enough that the bounds (4a) and (4c) are
approximately affine in the empirical error. In the following, we detail this heuristic idea and then give some
empirical evidence on MNIST in the case of (4a). This almost affine behaviour ensures that the gradient used
by our stochastic optimisation procedure is almost unbiased, and hence we can expect the algorithm to converge
to a point close to a stationary point of the objective (Tadić and Doucet, 2017).

Consider a generic bound B = B(ES(Q)), where B might be a non-affine function. Our estimate is of the form
B̂ = B(ÊS(Q)). We can now consider a linearised version B̄ of B, defined as

B̄(E) = B(ES(Q)) + (E − ES(Q))B′(ES(Q)) .

Clearly, in a sufficiently small neighborhood of ES(Q), we can expect B and B̄ to almost coincide. In particular,
if the law of ÊS(Q) concentrates around ES(Q), we can expect that with high probability

B(ÊS(Q)) ≃ B̄(ES(Q)) .

As B̄ is affine, we can apply Proposition 3 and get

E[B̂] = E[B(ÊS(Q))] ≃ E[B̄(ÊS(Q))] = B̄(ES(Q)) = B(ES(Q)) = B ,
E[∇pB̂] = E[∇pB(ÊS(Q))] ≃ E[∇pB̄(ÊS(Q))] = ∇pB̄(ES(Q)) = ∇pB(ES(Q)) = ∇pB .
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To empirically justify the above, we consider the bound (4a), which was used for most of our experiments. Figure
SM1 and Figure SM2 show that indeed ÊS(Q) is sufficiently concentrated around its mean to see the bound as an
affine function of the empirical error. Figure SM1 reports the data from the network achieving the best bound
in our experiments with data-dependent priors on MNIST. On the other hand, among the networks trained with
the invKL objectives on MNIST with data-free priors, the one achieving the tightest bound was used for Figure
SM2. In both figures, the histogram represents the distribution of 10000 realisations of ÊS(Q). It is clear that in
both cases the bound is essentially affine in the empirical loss, in the region where ÊS(Q) concentrates (zoomed
portion of the plot).

Similar observations hold when the objective is derived from (4c).

Figure SM1: (Same as Figure 1 from the main text.) Ex-
perimental evidence, from a network trained with a data-
dependent prior on MNIST, that the bound (4a) is almost

affine in the region where ÊS(Q) concentrates. The net-
work used was the one achieving the best generalisation
bound in our experiment on MNIST with data-dependent

priors. 10000 realisations of ÊS(Q) were sampled. Their
distribution is summarised by the histogram above the
zoomed portion of the plot. The black dot is the bound for

the average value found for ÊS(Q), while the green error
bar has a total width of 4 empirical standard deviations.

In the region where ÊS(Q) concentrates, the bound and its
linearised version almost coincide. Along the green error
bar, the bound’s slope has a relative variation of ±0.8%.

Figure SM2: Experimental evidence, from a network
trained with a data-free prior on MNIST, that the bound

(4a) is almost affine in the region where ÊS(Q) concen-
trates. Among the networks trained with the invKL objec-
tives on MNIST with data-free priors, the one achieving
the tightest bound was used in this experiment. 10000

realisations of ÊS(Q) were sampled. Their distribution is
summarised by the histogram above the zoomed portion
of the plot. The black dot is the bound for the average

value found for ÊS(Q), while the green error bar has a to-
tal width of 4 empirical standard deviations. In the region

where ÊS(Q) concentrates, the bound and its linearised
version almost coincide. Along the green error bar, the
bound’s slope has a relative variation of ±2%.

SM3 PAC-BAYESIAN TRAINING FOR GENERAL ARCHITECTURES

In the main text we focused on the case of a network whose stochastic parameters are all Gaussian. This is not
a necessary condition for the Cond-Gauss algorithm. What we need is actually to be able to express the KL
between prior and posterior as a differentiable expression of the hyper-parameters, and to evaluate the gradient
(wrt the hyper-parameters) of a single empirical loss’s realisation. We can satisfy this last requirement if we are
able to rewrite the stochastic parameters as a (differentiable) function Θ of the hyper-parameters p and of some
random variable τ (independent of p) such that Θ(p, τ) has the same law of θ, namely Qp. In short, for any
measurable function φ,

Eθ∼Qp
[φ(θ)] = Eτ [φ(Θ(p, τ))] .

In particular, to sample a realisation φ̂ of φ(θ) we can sample a realisation τ̂ of τ and then define

φ̂ = φ(Θ(p, τ̂)) .

As long as φ ◦Θ is differentiable in p, we can evaluate the gradient of φ̂ wrt p.
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For the Cond-Gauss algorithm to be implementable, we require that there exists a p-differentiable reparametri-
sation Θ for the hidden parameters θH. Clearly, this is the case if θH is a Gaussian vector with independent
components. Indeed, if we denote by mH and sH the vectors of means and standard deviations, we have

θH = mH + sH ⊙ τ ,

where τ is a vector with independent standard normal components and ⊙ denotes the component-wise product.
This is what was used for the networks in our experiments.

SM4 NUMERICAL EVALUATION OF kl−1 AND ITS GRADIENT

When the training objective is invKL, it is necessary to evaluate kl−1 and its gradient, in order to implement the
Cond-Gauss algorithm. Many of the most popular deep learning libraries, such as PyTorch and TensorFlow, do
not provide an implementation for kl−1. However, as pointed out by Dziugaite and Roy (2017), a fast numerical
evaluation can be done via a few iterations of Newton’s method. This is what we used in our code.

We show here that the gradient of kl−1 can be expressed as a function of kl−1, so that the implementation of
the latter allows the evaluation of the former. Recall that

kl(u∥v) = u log
u

v
+ (1− u) log

1− u

1− v
.

For u > 0, the mapping v 7→ kl(u∥v) is not injective. However if we restrict its domain to {(u, v) ∈ [0, 1]2 : v ≥ u},
then we find a bijective map, whose inverse coincides with c 7→ kl−1(u|c) (with the definition (3) for kl−1). It
follows immediately that

∂ckl
−1(u|c) = 1

∂vkl(u∥v)

∣∣∣∣
v=kl−1(u|c)

=

(
1− u

1− v
− u

v

)−1 ∣∣∣∣
v=kl−1(u|c)

.

To find an expression for ∂ukl
−1(u|c) we can proceed as follow. Let kl−1(u|c) = v and kl−1(u+ε|c) = v+ε′, with

ε′ = ε∂ukl
−1(u|c) + o(ε). This means that kl(u + ε∥v + ε′) = kl(u∥v), so that ε∂ukl(u∥v) + ε′∂vkl(u∥v) = o(ε).

Taking ε→ 0 we find

∂ukl
−1(u|c) = −∂ukl(u∥v)

∂vkl(u∥v)

∣∣∣∣
v=kl−1(u|c)

=

(
log

1− u

1− v
− log

u

v

)/(
1− u

1− v
− u

v

) ∣∣∣∣
v=kl−1(u|c)

.

SM5 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

In this section we give additional details about our experiments. The PyTorch code written for this paper is
available at https://github.com/eclerico/CondGauss. In all our experiments we used the average of 100
independent estimates of L1 (defined in Proposition 2) to evaluate the empirical error. To keep the standard
deviations σ positive during the training, we trained the parametersρ defined by σ = |ρ|3/2. We found empirically
that this transformation allowed for a much faster training compared to the usual exponential choices (Dziugaite
and Roy, 2017; Pérez-Ortiz et al., 2021a).

SM5.1 MNIST

For our experiments on MNIST, we only used the standard training dataset, which consists of 60000 labelled
examples. We ran our experiments on a 4-layer ReLU stochastic network, whose parameters were independent
Gaussians with trainable means and variances. The architecture used was the following:

x 7→ y = L2 ◦ ϕ ◦ L1 ◦ ϕ ◦ f ◦ C2 ◦ ϕ ◦ C1(x) ,

with

• C1: convolutional layer; channels: IN 1, OUT 32; kernel: (3, 3); stride: (1, 1);
• C2: convolutional layer; channels: IN 32, OUT 64; kernel: (3, 3); stride: (1, 1);
• L1: linear layer; dimensions: IN 9216, OUT 128;
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• L2: linear layer; dimensions: IN 128, OUT 10;
• f : max pool (kernel size = 2) & flatten;
• ϕ: ReLU activation component-wise.

All convolutional and linear layers were with bias.

SM5.1.1 Data-free priors

We first experimented on data-free priors, whose means were initialised via the Pytorch default initialisation.
We tried different values for the initial prior’s variances: .01, .001, and .0001. We compared the performances
of the standard PAC-Bayesian training algorithm (S), where the misclassification loss is replaced by a bounded
version of the cross-entropy loss as in Pérez-Ortiz et al. (2021a), and the Cond-Gauss algorithm (G). We used
the following four training objectives from (4):

invKL : kl−1(ES(Q)|Penκ) ;
McAll : ES(Q) +

√
Penκ/2 ;

quad : (
√

ES(Q) + Penκ/2 +
√
Penκ/2)

2 ;

lbd : 1
1−λ/2 (ES(Q) + Penκ/λ) ,

where the KL penalty is defined as

Penκ =
κ

m

(
KL(Q∥P) + log

2
√
m

δ

)
. (9)

The factor κ in (9) can increase or reduce the weight of the KL term during the training. We experimented three
different values for this parameter: 0.5, 1, and 2. For the last objective, lbd, the parameter λ takes values in
(0, 1) and is optimised during training6.

For all the different training settings, the network was trained via SGD with momentum for 250 epochs with a
learning rate η = .005 followed by 50 epochs with η = .0001. We tried using different values for the momentum:
0.5, 0.7, and 0.9. During the training, at the end of each epoch, we kept track of the bound (4a)’s empirical
value in order to pick the best epoch at the end of the training.

Figure 2 and Table 1 in the main text report our results.

SM5.1.2 Data-dependent priors

For the data-dependent priors, we used 50% of the dataset to train P and the remaining 50% to train Q. We
always used the Cond-Gaussian algorithm for both prior and posterior. All the posteriors were trained with the
invKL objective and κ = 1, whilst for the prior, we experimented with both invKL (with κ = 0.1) and with direct
empirical risk minimisation (ERM), meaning that the objective was simply ES(Q). The initial prior’s variances
were set at 0.01, while the means were randomly initialised (via the default PyTorch initialisation for each layer).
We used different dropout values, as shown in Table SM1. The prior’s training consisted of 750 epochs with
η = .005, followed by 250 epochs with η = .0001, the posterior’s training of 750 epochs with η = 10−5, followed
by 250 epochs with η = 10−6. We used SGD with a momentum of 0.9 for both priors and posteriors. The results
of the experiment can be found in Table SM1.

SM5.2 CIFAR10

As we had done for the MNIST dataset, for CIFAR10 we used only the standard training dataset (50000 labelled
images). We trained a 9-layer architecture (6 convolutional + 3 linear layers) and a 15-layer architecture (12
convolutional + 3 linear layers). We experimented with data-dependent priors only, training P with 50% of the
data for the 9-layer classifier and both with 50% and 70% for the 15-layer one.

6In our experiments, we initialised λ at 0.5 and then doubled the number of epochs, alternating one epoch of λ’s
optimisation with one of optimisation for m and s.
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Table SM1: MNIST - Prior learnt on 50% of the dataset

Prior Posterior

tma dob pfc ivd l1e l2f pg tma l1e l2f th pg bi

G ERM 0 - .001 .0010 .0126 3.179 G invKL .0010 .0122 .0122±.0006 3.671 .0164
G invKL 0 .01 .001 .0008 .0125 3.179 G invKL .0008 .0119 .0115±.0007 3.882 .0162
G ERM .1 - .001 .0010 .0111 3.179 G invKL .0010 .0107 .0110±.0006 3.688 .0148
G invKL .1 .01 .001 .0006 .0113 3.179 G invKL .0006 .0107 .0109±.0006 3.944 .0149
G ERM .2 - .001 .0011 .0111 3.179 G invKL .0011 .0107 .0101±.0005 3.742 .0148
G invKL .2 .01 .001 .0010 .0108 3.179 G invKL .0010 .0104 .0101±.0006 3.801 .0144
a tm: Training method.
b do: Dropout probability for the prior’s training.
c pf: Penalty factor κ for the prior’s training objective.
d iv: Initial value of the prior’s variances.
e l1: Empirical error estimate on the prior dataset.

f l2: Empirical error estimate on the posterior dataset.
g p: KL penalty Pen (2) in 10−4 units.
h t: Test error±standard deviation (from 1000 realisations).
i b: Final PAC-Bayesian bound.

SM5.2.1 9-layer architecture

The 9-layer architecture had the following structure:

x 7→ L3 ◦ ϕ ◦ L2 ◦ ϕ ◦ L1 ◦ ϕ ◦ f2 ◦ C6 ◦ ϕ ◦ C5 ◦ ϕ ◦ f1 ◦ C4 ◦ ϕ ◦ C3 ◦ ϕ ◦ f1 ◦ C2 ◦ ϕ ◦ C1(x) .

Here are detailed the different layers:

• C1: convolutional layer; channels: IN 3, OUT 32; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C2: convolutional layer; channels: IN 32, OUT 64; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C3: convolutional layer; channels: IN 64, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C4: convolutional layer; channels: IN 128, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C5: convolutional layer; channels: IN 128, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C6: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• L1: linear layer; dimensions: IN 4096, OUT 1024;
• L2: linear layer; dimensions: IN 1024, OUT 512;
• L3: linear layer; dimensions: IN 512, OUT 10;
• f1: max pool (kernel size = 2, stride = 2);
• f2: max pool (kernel size = 2, stride = 2) & flatten;
• ϕ: ReLU activation component-wise.

All convolutional and linear layers are with bias.

The results for the 9-layer architecture are reported in Table 2 in the main text. After some preliminary
experiments, we chose to train both priors and posteriors via the Cond-Gauss algorithm with the invKL objective.
We used a small factor κ for the prior, to avoid regularising too much, whilst κ was 1 for the posterior. We tried
different values for the dropout and κ in the prior’s training (see Table 2). We used SGD with momentum 0.9
for both prior and posterior. For P the training consisted of 1500 epochs with η = .005 followed by 500 epochs
with η = .0001, whilst Q was trained for 1500 epochs with η = 10−5, plus 500 epochs with η = 10−6.

SM5.2.2 15-layer architecture

The 15-layer architecture had the following structure:

x 7→L3 ◦ ϕ ◦ L2 ◦ ϕ ◦ L1 ◦ ϕ ◦ f2 ◦ C12 ◦ ϕ ◦ C11 ◦ ϕ ◦ C10 ◦ ϕ ◦ C9 ◦ ϕ ◦ f1 ◦ C8 ◦ ϕ
◦ C7 ◦ ϕ ◦ f2 ◦ C6 ◦ ϕ ◦ C5 ◦ ϕ ◦ f1 ◦ C4 ◦ ϕ ◦ C3 ◦ ϕ ◦ f1 ◦ C2 ◦ ϕ ◦ C1(x) .

Here are detailed the different layers:

• C1: convolutional layer; channels: IN 3, OUT 32; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C2: convolutional layer; channels: IN 32, OUT 64; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C3: convolutional layer; channels: IN 64, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
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Table SM2: CIFAR10 - 15 layers - Prior learnt on 50% and 70% of the dataset

Prior Posterior

tma dob pfc ivd l1e l2f pg tma l1e l2f th pg bi

Prior trained on 50% of the dataset

P
re
-T
ra
in

d
o=

.1

G ERM 0 - .001 .0090 .1946 3.778 G invKL .0090 .1924 .1933±.0020 4.775 .2082
G invKL 0 .01 .001 .0085 .1937 3.778 G invKL .0084 .1909 .1922±.0022 4.913 .2068
G ERM .1 - .001 .0139 .1722 3.778 G invKL .0139 .1709 .1736±.0018 4.386 .1855
G invKL .1 .01 .001 .0222 .1746 3.778 G invKL .0222 .1725 .1760±.0020 4.703 .1875

P
re
-T
ra
in

d
o=

.2

G ERM 0 - .001 .0214 .1996 3.778 G invKL .0214 .1974 .1939±.0020 4.734 .2133
G invKL 0 .01 .001 .0169 .1963 3.778 G invKL .0169 .1941 .1930±.0022 4.859 .2100
G ERM .1 - .001 .0240 .1772 3.778 G invKL .0240 .1758 .1791±.0017 4.474 .1907
G invKL .1 .01 .001 .0394 .1764 3.778 G invKL .0393 .1747 .1734±.0019 4.606 .1897

Prior trained on 70% of the dataset

P
re
-T
ra
in

d
o=

.1

G ERM 0 - .001 .0057 .1616 6.127 G invKL .0057 .1602 .1643±.0020 6.882 .1774
G invKL 0 .01 .001 .0062 .1634 6.127 G invKL .0062 .1617 .1648±.0021 7.203 .1793
G ERM .1 - .001 .0098 .1443 6.127 G invKL .0098 .1430 .1470±.0017 7.006 .1595
G invKL .1 .01 .001 .0180 .1467 6.127 G invKL .0178 .1446 .1506±.0019 7.374 .1616

P
re
-T
ra
in

d
o=

.2

G ERM 0 - .001 .0151 .1639 6.127 G invKL .0151 .1622 .1696±.0018 7.161 .1797
G invKL 0 .01 .001 .0127 .1629 6.127 G invKL .0127 .1611 .1656±.0020 7.293 .1787
G ERM .1 - .001 .0175 .1484 6.127 G invKL .0175 .1471 .1506±.0016 7.043 .1638
G invKL .1 .01 .001 .0306 .1500 6.127 G invKL .0305 .1484 .1498±.0018 7.090 .1652

a tm: Training method.
b do: Dropout probability for the prior’s training.
c pf: Penalty factor κ for the prior’s training objective.
d iv: Initial value of the prior’s variances.
e l1: Empirical error estimate on the prior dataset.

f l2: Empirical error estimate on the posterior dataset.
g p: KL penalty Pen (2) in 10−4 units.
h t: Test error±standard deviation (from 1000 realisations).
i b: Final PAC-Bayesian bound.

• C4: convolutional layer; channels: IN 128, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C5: convolutional layer; channels: IN 128, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C6: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C7: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C8: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C9: convolutional layer; channels: IN 256, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C10: convolutional layer; channels: IN 512, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C11: convolutional layer; channels: IN 512, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C12: convolutional layer; channels: IN 512, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• L1: linear layer; dimensions: IN 2048, OUT 1024;
• L2: linear layer; dimensions: IN 1024, OUT 512;
• L3: linear layer; dimensions: IN 512, OUT 10;
• f1: max pool (kernel size = 2, stride = 2);
• f2: max pool (kernel size = 2, stride = 2) & flatten;
• ϕ: ReLU activation component-wise.

All convolutional and linear layers are with bias.

For the 15-layer architecture, we experimented different prior trainings, with 50% and 70% of the training
dataset. In both cases, it was necessary to introduce an initial pre-training for the prior’s means, as otherwise
the Cond-Gauss algorithm alone could not significantly decrease the training objective. First, we initialised the
means with an orthogonal initialisation, as suggested in Hu et al. (2020). Then we optimised them by training
a deterministic network (with the same architecture) using the cross-entropy loss on the prior’s dataset, for 50
epochs with η = .005. Finally, via the Cond-Gauss algorithm, we completed the prior’s training and proceeded
with the posterior’s tuning following the same learning rate schedule as for the 9-layer case. We always used
SGD with momentum 0.9. Different objectives and dropout factors were used for training the prior, as detailed
in Table SM2, which also reports the results of our experiment.
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Abstract
This work discusses how to derive upper bounds for the expected generalisation error of super-
vised learning algorithms by means of the chaining technique. By developing a general theoretical
framework, we establish a duality between generalisation bounds based on the regularity of the loss
function, and their chained counterparts, which can be obtained by lifting the regularity assumption
from the loss onto its gradient. This allows us to re-derive the chaining mutual information bound
from the literature, and to obtain novel chained information-theoretic generalisation bounds, based
on the Wasserstein distance and other probability metrics. We show on some toy examples that the
chained generalisation bound can be significantly tighter than its standard counterpart, particularly
when the distribution of the hypotheses selected by the algorithm is very concentrated.
Keywords: Generalisation bounds; Chaining; Information-theoretic bounds; Mutual information;
Wasserstein distance; PAC-Bayes.

1. Introduction

In the supervised setting, a learning algorithm is a procedure that takes a training dataset as input
and returns a hypothesis (e.g., regression coefficients, weights of a neural network, etc.). Ideally, the
learned hypothesis should perform well on both the input dataset and new data, which were not used
for the training. There is hence interest in providing generalisation bounds, namely upper bounds
on the algorithm’s gap in performance for seen and unseen instances.

The first generalisation bounds were based on characterisations of the hypothesis space’s com-
plexity, such as the VC dimension or the Rademacher complexity (Bousquet et al., 2004; Vapnik,
2000; Shalev-Shwartz and Ben-David, 2014). However, due to their algorithm-independent nature,
these bounds must hold even for the worst algorithm on the given hypothesis space. Consequently,
they are often inadequate for modern over-parameterised neural networks, with the complexity mea-
sure usually scaling exponentially with the architecture’s depth (Anthony and Bartlett, 2002; Zhang
et al., 2021; Belkin et al., 2018).

To address this issue, recent approaches aim at providing algorithm-dependent generalisation
bounds. The underlying intuition is that if the output hypothesis is less dependent on the input
dataset, it would be less prone to overfitting, and so generalises better. Among the results building on
this idea, there are bounds based on uniform stability (Bousquet and Elisseeff, 2002) and differential
privacy (Dwork and Roth, 2014), PAC-Bayesian bounds (Guedj, 2019; McAllester, 1998, 1999),
and information-theoretic bounds.

In this paper, we shall mainly focus on the information-theoretic framework, where the learn-
ing algorithm is seen as a noisy channel connecting the input dataset and the chosen hypothesis.

© 2022 E. Clerico, A. Shidani, G. Deligiannidis & A. Doucet.
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Russo and Zou (2019) and Xu and Raginsky (2017) were the first to introduce this approach. They
upper-bounded the expected generalisation error via the Mutual Information (MI) between the input
sample and the learnt hypothesis. This bound is simple and can be applied to a broad class of learn-
ing algorithms. However, a major drawback is that it becomes infinite if the choice of the hypothesis
is deterministic in the input. Motivated by this problem, several strategies have been proposed.

Bu et al. (2019) gave an individual-sample MI bound, while Steinke and Zakynthinou (2020)
introduced a conditional version of the MI, which is always finite. Rodrı́guez-Gálvez et al. (2020),
Haghifam et al. (2020), and Hellström and Durisi (2020) extended and merged these results. Al-
ternatively, different measures of algorithmic stability can replace the MI: Lopez and Jog (2018),
Wang et al. (2019), and Rodrı́guez-Gálvez et al. (2021) proposed bounds based on the Wasserstein
distance, while others focused on total variation, f -divergences, and lautum information (Wang
et al., 2019; Rodrı́guez-Gálvez et al., 2021; Esposito et al., 2021; Palomar and Verdú, 2008).

Adopting a different perspective, Asadi et al. (2018) observed that several information-theoretic
bounds fail to exploit the dependencies between hypotheses. They hence proposed to combine the
original MI bound with the chaining method, a powerful tool from high dimensional probability
originally aimed at upper-bounding the expected supremum of random processes. First introduced
by Kolmogorov (see van Handel (2016)), the chaining technique has been successfully extended
and developed (Dudley, 1967; Talagrand, 2005, 2014). In their Chaining Mutual Information (CMI)
bound, Asadi et al. (2018) take finer and finer discretisations of the hypothesis space and rewrite the
generalisation error as a telescopic sum, whose terms can be controlled by exploiting the dependen-
cies between the hypotheses. Subsequently, Asadi and Abbe (2020) adapted the CMI technique to
the architecture of deep neural nets, while Zhou et al. (2022) introduced bounds based on a stochas-
tic version of chaining. However, it is worth mentioning that previous works had already applied
the chaining method to algorithm-dependent bounds. For instance, Audibert and Bousquet (2004)
combined the generic chaining from Talagrand (2005) with the PAC-Bayesian approach.

As a final comment, it must be noted that the generalisation bounds from the information-
theoretic literature are hard to evaluate in practice, involving expectations with respect to the un-
known sample distribution. Nevertheless, they provide useful intuition on the mechanism of the
learning process and, as a result, they represent a very active research area. Moreover, recent works
have built on them to derive computable analytical bounds for specific algorithms, such as Langevin
dynamics, stochastic gradient Langevin dynamics, and stochastic gradient descent (Bu et al., 2019;
Negrea et al., 2019; Haghifam et al., 2020; Rodrı́guez-Gálvez et al., 2020; Neu et al., 2021).

1.1. Our contributions

The CMI bound is an interesting multi-scale reformulation of the original MI result by Russo and
Zou (2019). However, in the information-theoretic literature on generalisation bounds, the chaining
method has been coupled only with the MI (Asadi et al., 2018; Asadi and Abbe, 2020; Zhou et al.,
2022). Two questions then naturally arise. Is it possible to derive chained versions of other kinds of
generalisation bounds? Can these chained bounds be tighter than their original counterparts?

In the present work, we establish a duality that reads as follows. Each bound, based on (a certain
notion of) regularity of the loss function, corresponds to a chained bound that can be obtained
by lifting the regularity condition from the loss to its gradient. To make sense of this, we first
introduce a general framework, standardising the main step in the proof of several information-
theoretic bounds from the literature. We then discuss how to extend this framework leveraging the
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chaining technique, and we provide a simple method to derive novel chained generalisation bounds.
We show indeed that in our framework each unchained bound corresponds to a chained one (see
Theorems 2 and 4), in a way reflecting the connection between the MI and CMI results.

The framework introduced in this work encompasses several information-theoretic backward-
channel1 bounds, and allows us to derive their chained counterparts. However, due to space limita-
tions, many explicit results are deferred to Appendix G (see Table 1) and in the main text we focus
on four bounds to concretely illustrate how our framework works: the MI bound from Russo and
Zou (2019) and the CMI bound from Asadi et al. (2018) serve as a motivation for our general result,
while as an application of our framework we derive a novel Wasserstein bound (see Proposition 15),
which is the chained counterpart of a bound from Lopez and Jog (2018).

Moreover, we discuss some possible extensions of our work. On the one hand, our information-
theoretic framework can be restated with weaker regularity assumptions on both the loss and the
hypothesis space. On the other hand, we present an additional bound that does not fit our theo-
retical framework but can still be derived using essentially the same technical machinery. It is a
chained PAC-Bayesian generalisation result, which has the interesting features of being finite even
for deterministic algorithms and not requiring the loss to be bounded by a small constant.

As a final remark, there is no generic answer on whether the chained bounds are tighter than
their unchained counterparts. However, the chaining technique turns out to be particularly effective
when the hypotheses’ distribution is very concentrated. In fact, many of the standard bounds do not
exploit this feature, the most pathological case being the MI bound, which can even be infinite. In
contrast, the chained bounds can be significantly tighter, intrinsically leveraging the dependencies
between different hypotheses. We illustrate this phenomenon through some simple toy examples.

2. Preliminaries

Let the input space (X , dX ) be a separable complete metric space, and ΣX the corresponding Borel
σ-algebra. We define S = Xm and consider a metric dS inducing the product σ-algebra ΣS = Σ⊗m

X .
We denote the training dataset as s = {x1, . . . , xm} ∈ S . Let PX be a probability measure on X
and X a random variable with law PX . S = {X1, . . . , Xm} ∈ S denotes the random training
sample, with law PS . We will always assume that the marginal PXi = PX , for each index i. This
is of course the case if the Xi are i.i.d. (PS = P⊗m

X ). We will suppose that the hypothesis space W
is a closed subset of Rd, endowed with its Borel σ-algebra ΣW . A learning algorithm consists in a
Markov kernel that maps each s ∈ S to a probability measure PW |S=s on W . In turn, this defines a
joint probability PW,S on W ×S. We denote as PW and PS the marginal distributions of PW,S , and
we let s 7→ PW |S=s and w 7→ PS|W=w be regular conditional probabilities2.

In the supervised framework, the goal is to approximate a map x 7→ f⋆(x) by making use of the
information contained in the training sample s (the value of f⋆(xi) is known for each xi ∈ s). Each
hypothesis w represents a parameterised mapping x 7→ fw(x), and the training process consists in
tuning w, so as to approximate f⋆. The loss ℓ : W×X → R, allows to assess how far each fw(x) is

1. In the information-theoretic literature, the forward-channel connects the sample to the hypothesis, while the
backward-channel goes the other way. Chaining on the hypotheses combines naturally with the backward-channel.

2. The existence of these is ensured by the fact that S andW are Polish spaces, cf. Theorem 10.2.2 in Dudley (2002).
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from f⋆(x). We will always assume that ℓ(w, ·) ∈ L1(PX). Define the empirical and the true loss

Ls(w) =
1

m

m∑

i=1

ℓ(w, xi) ; LX (w) = EPX
[ℓ(w,X)] .

We call generalisation error the difference gs(w) = LX (w) − Ls(w). In this work, we are essen-
tially interested in upper-bounding its expected value G = EPW,S

[gS(W )].
The equality EPW,S

[LX (W )] = EPW⊗S
[LS(W )], where PW⊗S = PW ⊗ PS , follows from

LX (w) = EPS
[LS(w)] and is the starting point of several information-theoretic bounds. Indeed,

G = EPW⊗S
[LS(W )]− EPW,S

[LS(W )]

can be upper-bounded in terms of how “far apart” PW,S and PW⊗S are.

2.1. Further notation and conventions

The following notation will be used throughout the rest of the paper. (Z,ΣZ) denotes a generic
separable complete metric space, endowed with the Borel σ-algebra induced by its metric dZ . We
endow P , the space of all the probability measures on (Z,ΣZ), with the topology of the weak
convergence, and we denote the corresponding Borel σ-algebra as ΣP . For two coupled random
variables Z,Z ′ on Z , we write PZ⊗Z′ for the independent coupling PZ ⊗ PZ′ . For v, v′ ∈ Rq (for
a generic q ∈ N) we write ∥v∥ and v · v′ for the Euclidean norm and the standard dot product in
Rq respectively. For a random vector V ∈ Rq, we write that V ∈ L1 if EPV

[∥V ∥] < +∞. When
we need to specify the integrability of V with respect to a particular law µ, we explicitly write
V ∈ L1(µ), that is Eµ[∥V ∥] < +∞. Finally, ξ denotes an arbitrary non-negative real number.

3. General framework

3.1. Bounds based on the regularity of the loss

Both the standard MI and Wasserstein bounds from Russo and Zou (2019) and Lopez and Jog
(2018) (see Propositions 10 and 11 in Section 4 for the explicit statements) build on some regularity
condition on the dependence of ℓ in x, holding uniformly on W . As this is a common assumption
for various backward-channel bounds in the literature, we will now introduce a unified abstract
framework, which allows us to re-derive several information-theoretic bounds, such as many of
those based on MI, Wasserstein distances, and other probability metrics. Due to the limited space,
in the main text we only give a few concrete applications of our framework (see Section 4). A wide
range of additional explicit examples, listed in Table 1, can be found in Appendix G.

Definition 1 (D-regularity) Let D be a measurable3 map P × P → [0,+∞]. Fix µ ∈ P and
ξ ≥ 0. We say that f : Z → R has regularity RD(ξ), with respect to µ, if f ∈ L1(µ) and, for every
ν ∈ P such that Supp(ν) ⊆ Supp(µ) and f ∈ L1(ν),

|Eµ[f(Z)]− Eν [f(Z)]| ≤ ξD(µ, ν) .

We can extend the definition to functions taking values in Rq, for q > 1. We say that F : Z → Rq

has regularity RD(ξ) (wrt µ) if z 7→ v · F (w) has regularity RD(ξ∥v∥) (wrt µ), for all v ∈ Rq.

3. The measurability wrt ΣP is a technical assumption that is required in order to ensure that expressions, such as∫
W D(PS ,PS|W=w)dPW (w) in Theorem 2, make sense. The reader can be assured that it holds whenever D is a

measurable function of an f -divergence, or the Wasserstein distance. We refer to Appendix F for more details.

122



CHAINED GENERALISATION BOUNDS

The concept of D-regularity is intrinsically connected to the choice of the measure µ ∈ P , in the
sense that f might be RD(ξ) regular with respect to µ, but not with respect to some other µ′ ∈ P .
For two simple concrete examples of D-regularity, we refer to Lemma 9, in Section 4.

Now, let Z = S and recall that W is a closed subset of Rd, with Borel σ-algebra ΣW . On the
product space (W×S,ΣW⊗ΣS), we consider a probability measure PW,S , with marginals PW and
PS . Recall that since S is a Polish space, w 7→ PS|W=w defines a regular conditional probability
(cf. Theorem 10.2.2 in Dudley (2002)). The next result, which follows easily from the definition of
regularity, is a powerful tool to derive generalisation bounds.

Theorem 2 Assume that s 7→ Ls(w) has regularity RD(ξ) wrt PS , ∀w ∈ W . Then we have

|G| = |EPW⊗S
[LS(W )]− EPW,S

[LS(W )]| ≤ ξ EPW
[D(PS ,PS|W )] ,

where EPW
[D(PS ,PS|W )] =

∫
W D(PS ,PS|W=w) dPW (w).4

By specialising the concept of D-regularity, we can leverage the framework introduced so far
and obtain generalisation bounds based on various probability divergences (cf. Table 1). Moreover,
individual-sample bounds such as those from Bu et al. (2019) can fit in our framework, as well as
bounds based on the random sub-sampling from a super-sample, in the same spirit of the conditional
MI bound from Steinke and Zakynthinou (2020). We refer the reader to Appendix G for a more
detailed discussion of these results.

3.2. Bounds based on the regularity of the loss’s gradient

The bounds based on the chaining technique, such as the CMI bound from Asadi et al. (2018) (see
Proposition 12 in Section 4), do not fit naturally in the framework presented so far. We are thus
motivated to find an alternative setting that naturally gives rise to chained bounds, thus establishing
new generalisation results.

As a starting point, let us notice that the main idea behind the CMI bound is to lift the regularity
assumption from x 7→ ℓ(w, x) onto x 7→ (ℓ(w, x)− ℓ(w′, x)). A natural guess is that this approach
could provide chained bounds also in our general framework, and this is indeed the case (cf. Theo-
rem 22 in Appendix B.1). However, if ℓ is regular enough we can focus on the gradient ∇wℓ(w, x)
instead. Since this leads to more intuitive and compact statements, we chose to consider this case in
the main text.

Assumptions ♣
• The set W ⊂ Rd is convex, compact, and with non-empty interior.
• The function w 7→ ℓ(w, x) is of class C1 on W , PX -a.s.
• We have sup(w,x)∈W×X |ℓ(w, x)| < +∞ and sup(w,x)∈W×X ∥∇wℓ(w, x)∥ < +∞.

Let us stress once more that the above assumptions are not necessary in order to obtain the duality
chained-unchained bounds. In Appendix B.1 we discuss a more general setting: W can be non-
convex and with empty interior, ℓ continuous on W (PX -a.s.) and only bounded in expectation.

The chained bounds involve a sequence of finer and finer discretisations of the hypotheses’
space, which can be formalised as follows.

4. Note that w 7→ D(PS ,PS|W=w) is measurable, since both w 7→ PS|W=w and (µ, ν) 7→ D(µ, ν) are Borel measur-
able (see Appendix F).
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Definition 3 (Nets and refining sequences of nets) Given ε > 0, we define an ε-projection on W
as a measurable mapping π : W → W such that π(W) has finitely many elements and, for all
w ∈ W , ∥π(w)− w∥ ≤ ε. The image π(W) is called an ε-net on W .
Consider a positive, vanishing, decreasing sequence {εk}n∈N, and assume that there is a w0 ∈ W
such that ∥w−w0∥ ≤ ε0 for each w ∈ W . We call {πk(W)}n∈N an {εk}-refining sequence of nets
if π0(W) = {w0} and, for all k ≥ 1, we have that πk is a εk-projection and πk−1 ◦ πk = πk−1.

To simplify the notation, for all w ∈ W we let wk = πk(w), and similarly Wk = πk(W ) and
Wk = πk(W). Note that for all k, wk′ is determined by wk whenever k′ ≤ k, as wk′ = πk′(wk).
Moreover, for all k ≥ 1, ∥wk − wk−1∥ = ∥wk − πk−1(wk)∥ ≤ εk−1.

The next theorem is the main result of this work. Together with Theorem 2, it establishes the
duality between chained and unchained generalisation bounds, which can essentially be obtained by
lifting the regularity from the loss onto its gradient.

Theorem 4 Assume ♣ and that s 7→ ∇wLs(w) has regularity RD(ξ) wrt PS , ∀w ∈ W . Then, for
any {εk}-refining sequence of nets on W ,

|G| = |EPW⊗S
[LS(W )]− EPW,S

[LS(W )]| ≤ ξ
∞∑

k=1

εk−1EPW
[D(PS ,PS|Wk

)] ,

where EPW
[D(PS ,PS|Wk

)] =
∫
W D

(
PS ,PS|W∈π−1

k (w)

)
dPW (w).

Proof’s sketch Here is a sketch of the proof; see Appendix A.3 for the details. Following the
standard chaining argument, we control Ls(w) by the telescopic sum

∑
k≥1(Ls(wk)−Ls(wk−1)).

The upper bound will then follow from the fact that the RD(ξ) regularity of s 7→ ∇wLs(w) implies
the RD(εk−1ξ) regularity of w 7→ (Ls(wk)− Ls(wk−1)).

Both Theorem 2 and 4 are stated under uniform regularity conditions, in the sense that the
value of the regularity’s parameter ξ has to be the same for all w ∈ W . However, we can still
achieve generalisation bounds under less strict assumptions. In Appendix B.2 we discuss the case
of a measurable map w 7→ ξw, such that, for some p ∈ [1,+∞], ξW is bounded in Lp(PW ) (or
Lp(PWk

), ∀k ∈ N). Note that choosing p = +∞ brings back the uniform condition.
In a similar spirit, one might try to relax the definition of ε-net, by mimicking the stochastic

chaining idea from Zhou et al. (2022). We defer this approach to future work.

4. A few concrete examples: MI and Wasserstein bounds

In the current section we give a few concrete applications of the abstract framework that we have
presented so far. We recover some simple generalisation bounds from the literature and establish a
novel chained bound, based on the Wasserstein distance.

First, we need to state a few standard definitions.

Definition 5 (Subgaussianity) A real random variable Z ∈ L1 is ξ-SubGaussian (ξ-SG) if

logEPZ
[eλZ ] ≤ λEPZ

[Z] + ξ2λ2

2 , ∀λ > 0 .

A random vector V ∈ Rq is ξ-SG if, for all v ∈ Rq, V · v is (∥v∥ξ)-SG. Finally, a stochastic process
{Fw}w∈W is ξ-SG if, for every pair (w,w′) ∈ W2, Fw−Fw′ is a (∥w−w′∥ξ)-SG random variable.
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Note that any bounded random variable Z ∈ [a, b] is b−a
2 -SG. Moreover, a normally distributed

random variable Z ∼ N (0, ξ) is ξ-SG.

Definition 6 (Lipschitzianity) A function f : Z → Rq is ξ-Lipschitz on Z if, for all z, z′ ∈ Z ,

∥f(z)− f(z′)∥ ≤ ξdZ(z, z′) .

Definition 7 (Kullback–Leibler divergence and mutual information) Let µ and ν be two prob-
ability measures on Z . We define the Kullback–Leibler divergence

KL(ν∥µ) =
{
Eν [log dν/dµ] if ν ≪ µ;
+∞ otherwise.

For two coupled random variables Z,Z ′, the Mutual Information (MI) is defined as

I(Z;Z ′) = KL(PZ,Z′∥PZ⊗Z′).

The KL divergence is non-negative, with KL(ν∥µ) = 0 if, and only if, µ = ν. Similarly the MI is
always non-negative, and null if, and only if, Z ⊥⊥ Z ′.

Definition 8 (Wasserstein distance) Given two distributions µ and ν on Z and fixed p ≥ 1, their
p-Wasserstein distance Wp is defined as

Wp(µ, ν) = inf
π∈Π[µ,ν]

E(Z,Z′)∼π[dZ(Z,Z
′)p]1/p ,

where Π[µ, ν] is the set of all probability measures, on (Z2,ΣZ ⊗ ΣZ), with marginals µ and ν.

It can be shown that for p > p′ we have Wp(µ, ν) ≥ Wp′(µ, ν), so that in particular W1 is the
weakest. For this reason, henceforth we will focus on W1, which we will simply denote W.

Using the concepts that we have just introduced, we can give two simple and concrete examples
of D-regularity.

Lemma 9 Let D1 : (µ, ν) 7→
√

2KL(ν∥µ) and D2 : (µ, ν) 7→ W(µ, ν). Consider a measurable
map f : Z → Rq (with q ≥ 1). If f(Z) is ξ-SG for Z ∼ µ ∈ P , then f has regularity RD1(ξ) wrt
µ. If f is ξ-Lipschitz on Z , then f has regularity RD2(ξ), wrt any µ ∈ P such that f ∈ L1(µ).

4.1. Standard MI and Wasserstein bounds

We state two simple generalisation bounds that were previously mentioned in the introduction. The
proofs that we give leverage the abstract framework of Section 3.1. The first result (Russo and Zou,
2019; Xu and Raginsky, 2017) is an upperbound on G based on the mutual information between W
and S.

Proposition 10 (Standard MI bound) Let PS = P⊗m
X . If ℓ(w,X) is ξ-SG, ∀w ∈ W , then

|G| ≤ ξ

√
2I(W ;S)

m
.
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Proof First, since PS = P⊗m
X , LS(w) is the average of m independent ξ-SG random variables, so

it is (ξ/
√
m)-SG. In particular, with D : (µ, ν) 7→

√
2KL(ν∥µ), Lemma 9 shows that s 7→ Ls(w)

has regularity RD(ξ/
√
m), ∀w ∈ W . We conclude by Theorem 2 and Jensen’s inequality.

The next bound is from Lopez and Jog (2018) and is close in spirit to the previous one, as again it
tries to measure how much information about S is enclosed in W . However, now the MI is replaced
by an expected Wasserstein distance. In order to get an explicit dependence on 1/

√
m, we assume

that the metric dS on S is related to the one on X via

dS(s, s′) =

(
m∑

i=1

dX (xi, x′i)
2

)1/2

, (1)

where s = {x1, . . . , xm} and s′ = {x′1, . . . , x′m}. Note that we do not need PS = P⊗m
X .

Proposition 11 (Standard Wasserstein bound) Suppose that dX and dS are related by (1). If,
∀w ∈ W , x 7→ ℓ(w, x) is ξ-Lipschitz on X , then

|G| ≤ ξ√
m

EPW
[W(PS ,PS|W )] .

Proof First notice that

dS(s, s′) =

(
m∑

i=1

dX (xi, x′i)
2

)1/2

≥ 1√
m

m∑

i=1

dX (xi, x′i) ,

where we used the Cauchy-Schwartz inequality. Consequently, s 7→ Ls(w) is (ξ/
√
m)-Lipschitz

∀w ∈ W . In particular, if we let D : (µ, ν) 7→ W(µ, ν), then s 7→ Ls(w) has regularity
RD(ξ/

√
m) by Lemma 9. We conclude by Theorem 2.

4.2. Chained MI and Wasserstein bounds

As we mentioned in the introduction, one of the main issues with the standard MI bound is that it can
easily be vacuous, as it is the case when the learning algorithm defines a deterministic map S → W .
To address this issue, Asadi et al. (2018) proposed to build on the chaining technique and established
the bound below. The setting here is quite different from the one of the standard MI bound, as the
process’s subgaussianity takes into account the dependencies between different hypotheses. Letting
{εk}k∈N be a vanishing decreasing positive sequence, we consider an {εk}-refining sequence of
nets {Wk}k∈N = {πk(W)}k∈N and recall that Wk = πk(W ).

Proposition 12 (CMI bound) Let PS = P⊗m
X and W be a compact set, with an {εk}-refining

sequence of nets defined on it. Suppose that w 7→ ℓ(w, x) is continuous, for PX -almost every x,5

and that {ℓ(w,X)}w∈W is a ξ-SG stochastic process. Then we have

|G| ≤ ξ√
m

∞∑

k=1

εk−1

√
2I(Wk;S) .

5. Note that in Asadi et al. (2018) the result is stated under a weaker assumption of separability of the process. To avoid
introducing further definitions and technicalities in the proofs, we decided to focus on the case of a.s. continuity.
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We provide a proof of Proposition 12 within the extended general framework of Appendix B.1,
while here we establish a similar result, under the more restrictive assumptions ♣.

Leveraging the machinery developed in Section 3.2, we can expect that lifting the subgaus-
sianity from ℓ to ∇wℓ we can find a chained version of the MI bound in Proposition 10. Perhaps
unsurprisingly, we simply re-obtain the CMI bound of Proposition 12.

Proposition 13 Let PS = P⊗m
X and assume ♣. If ∇wℓ(w,X) is ξ-SG, ∀w ∈ W , we have that for

any {εk}-refining sequence of nets on W

|G| ≤ ξ√
m

∞∑

k=1

εk−1

√
2I(Wk;S) .

Proof As in the proof of Proposition 10, we have that ∇wLS(w) is (ξ/
√
m)-SG, ∀w ∈ W . In

particular, by Lemma 9 we have that s 7→ ∇wLs(w) has regularity RD(ξ/
√
m), ∀w ∈ W , where

D : (µ, ν) 7→
√

2KL(ν∥µ). Hence, we conclude by Theorem 4 and Jensen’s inequality.

The next lemma shows that, under the assumptions ♣, Propositions 12 and 13 are equivalent.

Lemma 14 Under the assumptions ♣, the stochastic process (ℓ(w,X))w∈W is ξ-SG if, and only
if, ∇wℓ(w,X) is a ξ-SG vector for all w ∈ W .

Once again, the main point of the abstract framework presented so far is to underline a duality:
to each bound based on the D-regularity of the loss corresponds a chained bound based on the
D-regularity of its gradient. We can hence apply this idea to the standard Wasserstein bound of
Proposition 11 and obtain its chained counterpart, which is a novel result.

Proposition 15 (Chained Wasserstein bound) Let dX and dS be related by (1). Under the as-
sumptions ♣, suppose that x 7→ ∇wℓ(w, x) is ξ-Lipschitz on X , ∀w ∈ W . Then, for any {εk}-
refining sequence of nets on W ,

|G| ≤ ξ√
m

∞∑

k=1

εk−1EPW
[W(PS ,PS|Wk

)] .

Proof Let D : (µ, ν) 7→ W(µ, ν). Proceeding as in the proof of Proposition 11, we have that
∇wLS(w) is (ξ/

√
m)-Lipschitz, ∀w ∈ W . In particular, by Lemma 9, s 7→ ∇wLs(w) has regu-

larity RD(ξ/
√
m), ∀w ∈ W . Hence, we conclude by Theorem 4.

We conclude by recalling once more that, in our framework, any bound based on the regularity
of ℓ gives rise to a chained bound. We refer to Table 1 in the appendix for several explicit examples.

5. A chained PAC-Bayesian bound

The framework introduced in Section 3 focuses on the backward-channel information-theoretic
setting. However, the chaining ideas behind Theorem 4 can fit in a broader context. As an example,
we discuss here a PAC-Bayesian result. Although Audibert and Bousquet (2004) have already
combined the PAC-Bayesian approach with the chaining technique, their use of an auxiliary sample
and of the average distance between nets makes their bounds conceptually different from ours.
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The PAC-Bayesian bounds are algorithmic-dependent upper bounds on the expected generalisa-
tion error EPW |S [gS(W )] of stochastic classifiers (McAllester, 1998), holding with high probability
on the random draw of the training sample S (see Guedj (2019) and Alquier (2021) for recent intro-
ductory overviews). They share the same underlying idea with the information-theoretic bounds: the
less PW |S is dependent on S, the better the algorithm generalises. However, in the PAC-Bayesian
setting we compare PW |S not with the marginal PW , but rather with a fixed probability measure
P∗
W , which can be chosen arbitrarily but without making use of the training sample S.

We state here a very simple classical PAC-Bayesian result from Catoni (2009).

Proposition 16 Assume that ℓ is bounded in [−ξ, ξ]. Let P∗
W be a fixed probability measure on W ,

chosen independently of S. Fix δ ∈ (0, 1) and λ > 0. Then, with probability PS = P⊗m
X larger than

1− δ on the draw of S, we have

EPW |S [gS(W )] ≤ ξ√
2m

(
λ+

KL(PW |S∥P∗
W ) + log 1

δ

λ

)
.

A chained version of the above can be obtained by lifting the boundedness hypothesis from ℓ to ∇wℓ.
This is quite peculiar, as most PAC-Bayesian bounds hold for bounded loss functions ℓ ⊆ [−ξ, ξ].

Proposition 17 Under the assumptions ♣, consider a {εk}-refining sequence of nets on W and
assume that ∇wℓ is bounded in [−ξ, ξ]. Let P∗

W be a fixed probability measure on W , chosen
independently of S. Fix two sequences {δk}k∈N and {λk}k∈N, such that δk ∈ (0, 1) and λk > 0 for
all k. Assume that

∑
k∈N δk = δ ∈ (0, 1). Then, with probability PS = P⊗m

X larger than 1 − δ on
the draw of S, we have

EPW |S [gS(W )] ≤ ξ√
2m

(
2

√
log

1

δ0
+

∞∑

k=1

εk−1

(
λk +

KL(PWk|S∥P∗
Wk

) + log 1
δk

λk

))
.

The PAC-Bayesian bound in Proposition 16 is infinite for a deterministic algorithm (that is when
PW |S=s is a Dirac delta for all s ∈ S). Remarkably, for suitable coefficients λk, δk, and εk, the
chained bound of Proposition 17 is always finite, since all the terms KL(PWk|S∥P∗

Wk
) are bounded

by log |Wk|. However, the best choice of the parameters λ and λk is delicate, as it cannot depend
on S (and hence on the KL term). We refer to Appendix C for further discussion on this last point.

6. Comparison of chained and unchained bounds

Having established the duality, we are left with the Hamletic question: chained or unchained, what
is the best? First, we notice that the requirements for the chained bounds are somewhat stronger.

Lemma 18 Under the assumptions ♣, let ε0 andw0 be such that ∥w−w0∥ ≤ ε0, ∀w ∈ W . Assume
that s 7→ ∇wLs(w) has regularity RD(ξ) wrt PS , ∀w ∈ W , and define L̂s(w) = Ls(w)−Ls(w0)
and Ĝ = EW⊗S [L̂S(W )]−EW,S [L̂S(W )]. Then, Ĝ = G, and s 7→ L̂s(w) has regularity RD(ε0ξ),
wrt PS and ∀w ∈ W .

Hence, whenever we derive a chained bound |G| ≤ ξ
∑∞

k=1 εk−1EPW
[D(PS ,PS|Wk

)] in our frame-
work, we can always state an unchained counterpart in the form |G| ≤ ε0ξ EPW

[D(PS ,PS|W )].
Nevertheless, the next result shows that conditioning on Wk instead of W can often be helpful.
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Lemma 19 Assume that µ 7→ D(PS , µ) is convex. For any {εk}-refining sequence of nets on W ,
the sequence {EPW

[D(PS ,PS|Wk
)]}k∈N is non-decreasing and, ∀k ∈ N, we have

EPW
[D(PS ,PS|Wk

)] ≤ EPW
[D(PS ,PS|W )] .

KL(ν∥µ) is convex in both ν and µ (Erven and Harremoës, 2014), and the same holds for W(µ, ν)
(Villani, 2009). Thus, I(Wk;S) ≤ I(W ;S)6 and EPW

[W(PS ,PS|Wk
)] ≤ EPW

[W(PS ,PS|W )].
Lemma 19 alone is not enough to ensure that the chained bound is tighter than its unchained

counterpart. However, if PW is very concentrated on a tiny region of W , so that S is almost inde-
pendent of Wk up to a small scale (i.e., large k), then one can expect the chained result to be the
tightest. We will clarify this intuition by means of two simple toy examples. Since Asadi et al.
(2018) have already shown that the CMI bound can be much tighter than the MI one, here the focus
is on the Wasserstein bounds.

6.1. Comparison of the chained and unchained Wasserstein bounds

In the following we denote by Bℓ the standard Wasserstein bound (Proposition 11) and by B∇ℓ its
chained counterpart (Proposition 15). For simplicity, we mainly focus on the case m = 1, so that
we can write s = x and G = EPW⊗X

[ℓ(W,X)]− EPW,X
[ℓ(W,X)].

Example 1 Let W = X = [−1, 1], ℓ(w, x) = 1
2(w − x)2, and εk = 2−k, for k ∈ N. We can find

mappings πk that define an {εk}-refining sequence of nets, with Wk = {21−kj : j ∈ [−2k−1 :
2k−1]}, where [a : b] = [a, b]∩Z. Fix k⋆ ∈ N and define θ = 2−k⋆ . Let X be uniformly distributed
on (−θ, θ). We choose an algorithm that, given x, selects the w minimising ℓ(w, x). This means
that PW |X=x = δx, where δx is the Dirac measure centred on x. Note that ∇wℓ is 1-Lipschitz and
ℓ is 2-Lipschitz (on X , uniformly on W). However, thanks to Lemma 18 we know that we can
consider the loss ℓ̃(w, x) = ℓ(w, x)− x2

2 , which leads to the same generalisation and is 1-Lipschitz.
In this simple example, we can compute exactly everything we need (see Appendix E.1):

|G| = 1

3
θ2 ≃ 0.33 θ2 ;

1

2
Bℓ = Bℓ̃ =

2

3
θ ≃ 0.67 θ ; B∇ℓ =

247

105
θ2 ≃ 2.35 θ2 .

Note that, as θ decreases, PW becomes more and more concentrated, since W lies with probability
1 in (−θ, θ). In particular, X and Wk are independent for k ≤ k⋆ = − log2 θ, and so the first k⋆

terms in the chaining sum are null. For this reason, B∇ℓ captures the right behaviour O(θ2) of G for
θ → 0, which is not the case for Bℓ and Bℓ̃.

Quite interestingly, it is possible to explicitly evaluate the CMI bound (BCMI) as well. We
find BCMI ≃ 3.50 θ, meaning that in this example the chained MI bound fails to capture the right
behaviour of G as θ → 0. We refer to Section 7 for a few comments about this. On the other hand,
the unchained MI bound is infinite, since W is a deterministic function of X .

Finally, if we consider a larger random sample S = {X1, . . . , Xm}, with m > 1, we still have
that the ratio B∇L /BL (between the chained and unchained Wasserstein bounds) vanishes as O(θ)
for θ → 0. Again, this is a consequence of the fact that S and Wk are independent for k ≤ k⋆, since
W is the empirical average

∑
iXi/m and lies in (−θ, θ) with probability 1.

6. This can also be seen as a trivial consequence of the data-processing inequality.
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Example 2 This toy model is inspired by Example 1 in Asadi et al. (2018). Let W = {w ∈ R2 :
∥w∥ = 1}7 and X = R2. Fix a > 0 and let X ∼ N ((a, 0), Id), a normal distribution centered
in (a, 0), with the identity matrix as covariance. The algorithm aims at finding the direction of
the mean of X (that is (1, 0)), by choosing the w that minimises the loss ℓ(w, x) = −w · x. Let
w0 = (1, 0) and ε0 = 4. For k ≥ 1, let Wk = {w = (cos 2πj

2k
, sin 2πj

2k
) : j ∈ [−2k−1 : 2k−1 − 1]}

and εk = 4/2k. We can then easily find projections πk that make {Wk}k∈N an {εk}-sequence of
refining nets. Both ℓ and ∇wℓ are 1-Lipschitz in X , ∀w ∈ W . Although it is hard to find the analytic
expressions for Bℓ and B∇ℓ, we can study their asymptotic behaviour for a→ ∞. In this limit, PW

becomes highly concentrated around (0, 1), as it tends towards a Dirac delta. So, for a large enough
we expect the chained bound to be the tightest. Indeed, we find

|G| = Θ(1/a) ; Bℓ = Θ(1) ; B∇ℓ = O((log a− log log a)/a) .8

Up to logarithmic factors, B∇ℓ can capture the correct behaviour of |G| as a→ ∞.
As a final remark, note that in this example the loss ℓ is not Lipschitz on W , uniformly on X ,

and so the forward-channel Wasserstein bound from Wang et al. (2019) does not apply.9

6.2. High concentration is not always enough

In both the previous examples, the chained bound was much tighter than its unchained counterpart
when PW was highly concentrated in a small neighbourhood U of a single point w⋆. In particular,
if 2ε is the diameter of U , we can expect that just knowing that W ∈ U is not informative up to
a length-scale of order ε. However, this can easily fail when W concentrates around two far apart
points (say w1 and w2). Indeed, if for small k we already have that πk(w1) ̸= πk(w2), knowing that
the chosen hypothesis is next to w1 might bring a lot of information about S. On the other hand,
one can still imagine situations in which there are multiple points around which W concentrates,
yet which one is the nearest to the chosen hypothesis is not informative about the sample.

In Appendix E.1.1, we discuss a high-dimensional version of Example 1, where W does not
concentrate around a single point, but in a thin neighbourhood of a one-dimensional line. We show
that when θ (the parameter describing the size of the support of W ) has the right scaling with the
dimension d of W , the ratio B∇ℓ/Bℓ vanishes as d→ ∞.

7. Comparison between MI and Wasserstein bounds

We conclude this paper with a few comments on the relation between the MI-based (Proposi-
tions 10 and 13) and the Wasserstein-based bounds (Propositions 11 and 15). The problem comes
down to comparing the KL divergence with the 1-Wasserstein distance, a task closely related to
transportation-cost inequalities (see Raginsky and Sason (2013) for a pedagogical overview). Let µ
be a probability measure on the Polish space (Z,ΣZ). For η > 0, µ is said to satisfy a L1 transport-
cost inequality with constant η (in short µ ∈ T1(η)) if, for any ν ≪ µ, W(µ, ν) ≤

√
2ηKL(ν∥µ).

Hence, whenever PS ∈ T1(1) we are assured that each one of the two Wasserstein-based bounds is

7. This is not a convex set. However, one can either suitably extend ℓ to the unit disk in R2, or easily check that the
hypotheses of the extended framework of Theorem 22 in Appendix B.1 are verified (see Section E.2).

8. Here f = O(g) stands for lima→∞ |f(a)/g(a)| <∞, while by f = Θ(g) we mean that f = O(g) and g = O(f).
9. Of course, ℓ(w, x) = −w · x/∥x∥ would bring the same algorithm and is 1-Lipschitz in w. However this is just

due to the radial symmetry. Changing the problem slightly and considering for instance ℓ(w, x) = −w · ψ(x), for a
general 1-Lipschitz map ψ : X → X , would not allow to easily find an equivalent loss that is 1-Lipschitz in w.
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tighter than the corresponding MI-based one. For instance, this is the case when PS is a multivariate
normal whose covariance matrix is the identity (Talagrand, 1996), as in Example 2. However, there
is a price to pay: whenever the L1 transport-inequality holds, then Lipschitzianity is stronger than
subgaussianity. More precisely, Bobkov and Götze (1999) showed that µ ∈ T1(1) if, and only if,
for every ξ-Lipschitz function f : Z → R, f(Z) is ξ-subgaussian for Z ∼ µ.

It is worth noticing that, if the size of the support of X is particularly small, the Wasserstein
bounds can be much tighter than the MI ones. This is for instance the case in Example 1, where
the length-scale of the support of X is given by θ. There, the chained Wasserstein bound goes as
θ2. A factor θ is brought by the chaining technique, which allows us to neglect the contributions
of the larger length-scales, whilst the other factor θ is due to the use of the Wasserstein distance,
which intrinsically takes into account the considered length-scale. In contrast, since the MI is scale-
invariant, the CMI bound has only a linear dependence in θ coming from the chaining method.

7.1. Scaling with the sample size

It is worth mentioning the different roles that the factor 1/
√
m plays in the MI and the Wasserstein

bounds. In the MI bound this scaling is linked to concentration properties, since it comes from the
fact that the average ofm independent ξ-SG random variables is (ξ/

√
m)-SG. The requirement that

S is made of independent draws is hence essential in this case. On the other hand, in the Wasserstein
bound the factor 1/

√
m has a merely geometric origin and follows from the relation (1) between the

metrics dX and dS . In particular, an alternative choice of dS might yield a different factor in front
of the bound, but also change the scaling with m of the Wasserstein distance. A priori, it is not easy
to say which dS would bring the tightest bound. Once more, let us stress that the Wasserstein bound
does not require that PS = P⊗m

X . Indeed, W(PS ,PS|W ) will take into account the dependencies
between the training inputs, and we can expect it to scale poorly with m if the different Xi in S are
strongly correlated. However, even in the case of independent Xi, it is hard to say in general what
is the exact dependence with m, for both I(W ;S) and W(PS ,PS|W ).

As a final remark about the case PS = P⊗m
X , just by looking at PX it is sometimes possible to

establish that both the standard and chained Wasserstein bounds are tighter than their MI counter-
parts, no matter the size of the training dataset and the choice of the algorithm. To this purpose,
we can again exploit some classical results on the transport-cost inequalities (Raginsky and Sason,
2013; Gozlan and Léonard, 2010). For a probability measure µ, we say that µ ∈ T2(1) if, for any
ν ≪ µ, W2(µ, ν) ≤

√
2KL(ν∥µ). It is known that µ ∈ T2(1) implies that µ⊗m ∈ T2(1), ∀m ≥ 1.

In particular, if PX ∈ T2(1), then we are ensured that PS = P⊗m
X ∈ T2(1). Since W = W1 ≤ W2,

PX ∈ T2(1) actually implies PS ∈ T1(1), which (as we discussed the beginning of this section)
means that each Wasserstein-based bound is tighter than the corresponding MI-based one.

8. Conclusion

We introduced a general framework allowing us to derive new generalisation results leveraging on
the chaining technique. By doing so, under suitable regularity conditions we established a duality
between chained and unchained generalisation bounds. Although the chained bounds usually come
at the price of stricter assumptions, sometimes they better capture the loss function’s behaviour,
especially in cases where the hypothesis distribution is highly concentrated. We hence believe that
combining the chaining method with other information-theoretic techniques is a promising direction
in order to tighten the bounds on the generalisation error.
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In this work we have mainly focused on the backward-channel information-theoretic perspec-
tive, as we believe that it combines naturally with the chaining on the hypotheses’ space. However,
the chained PAC-Bayesian result that we presented is an example of a forward-channel bound, as
it considers the distribution of the hypotheses, conditioned on the sample. A future direction of
study could be to extend our general framework to include forward-channel bounds. We believe
this should not present major technical difficulties and might bring new interesting results.

Although information-theoretic bounds are usually hard to evaluate in practice, recent works
have derived computable analytic bounds for specific algorithms, such as Langevin dynamics or
stochastic gradient descent, by upper-bounding information-theoretic generalisation results. We
believe that combining these ideas with the chaining technique is a venue worth exploring.
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maximal leakage. IEEE Transactions on Information Theory, 67(3), 2021.
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Appendix A. Omitted proofs of Sections 3 and 4

Here (Z, dZ) is a separable complete metric space, with Borel σ-algebra ΣZ induced by the metric.
W × Z is endowed with the product σ-algebra ΣW ⊗ ΣZ . P denotes the space of probability
measures on Z and is endowed with the σ-algebra induced by the topology of weak convergence.

A.1. Proof of Lemma 9

Lemma 9 Let D1 : (µ, ν) 7→
√

2KL(ν∥µ) and D2 : (µ, ν) 7→ W(µ, ν). Consider a measurable
map f : Z → Rq (with q ≥ 1). If f(Z) is ξ-SG for Z ∼ µ ∈ P , then f has regularity RD1(ξ) wrt
µ. If f is ξ-Lipschitz on Z , then f has regularity RD2(ξ), wrt any µ ∈ P such that f ∈ L1(µ).

Proof First, notice that Lemmas 28 and 29 ensure that both D1 and D2 are measurable, as required
by Definition 1.

Assume that f(Z) is ξ-SG forZ ∼ µ. Then, by definition f ∈ L1(µ). Fix ν such that f ∈ L1(ν)
and Supp(ν) ⊆ Supp(µ). If q = 1, the Donsker-Varadhan representation of KL (Donsker and
Varadhan, 1983) and subgaussianity yield

KL(ν∥µ) ≥ sup
λ∈R

λ(Eν [f(Z)]− Eµ[f(Z)])− λ2ξ2/2 =
(Eµ[f(Z)]− Eν [f(Z)])

2

2ξ2
,

from which the D1-regularity of f follows immediately. The case of a generic q > 1 is trivial, since
v · f(Z) is (ξ∥v∥)-SG by Definition 5, for all v ∈ Rq.

Now, let f ∈ L1(µ) be ξ-Lipschitz. If q = 1, let π be any coupling with marginals µ and ν. We
have that

|Eµ[f(Z)]− Eν [f(Z)]| = |E(Z,Z′)∼π[f(Z)− f(Z ′)]| ≤ ξ E(Z,Z′)∼π[d(Z,Z
′)] .

The D2-regularity can be established by taking the inf among all the couplings π with marginals µ
and ν. The case q > 1 follows from the fact that z 7→ v · f(z) is (ξ∥v∥)-Lipschitz.

A.2. Proof of Theorem 2

Theorem 2 is equivalent to the following result.

Theorem 20 Consider a measurable map F : W×Z → R, such that z 7→ F (w, z) has regularity
RD(ξ) wrt PZ and for all w ∈ W . Then we have

|EPW⊗Z
[F (W,Z)]− EPW,Z

[F (W,Z)]| ≤ ξ EPW
[D(PZ ,PZ|W )] .

Proof First, note that Supp(PZ|W=w) ⊆ Supp(PZ) by Lemma 30 and EPZ|W=w
[|F (w,Z)|] <∞,

PW -a.s, since EPW,Z
[|F (W,Z)|] < +∞. In particular, for PW -almost every w ∈ W we have that

|EPZ
[F (w,Z)]− EPZ|W=w

[F (w,Z)]| ≤ ξD(PZ ,PZ|W=w) .

Then the conclusion follows by taking the expectation wrt PW and using Jensen’s inequality.

136



CHAINED GENERALISATION BOUNDS

A.3. Proof of Theorem 4

Theorem 4 follows from the next result, which is a direct corollary of Theorem 22 and Lemma 23,
proved in Appendix B.1.

Theorem 21 Let W be a compact convex subset of Rd with non-empty interior. Consider a measur-
able mapF : W×Z → R, such thatw 7→ F (w, z) isC1, PZ-a.s. Assume that sup(w,z)∈W×X |F (w, z)| <
+∞ and sup(w,z)∈W×X |∇wF (w, z)| < +∞. If z 7→ ∇wF (w, z) has regularity RD(ξ) wrt PZ ,
∀w ∈ W , then we have that for any {εk}-refining sequence of nets on W

|EPW⊗Z
[F (W,Z)]− EPW,Z

[F (W,Z)]| ≤ ξ
∞∑

k=1

εk−1EPW
[D(PZ ,PZ|Wk

)] .

Proof By Lemma 23, the regularity of ∇wF implies that the map z 7→ (F (w, z) − F (w′, z)) has
regularity RD(ξ∥w − w′∥), wrt PZ and for all w,w′ ∈ W . We conclude by Theorem 22.

A.4. Proof of Lemma 14

Lemma 14 Under the assumptions ♣, the stochastic process (ℓ(w,X))w∈W is ξ-SG if, and only if,
∇wℓ(w,X) is a ξ-SG vector for all w ∈ W .

Proof First, notice that, without loss of generality, we can consider the case of a one-dimensional
W ⊆ R. Indeed, if W is higher dimensional, for any two given points w and w′, we can always
restrict to a line connecting them, making the problem 1D. Moreover, letting ℓ̄(w, x) = ℓ(w, x) −
EPX

[ℓ(w,X)] we have that the assumptions in ♣ ensure that ∇w ℓ̄ = ∇wℓ−EPX
[∇wℓ]. So, we just

need to show that the lemma holds for ℓ̄.
Now, let ℓ̄ be a ξ-SG process, so that for ε ̸= 0 and λ ∈ R

EPX
[eλ(ℓ̄(w+ε,X)−ℓ̄(w,X))/ε] ≤ e

λ2

2ε2
ξ2ε2 = e

λ2ξ2

2 .

In particular, by Fatou’s lemma we have

EPX
[eλ∂w ℓ̄(w,X)] = EPX

[
lim
ε→0

eλ
ℓ̄(w+ε,X)−ℓ̄(w,X)

ε

]
≤ lim inf

ε→0
EPX

[
eλ

ℓ̄(w+ε,X)−ℓ̄(w,X)
ε

]
≤ e

λ2ξ2

2 .

For the reverse implication, assume that ∂w ℓ̄(w,X) is ξ-SG for all w ∈ W . Fix w,w′ ∈ W . By
the assumptions ♣ we have that, PX -a.s.

ℓ̄(w′, x)− ℓ̄(w, x) =

∫ w′

w
∂w ℓ̄(u, x)du .

Fix a positive integer N and let uj = w + j(w′ − w)/N . We have

EPX

[
eλ

w′−w
N

∑N
j=1 ∂w ℓ̄(uj ,X)

]
= EPX




N∏

j=1

eλ
w′−w

N
∂w ℓ̄(uj ,X)




≤
N∏

j=1

EPX
[eλ(w

′−w)∂w ℓ̄(uj ,X)]1/N ≤ e(λ
2ξ2(w−w′)2)/2 .
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Now let YN (x) = w′−w
N

∑N
j=1 ∂w ℓ̄(uj , x). Since w 7→ ℓ(w, x) is C1 (PX -a.s.) by ♣, we have

PX -a.s. that

lim
N→∞

YN (x) =

∫ w′

w
∂w ℓ̄(u, x)du = ℓ(w′, x)− ℓ(w, x) .

We conclude that

lim
N→∞

EPX

[
eλ

w′−w
N

∑N
j=1 ∂w ℓ̄(uj ,x)

]
= EPX

[
eλ(ℓ(w

′,x)−ℓ(w,x))
]
,

since by ♣ ∂w ℓ̄ is bounded.

Appendix B. Extended general framework

B.1. Weakening the assumptions for the chained bounds

The framework that we presented in the main text required the assumptions ♣ for ℓ (or F in the
setting of Theorem 21) for the chained bound. Actually a result equivalent to Theorem 4 can be
obtained with weaker assumptions, namely just requiring almost sure continuity and boundedness
in expectation for ℓ, and dropping the convexity hypothesis for W .

Theorem 22 Let W be a compact subset of Rd and {Wk} a {εk}-refining sequence of nets on W .
Consider a measurable map F : W×Z → R, such thatw 7→ F (w, z) is continuous on W , PZ-a.s.,
and EPZ

[supw∈W |F (w,Z)|] < +∞. Moreover, assume that the function z 7→ F (w, z)−F (w′, z)
has regularity RD(ξ∥w − w′∥) wrt PZ , for every (w,w′) ∈ W2. Then, we have

|EPW,Z
[F (W,Z)]− EPW⊗Z

[F (W,Z)]| ≤ ξ
∞∑

k=1

εk−1EPW
[D(PZ ,PZ|Wk

)] ,

where EPW
[D(PZ ,PZ|Wk

)] =
∫
W D(PZ ,PZ|W∈π−1

k (w))dPW (w).

Proof First notice that w 7→ F (w, z) is uniformly continuous on W , PZ-a.s., since W is compact.
It follows that z 7→ supw∈W |F (w, z)−F (wk, z)| → 0, PZ-a.s., and so, using the fact that this map
is dominated by z 7→ 2 supw∈W |F (w, z)|, which is in L1(PZ) by hypothesis, we get that

EPZ

[
sup
w∈W

|F (w,Z)− F (wk, Z)|
]
→ 0 ,

as k → +∞, by dominated convergence. In particular, EPW,Z
[|F (W,Z) − F (Wk, Z)|] → 0

and EPW⊗Z
[|F (W,Z) − F (Wk, Z)|] → 0. Moreover, recalling that W0 = {w0} we see that

EPW⊗Z
[F (W0, Z)]− EPW,Z

[F (W0, Z)] = 0. It follows that
∣∣EPW⊗Z

[F (W,Z)]− EPW,Z
[F (W,Z)]

∣∣

≤
∞∑

k=1

∣∣EPW⊗Z
[F (Wk, Z)− F (Wk−1, Z)]− EPW,Z

[F (Wk, Z)− F (Wk−1, Z)]
∣∣

=
∞∑

k=1

∣∣∣EPWk⊗Z
[F (Wk, Z)− F (Wk−1, Z)]− EPWk,Z

[F (Wk, Z)− F (Wk−1, Z)]
∣∣∣ .

(2)
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Now, notice that Supp(PZ|Wk=wk
) ⊆ Supp(PZ) PW -a.s. by Lemma 30. Moreover, by the fact

that EPZ
[supw∈W |F (w,Z)|] < +∞ we have EPZ|Wk=wk

[supw∈W |F (w,Z)|] < +∞, and so in
particular EPZ|Wk=wk

[|F (wk, Z) − F (wk−1, Z)|] < +∞, for PWk
-almost every wk. Thus, using

the regularity of F we find that
∣∣EPZ

[F (wk, Z)− F (wk−1, Z)]− EPZ|Wk=wk
[F (wk, Z)− F (wk−1, Z)]

∣∣

≤ ξ∥wk − wk−1∥D(PZ ,PZ|Wk=wk
) ,

(3)

for PWk
-almost every wk. We can hence conclude by taking the expectation wrt PW and using

Jensen’s inequality.

It is easy to see that the current framework includes the one in the main text.

Lemma 23 Let W ⊆ Rd be a convex set. Consider a measurable map F : W × Z → R
with the following properties: w 7→ F (w, z) is C1 PZ-a.s., sup(w,z)∈W×Z |F (w, z)| < +∞, and
sup(w,z)∈W×Z ∥∇wF (w, z)∥ < +∞. If z 7→ ∇wF (w, z) has regularity RD(ξ) wrt PZ , ∀w ∈ W ,
then z 7→ (F (w, z)− F (w′, z)) has regularity RD(ξ∥w − w′∥) (wrt PZ and ∀w,w′ ∈ W).

Proof Fix a probability P̂Z on Z such that Supp(P̂Z) ⊆ Supp(PZ). Now, notice that since W is
convex, and F is C1, for PZ-almost every z we have

F (w, z)− F (w′, z) =
∫ 1

0
∇wF (wt, z) · (w − w′) dt ,

where wt = w′ + t(w − w′). Since F is uniformly bounded, we can use Fubini-Tonelli’s theorem
and Jensen’s inequality to write

|EPZ
[F (w,Z)]−EP̂Z

[F (w′, Z)]|

≤
∫ 1

0

∣∣∣EPZ
[∇wF (wt, Z) · (w − w′)]− EP̂Z

[∇wF (wt, Z) · (w − w′)]
∣∣∣ dt .

Using the fact that z 7→ F (wt, z) is in both L1(PZ) and L1(P̂Z) since F is bounded, we conclude
by the regularity of ∇wF .

All the bounds of this paper can be restated in this more general framework. We will only give a
direct proof of Proposition 12.

Proposition 12 Let PS = P⊗m
X and W be a compact set, with an {εk}-refining sequence of

nets defined on it. Suppose that w 7→ ℓ(w, x) is continuous, for PX -almost every x,10 and that
{ℓ(w,X)}w∈W is a ξ-SG stochastic process. Then we have

|G| ≤ ξ√
m

∞∑

k=1

εk−1

√
2I(Wk;S) .

10. Note that in Asadi et al. (2018) the result is stated under a weaker assumption of separability of the process. To avoid
introducing further definitions and technicalities in the proofs, we decided to focus on the case of a.s. continuity.
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Proof By standard arguments, {Ls(w)}s∈S is a (ξ/
√
m)-SG process. Hence, LS(w)−LS(w

′) is
(ξ/

√
m)-SG for every w,w′ ∈ W . By Lemma 9, s 7→ Ls(w)−Ls(w

′) has regularity RD(ξ/
√
m)

wrt PS (∀w ∈ W), with D : (µ, ν) 7→
√

2KL(ν∥µ). Finally, let g(w, s) = LX (w) − Ls(w).
Clearly g has the same regularity of L . It is not hard to show that EPS

[supw∈W |g(w, S)|] < +∞
(this is a straight consequence of Remark 8.1.5 in Vershynin (2018)). We conclude by Theorem 22
and Jensen’s inequality.

B.2. Bounds for non-uniform D-regularity

As mentioned at the end of Section 3, the results given so far are stated under uniform regularity
assumptions. The next two results show that this is not strictly necessary, and that slightly different
bounds can be obtained relaxing these assumptions.

Theorem 24 Consider a non-negative measurable function w 7→ ξw such that ∥ξW ∥Lp(PW ) = ξ,
for some p ∈ [1,+∞]. Assume that a measurable map F : W ×Z → R is such that z 7→ F (w, z)
has regularity RD(ξw) wrt PZ and for every w ∈ W . Then we have

|EPW⊗Z
[F (W,Z)]− EPW,Z

[F (W,Z)]| ≤ ξ EPW
[D(PZ ,PZ|W )r]1/r ,

where r is such that 1/p+ 1/r = 1 (with the convention 1/∞ = 0).

Proof The proof is essentially the same as for Theorem 20, the only difference being that now we
have

|EPZ
[F (w,Z)]− EPZ|W=w

[F (w,Z)]| ≤ ξw D(PZ ,PZ|W=w) ,

whose expectation under PW can be upperbounded via Hölder’s inequality

Theorem 25 Let W be a compact subset of Rd and {πk(W)} a {εk}-refining sequence of nets
on W . Consider a measurable map F : W × Z → R, such that w 7→ F (w, z) is continuous
on W , PZ-a.s., and EPZ

[supw∈W |F (w,Z)|] < +∞. Fix ξ ≥ 0 and consider a measurable map
w 7→ ξw ≥ 0 such that ∥ξWk

∥Lp(PW ) ≤ ξ, for all k ∈ N and for some p ∈ [1,+∞]. Assume that
for every (w,w′) ∈ W2 the function z 7→ F (w, z)−F (w′, z) has regularity RD(ξw∥w−w′∥), wrt
PZ . Then, we have

|EPW,Z
[F (W,Z)]− EPW⊗Z

[F (W,Z)]| ≤ ξ

∞∑

k=1

εk−1EPW
[D(PZ ,PZ|Wk

)r]1/r ,

where r is such that 1/p+ 1/r = 1 (with the convention 1/∞ = 0).

Proof The proof is essentially analogous to the one of Theorem 22, but instead of (3) now we have
∣∣EPZ|Wk=wk

[F (wk, Z)− F (wk−1, Z)]− EPZ
[F (wk, Z)− F (wk−1, Z)]

∣∣

≤ ξwk
εk−1D(PZ ,PZ|Wk=wk

) .

The conclusion follows easily by Hölder’s inequality.
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Appendix C. PAC-Bayesian bounds

The next result (Catoni, 2009) is a classical PAC-Bayesian bound. For the sake of completeness we
give here a standard proof.

Proposition 16 Assume that ℓ is bounded in [−ξ, ξ]. Let P∗
W be a fixed probability measure on W ,

chosen independently of S. Fix δ ∈ (0, 1) and λ > 0. Then, with probability PS = P⊗m
X larger than

1− δ on the draw of S, we have

EPW |S [gS(W )] ≤ ξ√
2m

(
λ+

KL(PW |S∥P∗
W ) + log 1

δ

λ

)
.

Proof We define P∗
W⊗S = P∗

W ⊗ PS . Fix λ > 0. Using the Donsker-Varadhan representation of
the KL divergence (Donsker and Varadhan, 1983), we have that for all s ∈ S

EPW |S=s
[gs(W )] ≤ ξ√

2mλ

(
KL(PW |S=s∥P∗

W ) + logEP∗
W
[e

√
2mλgs(W )/ξ]

)
.

By Markov’s inequality, we have that

PS

(
EP∗

W
[e

√
2mλgS(W )/ξ] ≤ 1

δ
EP∗

W⊗S
[e

√
2mλgS(W )/ξ]

)
≥ 1− δ .

Now, for all w ∈ W we have that ℓ(w,X) ⊂ [−ξ, ξ] is ξ-SG. In particular gS(w) is (ξ/
√
m)-SG,

as PS = P⊗m
X . Since EPS

[gS(w)] = 0 we have

logEP∗
W⊗S

[e
√
2mλgS(W )/ξ] ≤ λ2 ,

from which we conclude.

Note that although Proposition 16 is valid for all λ > 0, we cannot optimise the final bound wrt λ.
Indeed, we have that such a choice of λwould depend on KL(PW |S ,P∗

W ) and hence on the particular
sample used. A possible strategy to overcome this issue consists in selecting a few possible values
λ1, . . . , λt for λ, before drawing the sample S. Then, by mean of a union bound, one can say that
with probability PS higher than 1 − tδ the generalisation is bounded by the best PAC-Bayesian
bound among the t ones obtained.

Proposition 17 Under the assumptions ♣, consider a {εk}-refining sequence of nets on W and
assume that ∇wℓ is bounded in [−ξ, ξ]. Let P∗

W be a fixed probability measure on W , chosen
independently of S. Fix two sequences {δk}k∈N and {λk}k∈N, such that δk ∈ (0, 1) and λk > 0 for
all k. Assume that

∑
k∈N δk = δ ∈ (0, 1). Then, with probability PS = P⊗m

X larger than 1 − δ on
the draw of S, we have

EPW |S [gS(W )] ≤ ξ√
2m

(
2

√
log

1

δ0
+

∞∑

k=1

εk−1

(
λk +

KL(PWk|S∥P∗
Wk

) + log 1
δk

λk

))
.

Proof By the assumptions in ♣, w 7→ Ls(w) is uniformly continuous on W , PS-a.s. In particular,
supw∈W |Ls(w) − Ls(wk)| → 0 as k → ∞, PS-a.s. As a consequence supw∈W |EPS

[LS(w)] −
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EPS
[LS(wk)]| → 0 (PS-a.s.) since the loss is uniformly bounded. It follows that, for PS-almost

every s,
lim
k→∞

EPW |S=s
[|gs(W )− gs(Wk)|] = 0 .

Hence, recalling that W0 = w0, we have that, PS-a.s.,

EPW |S=s
[gs(W )] = gs(w0) +

∞∑

k=1

EPWk|S=s
[gs(Wk)− gs(Wk−1)] .

On the one hand, by Hoeffding’s inequality (Hoeffding, 1963), the first term in the RHS can be
upper-bounded with high probability, as

PS

(
gS(w0) > ξ

√
2
m log 1

δ0

)
≤ δ0 .

On the other hand, proceeding as in the proof of Proposition 16, for each term in the telescopic sum
we can write, for PS-almost every s,

EPWk|S=s
[gs(Wk)− gs(Wk−1)]

≤ εk−1ξ√
2mλk

(
KL(PWk|S=s∥P∗

Wk
) + logEP∗

Wk
[e

√
2mλk(gs(Wk)−gs(Wk−1))/(εk−1ξ)]

)
.

Now, ∇wℓ ⊂ [−ξ, ξ], and hence ∇wℓ(w,X) is ξ-SG, for all w ∈ W . By Lemma 14, we have that
{ℓ(w,X)}w∈W is a ξ-SG process. In particular, {gS(w)}w∈W is a centred (ξ/

√
m)-SG process, as

PS = P⊗m
X . We have thus obtained that

logEP∗
Wk⊗S

[e
√
2mλk(gS(Wk)−gS(Wk−1))/(εk−1ξ)] ≤ λ2k .

By Markov’s inequality we have that

PS

(
EPWk|S [gs(Wk)− gs(Wk−1)] >

εk−1ξ√
2m

(
λk +

KL(PWk|S∥P∗
Wk

) + log 1
δk

λk

))
≤ δk .

We conclude by a union bound.

As for the standard PAC-Bayesian result, here as well we cannot directly optimise the parameters
λk. Clearly one can again proceed by fixing few possible values for each parameter and then use
a union argument to select the best bound. However, in this case this might become particularly
hard, due to the large number of parameters. A possible way to address this problem consists in
doing some optimisation that does not rely on the value of KL(PWk|S ,P

∗
Wk

), to reduce the num-
ber of parameters. For instance, we can proceed in the following way. One might suppose that
KL(PWk|S ,P

∗
Wk

) increases linearly with k. Note that this is for instance the case if the algorithm is
deterministic and P∗

Wk
is uniform. So, let us say that we believe that KL(PWk|S ,P

∗
Wk

) = αk, for
some α > 0. Then we are allowed to optimise all the λk in the chained PAC-Bayesian bound where
KL(PWk|S ,P

∗
Wk

) is replaced by αk. This leads to

EPW |S [gS(W )] ≤ ξ√
2m


2

√
log

1

δ0
+

∞∑

k=1

εk−1

KL(PWk|S∥P∗
Wk

) + log 1
δk√

αk + log 1
δk


 ,
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which is a valid bound, holding with probability higher than 1 − δ, for all α > 0. Now we have
essentially replaced the λk with a single parameter α. Again we cannot optimise directly wrt α, but
we can proceed as for the unchained bound, finding a good α by means of a union bound.

As a final remark note that one might want to optimise in terms of δk as well. This should
be possible, but the constraint

∑
k δk = δ and the non-convexity of the problem can make the

minimisation quite hard in practice. Yet, one can probably resort to numerical methods.

Appendix D. Omitted proofs of Section 6

Lemma 18 Under the assumptions ♣, let ε0 andw0 be such that ∥w−w0∥ ≤ ε0, ∀w ∈ W . Assume
that s 7→ ∇wLs(w) has regularity RD(ξ) wrt PS , ∀w ∈ W , and define L̂s(w) = Ls(w)−Ls(w0)
and Ĝ = EW⊗S [L̂S(W )]−EW,S [L̂S(W )]. Then, Ĝ = G, and s 7→ L̂s(w) has regularity RD(ε0ξ),
wrt PS and ∀w ∈ W .

Proof The fact that EPW,S
[LS(w0)] = EPW⊗S

[LS(w0)] implies that Ĝ = G. The regularity of
s 7→ L̂s(w) is a direct consequence of Lemma 23.

Lemma 19 Assume that ν 7→ D(PS , ν) is convex. For any {εk}-refining sequence of nets on W ,
the sequence {EPW

[D(PS ,PS|Wk
)]}k∈N is non-decreasing and, ∀k ∈ N, we have

EPW
[D(PS ,PS|Wk

)] ≤ EPW
[D(PS ,PS|W )] .

Proof Fix k ≥ 0 and wk ∈ Wk such that PW (Wk = wk) > 0. For any measurable set U on S , we
have

PS|Wk=wk
(U) =

∫

W
PS|W=w(U)dPW |Wk=wk

(w) ,

where dPW |Wk=wk
(w) = dPW (w)

PW (Wk=wk)
if w ∈ π−1

k (wk), and 0 otherwise. Hence, we can write

D(PS ,PS|Wk=wk
) = D

(
PS ,

∫

W
PS|W=w(·)dPW |Wk=wk

(w)

)
.

Since ν 7→ D(PS , ν) is a convex function, we can use Jensen’s inequality to obtain

D(PS ,PS|Wk=wk
) ≤

∫

W
D(PS ,PS|W=w)dPW |Wk=wk

(w) .

By taking the expectation wrt PWk
we conclude that

EPW
[D(PS ,PS|Wk

)] ≤ EPW
[D(PS ,PS|W )] .

Now, for any k′ > k, the same proof can be used to show that

EPW
[D(PS ,PS|Wk

)] ≤ EPW
[D(PS ,PS|Wk′ )] ,

by simply replacing W with Wk′ and PW with PWk′ .

143



CLERICO SHIDANI DELIGIANNIDIS DOUCET

Appendix E. Toy Models

E.1. Example 1

Let W = X = [−1, 1], ℓ(w, x) = 1
2(w − x)2, and εk = 2−k, for k ∈ N. We can find mappings πk

that define a {εk}-refining sequence of nets, with Wk = {21−kj : j ∈ [−2k−1 : 2k−1]}, where
[a : b] = [a, b] ∩ Z. Fix k⋆ ∈ N and define θ = 2−k⋆ . Let X be uniformly distributed on (−θ, θ),
that is X ∼ U(−θ,θ). We choose an algorithm that, given x, selects the w minimising ℓ(w, x). This
means that PW |X=x = δx, where δx is the Dirac measure on x. Note that ∇wℓ is 1-Lipschitz and
ℓ is 2-Lipschitz (on X , uniformly on W). However, thanks to Lemma 18 we know that we can
consider the loss ℓ̃(w, x) = ℓ(w, x) − x2

2 , which does not affect the algorithm, leads to the same
generalisation, and is 1-Lipschitz. The marginal distribution of W is W ∼ U(−θ,θ). Moreover, we

have EPW,X
[ℓ(W,X)] = 0 and EPX

[ℓ(w,X)] = 1
2

(
w2 + θ2

3

)
. So,

G = EPW⊗X
[ℓ(W,X)]− EPW,X

[ℓ(W,X)] = EPW

[
1

2

(
W 2 +

θ2

3

)]
=
θ2

3
.

Recall that we denote as Bℓ the bound in Proposition 11 and as B∇ℓ the chained bound from
Proposition 15. We denote as Bℓ̃ the unchained bound obtained using ℓ̃ instead of ℓ. Clearly we
have Bℓ̃ = Bℓ/2. We will now evaluate Bℓ̃ and B∇ℓ. As a starting point, note that the 1-Wasserstein
distance between two uniforms measures, on the intervals (A,B) and (a, b) ⊆ (A,B), is given by

W(U(A,B), U(a,b)) =
(A− a)2 + (B − b)2

2((B −A)− (b− a))
.

Note that choosing a = b ∈ [A,B] in the RHS above gives the 1-Wasserstein distance between a
uniform distribution and a Dirac measure. Now, let a = b = w, A = −θ and B = θ. We find that

W(PX ,PX|W=w) =
θ

2

(
1 +

w2

θ2

)
.

It follows that

Bℓ̃ = EPW
[W(PX ,PX|W=w)] =

2

3
θ .

Comparing G and Bℓ̃, we realize that the standard Wasserstein bound becomes loose for small θ.
Now, fix k ∈ N. If k ≤ k⋆, then πk(w) = w0 = 0 with probability 1. In particular, we have

that Wk ⊥⊥ X and hence W(PX ,PX|Wk
) = 0. We will hence focus on the case k > k⋆. Let

k = k⋆ + k′. Now, notice that πk defines 2k
′
+ 1 intervals in (−θ, θ). We will denote them as Ij ,

where j ∈ [−2k
′−1 : 2k

′−1]. We have I−2k′−1 = (− 1
2k⋆

,−2k
′−1
2k

) and I2k′−1 = (2
k′−1
2k

, 1
2k⋆

), while,
for j ∈ [−2k

′−1 + 1 : 2k
′−1 − 1], Ij = (2j−1

2k
, 2j+1

2k
). Note that the two outer intervals will have

probability PW (W ∈ I−2k
′−1) = PW (W ∈ I−2k′−1) = 2−(k′+1), while for the inner intervals, we

have PW (W ∈ Ij) = 2−k′ .
Now, for j ∈ [−2k

′−1 + 1 : 2k
′−1 − 1] we define aj = 2j−1

2k
and bj = 2j+1

2k
. Note that for

all these inner intervals we have bj − aj = 21−k, (bj − aj)/θ = 21−k′ , aj/θ = (2j − 1)/2k
′
, and

bj/θ = (2j + 1)/2k
′
. So, the contribution brought by the inner intervals to EPW

[W(PX ,PX|Wk
)]
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is given by

E1 =
θ

2k′

2k
′−1−1∑

j=−(2k
′−1−1)

(
1 + 2j−1

2k′

)2
+
(
−1 + 2j+1

2k′

)2

4(1− 2−k′)

=
θ

6(1− 2−k′)
(4− 12× 2−k′ + 11× 2−2k′ − 3× 2−3k′) .

On the other hand, the contribution of the two outer intervals (j = ±2k
′−1) is given by

E2 = 2× θ

2k′+1

1

2

(
2− 1

2k′

)2
(
2− 1

2k′

) =
θ

2k′+1

(
2− 1

2k′

)
= θ

(
2−k′ − 1

2
× 2−2k′

)
.

We conclude that, for k′ ≥ 1 and k = k⋆ + k′, we have

EPW
[W(PX ,PX|Wk

)] = E1 + E2

=
θ

6(1− 2−k′)
(4− 12× 2−k′ + 11× 2−2k′ − 3× 2−3k′) + θ

(
2−k′ − 1

2
× 2−2k′

)
.

We can finally compute B∇ℓ, as we have

B∇ℓ =
∞∑

k=1

1

2k−1
EWk

[W(PX ,PX|Wk
)]

=
1

2k⋆

∞∑

k′=1

1

2k′−1
EWk⋆+k′ [W(PX ,PX|Wk⋆+k′ )] =

247

105
θ2 ≃ 2.35 θ2 .

Now, it is interesting to compare these results with the CMI bound. For this purpose, we need to
compute I(Wk;X) for a fixed k ∈ N. Similar to the chained Wasserstein bound, for k ≤ k⋆ we have
that I(Wk;X) = 0 as Wk ⊥⊥ X . Therefore, we focus on k = k⋆ + k′ where k′ ≥ 1. First, notice
that the KL divergence between two uniform measures, on the intervals (A,B) and (a, b) ⊆ (A,B),
is given by

KL(U(a,b)∥U(A,B)) = log
B −A

b− a
.

As a consequence, we have that for the inner intervals Ij (with j ∈ [−2k
′−1 + 1 : 2k

′−1 − 1])

KL(PX|Wk∈Ij∥PX) = log(2k−k⋆) = k′ log 2 ,

while for the two outer intervals we have

KL(PX|Wk∈I−2k
′−1

∥PX) = KL(PX|Wk∈I−2k
′−1

∥PX) = log(2k+1−k⋆) = (k′ + 1) log 2 .

Taking the expectation wrt PW we obtain

I(Wk;X) = EPW
[KL(PX|Wk

∥PX)] =
2k

′−1∑

j=−2k′−1

PW (Wk ∈ Ij)KL(PX|Wk∈Ij∥PX)

= 2× 2−(k′+1)(k′ + 1) log 2 + (1− 2× 2−(k′+1))k′ log 2 = (k′ + 2−k′) log 2 .
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Therefore, the CMI bound is given by

BCMI =

∞∑

k=1

1

2k−1

√
2I(Wk;X)

=
1

2k⋆

∞∑

k′=1

1

2k′−1

√
2(k′ + 2−k′) log 2 ≃ 3.50 θ.

For θ → 0 (i.e., k⋆ → ∞) B∇ℓ is much tighter than Bℓ and BCMI, as it captures the asymptotic
behaviour of G = θ2/3.

Finally, let us consider the case of a random sample S = {X1, . . . , Xm}, for m > 1. We denote
as B∇L the chained Wasserstein bound, and as BL the unchained one. Minimising LS leads to

W =
1

m

m∑

i=1

Xi .

Since each Xi lies in (−θ, θ) with probability 1, in particular we have that

PW (W ∈ (−θ, θ)) = 1 .

So, for k ≤ k⋆, Wk is deterministic and hence S ⊥⊥Wk. We get

B∇L =
1√
m

∞∑

k=1

1

2k−1
EPW

[W(PS ,PS|Wk
)] =

1

2k⋆
√
m

∞∑

k′=1

1

2k′−1
EPW

[W(PS ,PS|Wk
)] ≤ 2θBL ,

where we used Lemma 19 and the fact that θ = 2−k⋆ . We have thus seen that even for large samples
we still have that for θ → 0

B∇L

BL
= O(θ) .

E.1.1. HIGHER DIMENSIONAL VARIANT FOR A GENERIC LOSS

We discuss now a higher dimensional version of the above toy model. Fix a positive integer integer
d ≥ 1. Let W = X = [−1, 1]d. Fix an integer k⋆ ≥ 1 and define θ = 2−k⋆ . We will assume that
the choice of k⋆ scales with d so that θ = Θ(d−α) for some α > 0. Let X be uniformly distributed
on Rd = (θ, θ)d−1 × (−1, 1). For k ∈ N we let εk = 2−k

√
d (the rescaling

√
d is necessary as

now W has diameter 2
√
d) and we consider a {εk}-refining sequence of nets Wk = W̃⊗d

k , where
W̃k = {21−kj : j ∈ [−2k−1 : 2k−1]}. We consider a generic loss function ℓ satisfying the
assumptions in ♣, and such that ∇wℓ is 1-Lipschitz in X , uniformly in W . From Lemma 18 we
know that we can find a loss ℓ̃which is

√
d-Lipschitz (as ε0 =

√
d), and in general we cannot assume

the Lipschitz constant to be smaller. As in the 1D example, we assume that we have an algorithm
that given x, selects w = x. This means that PW |X=x = δx, where δx is the Dirac measure on x,
and so the marginal distribution of W is URd

.
As we are interested in evaluating the Wasserstein bounds, we will need to compute quantities

like W(PX ,PX|W=w) and W(PX ,PX|Wk=wk
). This can be a pretty hard task if we use the standard

2-norm on Rd as the distance on X . To give an idea of the challenge, note that already in dimension
d = 2 computing the expected distance between two uniform distributions on rectangles is far from
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being trivial (Marsaglia et al., 1990). For this reason, everything is much easier to compute if we
endow X with the distance given by the 1-norm on Rd, that is

d̂X (x, x′) =
d∑

i=1

|xi − x′i| ,

where xi and x′i are the components of x and x′. We will denote the Wasserstein distances computed
in this way as Ŵ, and the bounds based on this distance as B̂. Note, however, that we always have
that W ≤ Ŵ, where W is the Wasserstein distance with cost

dX (x, x′) = ∥x− x′∥ ,

as dX (x, x′) ≤ d̂X (x, x′) for all x, x′. Moreover, when x and x′ are inRd, we have that d̂X (x, x′)−
dX (x, x′) = O(θ

√
d− 1). For this reason, since θ = Θ(d−α), we obtain that B̂ℓ − Bℓ = O(d1−α)

and B̂∇ℓ − B∇ℓ = O(d1−α).
Now, for the Wasserstein distatence between PX and PX|W=w, thanks to the fact that we are

using d̂X , we have

Ŵ(PX ,PX|W=w) =

d∑

i=1

W1D(PXi ,PXi|W=w) ,

where W1D is the Wasserstein distance wrt the 1D distance dXi(xi, x
′
i) = |xi − x′i|. Taking the

expectation wrt PW we find

B̂ℓ̃ =
√
dEPW

[Ŵ(PX ,PX|W )] =
2
√
d

3
(1− (d− 1)θ) = Θ(d1/2 + d3/2−α) .

Since B̂ℓ̃ − Bℓ̃ = O(d1−α), if follows that

Bℓ̃ = Θ(d1/2 + d3/2−α) .

We are now left with the task of estimating B∇ℓ. Fix wk such that PW (Wk = wk) > 0. Now,
we have that PX|Wk=wk

is the uniform distribution on the rectangle π−1
k (W). Up to sets of measure

0, we can find d intervals (ai, bi) such that

π−1
k (W) = (a1, b1)× · · · × (ad, bd) .

We can choose a transport plan that is composed of d steps. First we squeeze all the probability
mass from X to (a1, b1)× (−1, 1)d−1. Then we squeeze the second component, and so on. In this
way we find that

Ŵ(PX ,PX|Wk=wk
) ≤

d∑

i=1

W1D(PXi ,PXi|Wk=wk
) .

On the other hand, we have that

Ŵ(PX ,PX|Wk=wk
) = inf

π∈Π(PX ,PX|Wk=wk
)
E(X,X′)∼π[d̂X (X,X

′)]

= inf
π∈Π(PX ,PX|Wk=wk

)

d∑

i=1

E(X,X′)∼π[|Xi −X ′
i|] ≥

d∑

i=1

W1D(PXi ,PXi|Wk=wk
) .
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We conclude that

Ŵ(PX ,PX|Wk=wk
) =

d∑

i=1

W1D(PXi ,PXi|Wk=wk
) .

We are now back at evaluating Wasserstein distances between uniform distributions on invervals.
Proceeding as in the 1D version of the toy example we find

B̂∇ℓ =

∞∑

k=1

εk−1EPW
[Ŵ(PS ,PS|Wk

)] =
247

√
d

105
(1 + (d− 1)θ2) = Θ(d1/2 + d3/2−2α) .

Again, since B̂∇ℓ − B∇ℓ = O(d1−α) we have that if α ≥ 1/2

B∇ℓ = Θ(d1/2) .

In general, as α might be in (0, 1/2), we can say that (since B∇ℓ ≤ B̂∇ℓ)

B∇ℓ = O(d1/2 + d3/2−2α) .

Now, we want to compare the two bounds. We have

B∇ℓ

Bℓ̃

= O

(
1 + d1−2α

1 + d1−α

)
.

If α ∈ (0, 1), we have that this ratio vanishes for d→ ∞, meaning that the chained bounds becomes
much tighter than its unchained counterpart. On the other hand, for α > 1 the ratio is of order 1.

E.2. Example 2

Let W = {w ∈ R2 : ∥w∥ = 1} and X = R2. Fix a > 0 and let X ∼ N (A, Id), a multivariate
normal distribution centered in A = (a, 0), with covariance matrix given by the identity. Let the
loss be ℓ(w, x) = −w · x. As in Example 1, the algorithm selects the w minimising the loss. In
practice, we are trying to find the direction of the mean of X , which is (1, 0). Let εk = 4/2k (for
k ∈ N), w0 = (1, 0), and Wk = {w = (cos 2πj

2k
, sin 2πj

2k
ϕ) : j ∈ [−2k−1 : 2k−1 − 1]} for k ≥ 1.

We can easily define projections πk that make {Wk}k∈N a {εk}-sequence of refining nets. With no
difficulty one can verify that ℓ is 1-Lipschitz in X , ∀w ∈ W . Since W is not convex, we want to
use Theorem 22 to give our chaining bound. It is easy to verify that ℓ satisfies the D regularity with
D = W, as

|(ℓ(w, x)− ℓ(w, x′))− (ℓ(w′, x)− ℓ(w′, x′))| ≤ ∥x− x′∥∥w − w′∥ .

Since the values of G, Bℓ, and B∇ℓ depend on a, we will explicitly write them as functions of a. We
will start by finding the exact expression of |G(a)|.

Denote as a the Cartesian axis on which A lies. For v ∈ R2, denote as α(v) be the angle between
v and a. Since the learnt w is parallel to x, we have that, with probability 1, α(X) = α(W ). Thus,
the distribution of α(W ) is the distribution of the angle of an isotropic Gaussian centred in A,
whose density is given by (Cooper and Farid, 2020)

ρa(α) =
ϕ(a)√
2π

(
1 +

a cosαΦ(a cosα)

ϕ(a cosα)

)
,
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where ϕ(t) = 1√
2π
e−t2/2 and Φ(t) = 1

2(1 + erf(t/
√
2)).

Now, we can actually give an explicit form for |G(a)|. Indeed, we have

|G(a)| = a

∫ π]

−π
(1− cosα)ρa(α)dα = a− ϕ(a)√

2π

∫ π

−π
(a cosα)2

Φ(a cosα)

ϕ(a cosα)
dα .

Performing a change of variable we get

∫ π

−π
(a cosα)2

Φ(a cosα)

ϕ(a cosα)
dα = 2

∫ a

−a

u2√
a2 − u2

Φ(u)

ϕ(u)
du

=
a2ea

2/4π3/2√
2

(
I0(a

2/a) + I1(a
2/4)

)
,

where In(t) denotes the modified Bessel function of the first kind. So, we have

|G(a)| = a


1− 1

2

I0(a
2/a) + I1(a

2/4)√
2
π
ea

2/4

a


 .

We can now use the asymptotic expansions

I0(a
2/4) =

√
2

π

ea
2/4

a

(
1 +

1

2a2
+O(a−4)

)
;

I1(a
2/4) =

√
2

π

ea
2/4

a

(
1− 3

2a2
+O(a−4)

)
,

to get that

|G(a)| = 1

2a
+O(a−3) .

Now, we want to show that, as a → ∞, Bℓ is of order 1. We start by computing a lower
bound. For each w, let us consider a new set of Cartesian axes (u(w) and v(w)), such that the
angle between v(w) and a is α(w), and u(w) is the normal axis which contains the point A. We
choose the orientation of the axes so that in this reference framework we have A = (a sinα(w), 0).
Since X , conditioned on W = w, has support contained in the axis v(w), the Wasserstein distance
W(PX ,PX|W=w) is lower-bounded by the transport cost of moving every point in R2 to the closest
point on v(w). We thus have

W(PX ,PX|W=w) ≥
1

2π

∫

R2

|u|e−
(u−a sinα(w))2+v2

2 dudv

=
1√
2π

∫

R
|u|e−

(u−a sinα(w))2

2 du ≥ a| sinα(w)| .

We can now explicitly compute a lower bound for Bℓ(a) by taking the expectation wrt PW . We get

Bℓ(a) ≥
∫ π

−π
a| sin θ|ρa(θ)dθ =

√
2

π
erf

a√
2
.
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In particular, we have established that

lim inf
a→∞

Bℓ(a) ≥
√

2

π
.

We can now look for an upper bound on Bℓ(a). Fixedw, we can consider the following transport
plan from PX to PX|W=w. First, we transport all the probability mass on v(w), then we arrange
the mass on v(w) so as to reach the correct density. For the first step, notice that we are simply
projecting PX on v(w). It is not hard to realise that in this way the linear density obtained on v(w)
is a centred standard normal distribution. The transport cost for this step is given by

1

2π

∫

R2

|u|e−
(u−a sinα(w))2+v2

2 dudv ≤ 1 + a| sinα(w)| .

Now let V ∼ N (0, 1). The actual distribution of PX|W=w on v(w) is actually given by V , condi-
tioned on V ≥ −a cosα(w), as −a cosα(w) is the coordinate on v(w) of the origin of the standard
R2 Cartesian framework and so PX|W=w has support {v ∈ v(w) : v ≥ −a cosα(w)}. We can
easily evaluate

W(PV ,PV |V≥−a cosα(w)) =
ϕ(a cosα(w))

Φ(a cosα(w))
.

So we have found that

W(PX ,PX|W=w) ≤ 1 + a| sinα(w)|+ ϕ(a cosα(w))

Φ(a cosα(w))
.

Averaging on w we get that

Bℓ(a) = EPW
[W(PX ,PX|W )] ≤ 1 +

√
2

π
erf

a√
2
+

e−a2

Φ(−a) ,

and so

lim sup
a→∞

Bℓ(a) ≤ 1 +

√
2

π
.

In particular, we have found that Bℓ(a) = Θ(1), for a→ ∞.
We are now left with the task of evaluating B∇ℓ(a). Recall that, for each k ≥ 1, we have

Wk = {w = (cos 2πj
2k
, sin 2πj

2k
) : j ∈ [−2k−1 : 2k−1 − 1]} and w0 = (1, 0). Denote as Uk the

partition on W induced by πk, that is

Uk = {U = π−1
k (w) : w ∈ Wk} .

We can certainly suppose that each U ∈ Uk is the circular arc enclosed by two adjacent elements of
Wk. Now, let Ūk = {U ∈ Uk : (1, 0) ̸= U} and define θk = π/2k. Then, we have that, up to points
of null measure, {Wk = (1, 0)} = {|α(W )| ≤ θk}. As a consequence

EPW
[W(PX ,PX|Wk

)] =
∑

U∈Uk
EPW

[W(PX ,PX|W∈U )1U (W )]

= PW (|α(W )| ≤ θk)W(PX ,PX|Wk=w0
) +

∑
U∈Uk

PW (W ∈ U)W(PX ,PX|W∈U ) ,
(4)

where 1U is the indicator function of the event U . We need now to upper-bound the terms of this
sum.
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Let us define Z = X−A. Clearly Z ∼ N (0, Id). Let ρ be the density of Z, a centered standard
multivariate normal, and ρ̃ be the density of Z conditioned on |α(W )| ≤ θk. We have that

ρ̃(z) =

{
0 if |α| > θ;
ρ(z)/PW (|α(W )| ≤ θk) otherwise.

Let ζ = ∥Z∥ and note that ζ ∼ χ2, the Rayleigh distribution. We notice that

W(PX ,PX|Wk=w0
) = W(PZ ,PZ||α(W )|≤θk) .

We can upper-bound this quantity by the transport cost of moving the mass PW (|α(W )| > θk) away
from {|α(W )| > θk}, bringing it all on A, and finally redistributing it in the slice {|α(W )| ≤ θk},
proportionally to ρ̃. We hence have

W(PZ ,PZ||α(W )|≤θk) ≤ PW (|α(W )| > θk)(W(PZ , δA) +W(δA,PZ||α(W )|≤θk)) .

We can evaluate

W(PZ , δA) =

∫

R2

∥z∥ρ(z)dz = Eζ [ζ] =

√
π

2
.

On the other hand,

W(δA,PZ||α(W )|≤θk) =

∫

R2

∥z∥ρ̃(z)dz

≤ 1

PW (|α(W )| ≤ θk)

∫

R2

∥z∥ρ(z)dz =
√
π/2

PW (|α(W )| ≤ θk)
.

Now notice that
PW (|α(W )| ≤ θk) ≥ Pζ(ζ ≤ a sin θk) = Fζ(a sin θk) ,

where Fζ : u 7→ 1− eu
2/2 is the cdf of ζ. As a consequence we eventually find

W(PX ,PX|Wk=w0
)

≤ PW (|α(W )| > θk)

(
1 +

1

PW (|α(W )| ≤ θk)

)√
π

2
≤
(
1 +

1

Fζ(a sin θk)

)√
π

2
.

Now, for U ∈ Ūk, we have that {W ∈ U} ⊆ {|α(W )| ≥ θk}. We can upper-bound
W(PX ,PX|W∈U ) = W(PZ ,PZ|W∈U ) as

W(PZ ,PZ|W∈U ) ≤ W(PZ , δA) +W(δA,PZ|W∈U ) .

We have already computed W(PZ , δA) =
√
π/2. For the other term we have

W(δA,PZ|W∈U ) =
1

PW (W ∈ U)

∫

(z+A)/∥z+A∥∈U
∥z∥ρ(z)dz

≤ 1

PW (W ∈ U)

∫

∥z∥>a sin θk

∥z∥ρ(z)dz = 1− Fζ(a sin θk)

P(W ∈ U)
.
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We have thus obtained that

W(PX ,PX|W∈U ) ≤
√
π

2
+

1− Fζ(a sin θk)

P(W ∈ U)
.

Going back to (4), we can now write

EPW
[W(PX ,PX|Wk

)] ≤ (1− Fζ(a sin θk))

((
2 +

1

Fζ(a sin θk)

)√
π

2
+ 2k − 1

)
, (5)

where we used that Uk has 2k − 1 elements and that
∑

u∈Ūk
PW (W ∈ U) ≤ (1 − Fζ(a sin θk)).

Now, by plugging into (5) the explicit expressions of Fζ and θk we obtain

EPW
[W(PX ,PX|Wk

)] ≤ e−
1
2
a2 sin2(π/2k)

(
2k − 1 +

(
2 +

1

1− e−
1
2
a2 sin2(π/2k)

)√
π

2

)
= Bk(a) .

Fix k⋆ > 1. By Lemma 19, we have that for all k ≤ k⋆, EPW
[W(PX ,PX|Wk

)] ≤ Bk⋆(a), and
for k > k⋆ we have EPW

[W(PX ,PX|Wk
)] ≤ Bℓ(a). So we have that

B∇ℓ(a) ≤
k⋆∑

k=1

εk−1Bk⋆(a) +
∞∑

k=k⋆

εkBℓ(a) ≤ 8Bk⋆(a) + 4× 2−k⋆Bℓ(a) .

Now the idea is that we want to choose k⋆ = k⋆a as a function of a, in a way that makes the
bound vanish for a→ +∞. Note that if

a ≥ 2 log 2
√
k⋆a

sin(π/2k⋆a)
, (6)

then

Bk⋆a(a) ≤ 2−k⋆a + 2−2k⋆a

(
2 +

1

1− 2−2k⋆a

)√
π

2
.

Notice we can choose a 7→ k⋆a such that (6) holds and a = O(2−k⋆a
√
k⋆a), for a → +∞, which

implies

2−k⋆a = O

(
log a− log log a

a

)
.

This proves the asymptotic behaviour for large a

B∇ℓ(a) = O

(
log a− log log a

a

)
.

In particular, up to logarithmic factors, the chained bound can capture the correct behaviour of G(a).

Appendix F. Technicalities

Lemma 26 The mapping w 7→ PZ|W=w is measurable.
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Proof Recall that ΣP is the σ-algebra on P induced by the weak topology. ΣP is generated by
the maps ϕU : P → [0, 1], given by µ 7→ ϕU (µ) = µ(U), for U ranging in ΣZ (cf. Theorem 17.24
in Kechris (1995)). By definition of regular conditional probability, for every U ∈ ΣZ the map
w 7→ PZ|W=w(U) is measurable. Hence w 7→ PZ|W=w is a measurable map W → P wrt ΣP .

Definition 27 Let f : (0,+∞) → R be a convex lower semi-continuous map such that f(1) = 0
and limx→+∞ f(x)/x = +∞. For µ, ν ∈ P we define the f -divergence

Df (ν∥µ) =
{
Eµ[f(

dν
dµ)] if ν ≪ µ;

+∞ otherwise.

Examples of f divergences are the KL divergence (f : u 7→ u log u) and the p-power divergence
(f : u 7→ up − 1).

Lemma 28 D : P × P → [0,+∞], defined by D(µ, ν) = Df (ν∥µ), is measurable.

Proof The measurability follows from the fact Df is weakly lower semi-continuous (see Corollary
2.9 and Remark 2.1 in Liero et al. (2018)).

Lemma 29 D : P × P → [0,+∞], defined by D(µ, ν) = W(µ, ν), is measurable.

Proof The measurability follows from the weak lower semi-continuity of W (see Villani (2009),
Remark 6.12).

Lemma 30 Supp(PZ|W=w) ⊆ Supp(PZ), PW -a.s.

Proof We start by recalling that given a measure µ ∈ P , Supp(µ) is the smallest closed subset K
of Z such that µ(K) = 1. Let U ⊆ W be defined as

U = {w ∈ W : PZ|W=w(Supp(PZ)) < 1} .

First, we notice that U is measurable. Indeed, Supp(PZ) is closed, and hence measurable, so
w 7→ PZ|W=w(Supp(PZ)) is a measurable map, by definition of regular conditional probability.
Now note that

1 = PZ(Supp(PZ)) =

∫

W
PZ|W=w(Supp(PZ)) dPW (w)

≤ 1− PW (U) +

∫

U
PZ|W=w(Supp(PZ)) dPW (w) .

As a consequence, we must have that
∫
U PZ|W=w(Supp(PZ)) dPW (w) ≥ PW (U). However, by

definition PZ|W=w(Supp(PZ)) < 1 for w ∈ U , and so we necessarily have PW (U) = 0. We
conclude by noticing that Supp(PZ|W=w) ⊃ Supp(PZ) if, and only if, w ∈ U .
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Appendix G. Explicit bounds

In this section we present several bounds that can be derived via the framework of Section 3. To
our knowledge, all the chaining bounds that we present here are new, the only exception being the
one in Proposition 43, which was recently established in Zhou et al. (2022). However, most of the
unchained counterparts were already derived in the literature. The reader can find the bibliographic
references in Table 1. Henceforth, all the chained bounds that we state are valid for any {εk}-
sequence of refining nets on W .

G.1. A few examples of D-regularity

Definition 31 (Power divergence) Let p > 1. Given two probabilities µ and ν on Z , we define the
p-power divergence

D(p)(ν∥µ) =
{
Eµ

[(
dν
dµ

)p]
− 1 if ν ≪ µ;

+∞ otherwise.

For p = 2, we denote D(2)(ν∥µ) as χ2(ν∥µ).

Lemma 32 Fix p > 1 and let r = p/(p−1). Let D : (µ, ν) 7→ (D(p)(ν∥µ)+1)1/p and f : Z → Rq

be measurable. Assume that f ∈ L1(µ) and write fµ = Eµ[f(Z)]. If Eµ[∥f(Z) − fµ∥r]1/r ≤ ξ,
then f has regularity RD(ξ) wrt µ.

Proof Notice that D is measurable by Lemma 28. First, we consider the case q = 1. Fix ν ∈ P
such that Supp(ν) ⊆ Supp(µ) and f ∈ L1(ν). If ν is not abslutely continuous wrt µ, than the
claim is trivially true, so assume ν ≪ µ. Define fµ = Eµ[f(Z)]. We have

|Eµ[f(Z)]− Eν [f(Z)]| ≤ Eν [|f(Z)− fµ|] =
∫

Z
|f(z)− fµ| dνdµ(z)dµ(z)

≤ Eµ[|f(Z)− fµ|r]1/r(D(p)(ν∥µ) + 1)1/p ,

by Hölder’s inequality.
The case q > 1 follows form the one-dimesional case, since Eµ[|(f(Z) − fµ) · v|r]1/r ≤

∥v∥Eµ[∥(f(Z)− fµ)∥r]1/r for all v ∈ Rq.

Corollary 33 Fix p > 1 and let r = p/(p − 1). Let D : (µ, ν) 7→ (D(p)(ν∥µ) + 1)1/p and
f : Z → Rq be measurable. Assume that f(Z) is ξ-SG for Z ∼ µ. Then f has regularity
RD(e

1/e√r ξ) wrt µ.

Proof Simply use that Eµ[∥f(Z) − EZ′∼µ[f(Z
′)]∥r]1/r ≤ e1/e

√
r ξ if f(Z) is ξ-SG to conclude

by Lemma 32.

Lemma 34 Let D : (µ, ν) 7→
√
χ2(ν∥µ). Let f : Z → Rq be measurable. Assume that

∥Cµ[f(Z)]∥ ≤ ξ2, where Cµ[f(Z)] is the covariance matrix of f(Z) for Z ∼ µ. Then, f has
regularity RD(ξ).
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Proof For q = 1, the claim is a direct consequence of the HCR bound (Lehmann and Casella,
1998). The case q > 1 follows easily.

Definition 35 (Total variation) The total variation of two probability measures µ, ν ∈ P is de-
fined as

TV(µ, ν) = sup
U∈ΣZ

|µ(U)− ν(U)| .

Lemma 36 Let D : (µ, ν) 7→ 2TV(µ, ν). Let f : Z → Rq be a measurable map, bounded in
[−ξ, ξ]. Then f has regularity RD(ξ) wrt any µ ∈ P .

Proof First, we need to show that ν 7→ TV(µ, ν) is measurable. We have that for all U ∈ ΣZ , the
map ν 7→ |µ(U)−ν(U)| is continuous in the weak topology. In particular, taking the supremum wrt
U we get a weakly lower semicontinuous map, which implies the measurability. Now, notice that
asking f ⊆ [−ξ, ξ] is equivalent to ask for f to be 2ξ-Lipschitz wrt the discrete metric on Z . We can
then proceed as in Lemma 9 using the fact that the total variation coincides with the 1-Wasserstein
distance when the transport cost is the discrete metric (Villani, 2009).

Corollary 37 Let D : (µ, ν) 7→
√

2KL(µ∥ν). Let f : Z → Rq be a measurable map, bounded in
[−ξ, ξ]. Then f has regularity RD(ξ).

Proof The measurability of D is a obvious consequence of Lemma 28. Then, the claim follows
directly from Lemma 36 by Pinsker’s inequality; see e.g. van Handel (2016).

G.2. Some simple bounds based on the D-regularity

Definition 38 (Power information) Consider two coupled random variables Z,Z ′ on (Z,ΣZ).
For p > 1 we define their p-power information (Guntuboyina et al., 2014) as

I(p)(Z;Z ′) = D(p)(PZ,Z′∥PZ⊗Z′) .

Proposition 39 Fix p > 1, let r = p/(p − 1) and suppose that PS = P⊗m
X . On the one hand, if

ℓ(w,X) is ξ-SG for X ∼ PX , for all w ∈ W , then

|G| ≤ e1/e
√
r ξ√

m
(I(p)(S;W ) + 1)1/p .

On the other hand, under the assumptions ♣ if ∇w(ℓ,X) is ξ-SG for X ∼ PX , for all w ∈ W , then

|G| ≤ e1/e
√
r ξ√

m

∞∑

k=1

εk−1(I
(p)(S;Wk) + 1)1/p .

Proof First notice that the ξ-subgaussianity of ℓ (respectively ∇wℓ) implies that of L (respectively
∇wL ) is (ξ/

√
m)-SG. Then, the first claim follows by Corollary 33, Theorem 2, and Jensen’s

inequality, while the second one by Corollary 33, Theorem 4, and Jensen’s inequality.

155



CLERICO SHIDANI DELIGIANNIDIS DOUCET

Proposition 40 Suppose that PS = P⊗m
X . On the one hand, if VPX

[ℓ(w,X)] ≤ ξ2, for all w ∈ W ,
then

|G| ≤ ξ√
m

EPW

[√
χ2(PS|W ∥PS)

]
.

On the other hand, under the assumptions ♣ if ∥CPX
[∇wℓ(w,X)]∥ ≤ ξ2, for all w ∈ W , then

|G| ≤ ξ√
m

∞∑

k=1

εk−1EPW

[√
χ2(PS|Wk

∥PS)
]
.

Proof The claims follow combining Lemma 34 with Theorems 2 and 4. Note that the variance of
L is re-scaled by a factor 1/

√
mwrt the one of ℓ, as PS = P⊗m

X . The same is true for the covariance
of ∇wL .

G.3. Individual-sample bounds

Recall that S = {X1, . . . , Xm}. In this section we will consider a probability measure PS on
(S,ΣS) such that the marginals PXi = PX for all i ∈ [1 : m], but we do not require that the
draws are independent. Note moreover that W might depend in a different way on each Xi, so
that we can have that PW,Xi ̸= PW,Xj , for i ̸= j. Now, we specialise Theorems 2 and 4 to obtain
individual-sample bounds, such as those from Bu et al. (2019).

Proposition 41 Assume that x 7→ ℓ(w, x) has regularity RD(ξ) wrt PX , ∀w ∈ W . Then we have

|G| ≤ ξ

m

m∑

i=1

EPW
[D(PX ,PXi|W )] .

Proof Just write

G =
1

m

m∑

i=1

(EPW⊗X
[ℓ(W,X)]− EPW,Xi

[ℓ(W,Xi)]) .

and then conclude by applying Theorem 20 to bound each term of the sum.

Proposition 42 Assume ♣ and suppose that x 7→ ℓ(w, x) has regularity RD(ξ) wrt PX , ∀w ∈ W .
Then we have

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1EPW
[D(PX ,PXi|Wk

)] .

Proof Just write

G =
1

m

m∑

i=1

(EPW⊗X
[ℓ(W,X)]− EPW,Xi

[ℓ(W,Xi)]) .

and then conclude by applying Theorem 21 to bound each term of the sum.

We can now state several individual-sample generalisation bounds. For the sake of brevity, we will
omit the proofs, as they are all direct applications of Propositions 41 and 42, and of the previously
established results of D-regularity.
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Proposition 43 On the one hand, if ℓ(w,X) is ξ-SG uniformly on W , then

|G| ≤ ξ

m

m∑

i=1

√
2I(W ;Xi) .

On the other hand, if ∇wℓ(w,X) is ξ-SG uniformly on W , then

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1

√
2I(Wk;Xi) .

Proposition 44 On the one hand, if x 7→ ℓ(w, x) is ξ-Lipschitz uniformly on W , then

|G| ≤ ξ

m

m∑

i=1

EPW
[W(PX ,PXi|W )] .

On the other hand, assume ♣. if x 7→ ∇wℓ(w, x) is ξ-Lipschitz uniformly on W , then

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1EPW
[W(PX ,PXi|Wk

)] .

Proposition 45 Fix p > 1 and let r = p/(p − 1). Write ℓ̄(w) for EPX
[ℓ(w,X)] and ∇wℓ(w) for

EPX
[∇wℓ(w,X)]. On the one hand, if, for all w ∈ W , EPX

[|ℓ(w,X)− ℓ̄(w)|r] ≤ ξr, then

|G| ≤ ξ

m

m∑

i=1

(I(p)(W ;Xi) + 1)1/p .

On the other hand, assume ♣. If EPX
[∥∇wℓ(w,X)−∇wℓ(w)∥r] ≤ ξr, for all w ∈ W , then

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1(I
(p)(Wk;Xi) + 1)1/p .

Proposition 46 On the one hand, if, for all w ∈ W , VPX
[ℓ(w,X)] ≤ ξ2, then

|G| ≤ ξ

m

m∑

i=1

EPW

[√
χ2(PXi|W ∥PX)

]
.

On the other hand, assume ♣. If ∥CPX
[∇wℓ(w,X)]∥ ≤ ξ2, for all w ∈ W , then

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1EPW

[√
χ2(PXi|Wk

∥PX)
]
.

Proposition 47 On the one hand, if |ℓ(w, x)| ≤ ξ for all w ∈ W and all x ∈ X , then

|G| ≤ 2ξ

m

m∑

i=1

EPW

[
TV(PX ,PXi|W )

]
.

On the other hand, assume ♣. If ∥∇wℓ(w, x)∥ ≤ ξ for all w ∈ W and all x ∈ X , then

|G| ≤ 2ξ

m

m∑

i=1

∞∑

k=1

εk−1EPW

[
TV(PX ,PXi|Wk

)
]
.
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Definition 48 (Lautum information) Consider two coupled random variables Z,Z ′ on (Z,ΣZ).
We define their lautum information (Palomar and Verdú, 2008) as

L(Z;Z ′) = KL(PZ⊗Z′∥PZ,Z′) .

Proposition 49 On the one hand, if |ℓ(w, x)| ≤ ξ for all w ∈ W and all x ∈ X , then

|G| ≤ ξ

m

m∑

i=1

√
2L(W ;Xi) .

On the other hand, assume ♣. If ∥∇wℓ(w, x)∥ ≤ ξ for all w ∈ W and all x ∈ X , then

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1

√
2L(Wk;Xi) .

G.4. Bounds based on random sub-sampling from a super-sample

We can derive in our framework bounds in the same spirit of the conditional MI bound from Steinke
and Zakynthinou (2020).

Let s⋆ = (x⋆1, . . . , x
⋆
m) denote a (2m)-sample, made of m pairs x⋆i = (xi,0, xi,1). The training

sample is in the form s = (x1, . . . , xm). The choice of s, given s⋆ is determined by a variable
u ∈ {0, 1}n, in the sense that xi = x⋆i,ui

, where ui determine which one of the two components
of x⋆i is chosen as xi. In practice we can write s = s⋆u, with u ∈ {0, 1}n. We let ū = 1 − u (the
difference being component-wise), and s̄ = s⋆ū. We denote as S⋆ the random super-sample and we
assume that each X⋆

i ∈ S⋆ has marginal distribution PX⋆ = P⊗2
X . Morover, we let PŪ = PU ∼

Bernoulli(12)
⊗m, and we assume that U ⊥⊥ S⋆. Note that this implies that if the super-sample is

made of independent pairs (PS⋆ = P⊗m
X⋆ ) then all the Xi ∈ S are independent.

Proposition 50 Let PS⋆ = P⊗m
X⋆ . Assume that s 7→ Ls(w) has regularity RD(ξ), wrt PS|S⋆=s⋆ ,

for PS⋆-almost every s⋆ and ∀w ∈ W . Then, we have that

|G| ≤ ξ EPW,S⋆ [D(PS|W,S⋆ ,PS|S⋆) +D(PS̄|W,S⋆ ,PS̄|S⋆)] .

Proof Let ĝ(w, s⋆, u) = Ls⋆ū(w) − Ls⋆u(w). Now, recalling that S = S⋆
U and S̄ = S⋆

Ū
, we

have that PS|S⋆ is the law of S⋆
U and PS̄|S⋆ is the law of S⋆

Ū
, both under PU and given S⋆. Since

PS⋆ = P⊗m
X⋆ = P⊗2m

X , then S ⊥⊥ S̄. In particular S̄ ⊥⊥W , and hence PS̄|W = PS̄ = PS , so that

EPW,S⋆,U
[LS⋆

Ū
(W )] = EPW,S̄

[LS̄(W )] = EPW⊗S
[LS(W )] .

It follows that G = EPW,S⋆,U
[ĝ(W,S⋆, U)]. Moreover, it is shown in Rodrı́guez-Gálvez et al. (2021)

(cf. proof of Theorem 3 therein) that

EPW,S⋆,U
[ĝ(W,S⋆, U)] = EPS⋆

[
EPW⊗U|S⋆ [LS⋆

U
(W )]− EPW,U|S⋆ [LS⋆

U
(W )]]

− EPS⋆ [EPW,U|S⋆ [LS⋆
Ū
(W )]− EPW⊗U|S⋆ [LS⋆

Ū
(W )]

]
.

We hence have

|G| ≤ EPS⋆

[∣∣EPW⊗U|S⋆ [LS⋆
U
(W )]− EPW,U|S⋆ [LS⋆

U
(W )]

∣∣

+
∣∣EPW⊗U|S⋆ [LS⋆

Ū
(W )]− EPW,U|S⋆ [LS⋆

Ū
(W )]

∣∣
]
,
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which can be rewritten as

|G| ≤ EPW,S⋆

[
|EPS|S⋆ [LS(W )]− EPS|W,S⋆ [LS(W )]|+ |EPS̄|S⋆ [LS̄(W )]− EPS̄|W,S⋆ [LS̄(W )]|

]
.

(7)
Now, notice that, since PU = PŪ , we have PS|S⋆ = PS̄|S⋆ . In particular, s 7→ Ls(w) has regularity
RD(ξ) wrt PS̄|S⋆=s⋆ as well (∀w ∈ W and PS⋆-a.s.). From (7) and Theorem 2, we have that

|G| ≤ ξ EPW,S⋆ [D(PS|W,S⋆ ,PS|S⋆) +D(PS̄|W,S⋆ ,PS̄|S⋆)] ,

as requested.

Proposition 51 Let PS⋆ = P⊗m
X⋆ . Assume ♣ and suppose that s 7→ ∇wLs(w) has regularity

RD(ξ), wrt PS|S⋆=s⋆ , for PS⋆-almost every s⋆ and ∀w ∈ W . Then, we have that

|G| ≤ ξ

∞∑

k=1

εk−1EPW,S⋆ [D(PS|Wk,S⋆ ,PS|S⋆) +D(PS̄|Wk,S⋆ ,PS̄|S⋆)] .

Proof We proceed just as in the proof on Proposition 50 until the last step, where we use Theorem
4, instead of Theorem 2, to conclude.

We give now some explicit example of bounds that can be obtained via the above two propositions.

Definition 52 (Conditional mutual information, power information, and lautum information)
Let (Z,Z ′,W ) be a random variable on (Z ×Z ×W,ΣZ ⊗ΣZ ⊗ΣW ). We define the conditional
MI (Wyner, 1978) as

I(Z;Z ′|W ) = EPW
[KL(PZ,Z′|W ∥PZ⊗Z′|W )] .

For p > 1, we define the conditional p-power information as

I(p)(Z;Z ′|W ) = EPW
[D(p)(PZ,Z′|W ∥PZ⊗Z′|W )] .

Finally, we define the conditional Lautum information (Palomar and Verdú, 2008) as

L(Z;Z|W ) = EPW
[KL(PZ⊗Z′|W ∥PZ,Z′|W )] .

Proposition 53 Let PS⋆ = P⊗m
X⋆ . On the one hand, assume that |ℓ(w, x)| ≤ ξ, for all w ∈ W and

all x ∈ X . Then, we have that

|G| ≤ 2ξ

√
2I(W ;S|S⋆)

m
.

On the other hand, assume ♣ and suppose that ∥∇wℓ(w, x)∥ ≤ ξ, for all w ∈ W and all x ∈ X .
Then we have

|G| ≤ 2ξ
∞∑

k=1

εk−1

√
2I(Wk;S|S⋆)

m
.
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Proof Assume that |ℓ| ≤ ξ. Note that ℓ(w,X) is ξ-SG, for all w ∈ W , for X ∼ PX|X⋆=x⋆ (for
all x⋆). As the elements of S are independent (even when conditioning on S⋆ since U ⊥⊥ S⋆),
we have that, ∀w ∈ W and ∀s⋆ ∈ S2, LS(w) is (ξ/

√
m)-SG for S ∼ PS|S⋆=s⋆ . We can then

conclude by Lemma 9 and Proposition 50, using the fact that I(W ;S|S⋆) = I(W ; S̄|S⋆), as s̄ is
fully determined by s (given s⋆). The proof for the chained bound is analogous.

The proofs for the next propositions are essentially analogous of the one of Proposition 53 and hence
are omitted.

Proposition 54 Let PS⋆ = P⊗m
X⋆ and assume that dX and dS are related by (1). On the one hand,

suppose that x 7→ ℓ(w, x) is ξ-Lipschitz, for all w ∈ W . Then, we have that

|G| ≤ ξ√
m

EPW,S⋆ [W(PS|S⋆ ,PS|W,S⋆) +W(PS̄|S⋆ ,PS̄|W,S⋆)] .

On the other hand, assume ♣ and suppose that x 7→ ∇wℓ(w, x)∥ ≤ ξ, for all w ∈ W and all
x ∈ X . Then we have

|G| ≤ ξ√
m

∞∑

k=1

εk−1EPW,S⋆ [W(PS|S⋆ ,PS|Wk,S⋆) +W(PS̄|S⋆ ,PS̄|Wk,S⋆)] .

Proposition 55 Fix p > 1, let r = p/(p − 1) and suppose that PS⋆ = P⊗m
X⋆ . On the one hand,

assume that |ℓ(w, x)| ≤ ξ, for all w ∈ W and all x ∈ X . Then, we have that

|G| ≤ 2e1/e
√
r ξ√

m
(I(p)(W ;S|S⋆) + 1)1/p .

On the other hand, assume ♣ and suppose that ∥∇wℓ(w, x)∥ ≤ ξ, for all w ∈ W and all x ∈ X .
Then we have

|G| ≤ 2e1/e
√
r ξ√

m

∞∑

k=1

εk−1(I
(p)(Wk;S|S⋆) + 1)1/p .

Proposition 56 Suppose that PS⋆ = P⊗m
X⋆ . On the one hand, if |ℓ(w, x)| ≤ ξ, for all w ∈ W and

all x ∈ X , then

|G| ≤ 2ξ√
m

EPW ,S⋆

[√
χ2(PS|W,S⋆∥PS|S⋆) +

√
χ2(PS̄|W,S⋆∥PS̄|S⋆)

]
.

On the other hand, under the assumptions ♣ if ∥∇wℓ(w, x)∥ ≤ ξ, for all w ∈ W and all x ∈ X ,
then

|G| ≤ 2ξ√
m

∞∑

k=1

εk−1EPW,S⋆

[√
χ2(PS|Wk,S⋆∥PS|S⋆) +

√
χ2(PS̄|Wk,S⋆∥PS̄|S⋆)

]
.

One issue with this random sub-sampling approach is that in order to controll Ls wrt PS|S⋆=s⋆ ,
almost uniformly in s⋆, one needs essentially to control the random binary variables ℓ(w,X⋆) under
PX|X⋆=(x⋆

0,x
⋆
1)

(that is X⋆ = x⋆0 with probability 1/2, and x⋆1 with probability 1/2). This can be
easily done in the case of the Wasserstein distance, as the Lipschitzianity guarantees W-regularity
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wrt any measure. However for the subgaussianity things are more complicated, and one essentially
needs to ask that ℓ is bounded.

It is however possible to restate Proposition 50 (and Proposition 51) without asking that the
same regularity holds PS⋆-a.s. The proof of both results follow closely the ones of Propositions 50
and 51, the only difference being a final application of Hölder’s inequality.

Proposition 57 Let PS⋆ = P⊗m
X⋆ . Let p ∈ [1,+∞] and r = p/(p − 1) (with the convention that

1/0 = +∞). Assume that s 7→ Ls(w) has regularity RD(ξs⋆), wrt PS|S⋆=s⋆ , for PS⋆-almost every
s⋆ and ∀w ∈ W , where ∥ξS⋆∥Lp(PS⋆ ) = ξ. Then, we have that

|G| ≤ ξ EPW,S⋆ [|D(PS|W,S⋆ ,PS|S⋆) +D(PS̄|W,S⋆ ,PS̄|S⋆)|r]1/r .

Proposition 58 Let PS⋆ = P⊗m
X⋆ . Let p ∈ [1,+∞] and r = p/(p − 1) (with the convention that

1/0 = +∞). Assume ♣ and suppose that s 7→ ∇wLs(w) has regularity RD(ξs⋆), wrt PS|S⋆=s⋆ ,
for PS⋆-almost every s⋆ and ∀w ∈ W , where ∥ξS⋆∥Lp(PS⋆ ) = ξ. Then, we have that

|G| ≤ ξ

∞∑

k=1

εk−1EPW,S⋆ [|D(PS|Wk,S⋆ ,PS|S⋆) +D(PS̄|Wk,S⋆ ,PS̄|S⋆)|r]1/r .

G.5. Individual-sample bounds based on random sub-sampling

We can merge together the ideas of the last two sections.

Proposition 59 Assume that x 7→ ℓ(w, x) has regularity RD(ξ), wrt PX|X⋆=x⋆ , for PX⋆-almost
every x⋆ and ∀w ∈ W . Then, we have that

|G| ≤ ξ

m

m∑

i=1

EPW,X⋆
i
[D(PXi|W,X⋆

i
,PXi|X⋆

i
) +D(PX̄i|W,X⋆

i
,PX̄i|X⋆

i
)] .

Proof Note that PX|X⋆=x⋆ = PXi|X⋆
i =x⋆ . Proceeding as in the proof of Proposition 50, we can

show that, for i ∈ [1 : m],

|EPW⊗Xi
[ℓ(W,Xi)]− EPW,Xi

[ℓ(W,Xi)]|
≤ EPW,X⋆

i
[D(PXi|W,X⋆

i
,PXi|X⋆

i
) +D(PX̄i|W,X⋆

i
,PX̄i|X⋆

i
)] .

We can immediately conclude by writing G as in the proof of Proposition 41.

Proposition 60 Assume ♣ and suppose that x 7→ ∇wℓ(w, x) has regularity RD(ξ), wrt PX|X⋆=x⋆ ,
for PX⋆-almost every x⋆ and ∀w ∈ W . Then, we have that

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1EPX⋆
i
,W

[D(PXi|Wk,X
⋆
i
,PXi|X⋆

i
) +D(PX̄i|Wk,X

⋆
i
,PX̄i|X⋆

i
)] .

Proof We proceed as for proving Proposition 59, but following the proof Proposition 51 instead of
50.

Clearly one can generalise the two results above by using the same observations as in Propositions
57 and 58.

We can now restate all the individual-sample bounds from Section G.3 in the random sub-
sampling framework.
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Proposition 61 On the one hand, if |ℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ 2ξ

m

m∑

i=1

√
2I(W ;Xi|X⋆

i ) .

On the other hand, if |∇wℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ 2ξ

m

m∑

i=1

∞∑

k=1

εk−1

√
2I(Wk;Xi|X⋆

i ) .

Proposition 62 On the one hand, if x 7→ ℓ(w, x) is ξ-Lipschitz uniformly on W , then

|G| ≤ ξ

m

m∑

i=1

EPW ,X⋆
i
[W(PXi|X⋆

i
,PXi|W,X⋆

i
) +W(PX̄i|X⋆

i
,PX̄i|W,X⋆

i
)] .

On the other hand, assume ♣. if x 7→ ∇wℓ(w, x) is ξ-Lipschitz uniformly on W , then

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1EPW ,X⋆
i
[W(PXi|X⋆

i
,PXi|Wk,X

⋆
i
) +W(PX̄i|X⋆

i
,PX̄i|Wk,X

⋆
i
)] .

Proposition 63 Fix p > 1 and let r = p/(p− 1). On the one hand, if |ℓ(w, x)| ≤ ξ, uniformly on
W and X , then

|G| ≤ 2ξ

m

m∑

i=1

(I(p)(W ;Xi|X⋆
i ) + 1)1/p .

On the other hand, assume ♣. If |∇wℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ 2ξ

m

m∑

i=1

∞∑

k=1

εk−1(I
(p)(Wk;Xi|X⋆

i ) + 1)1/p .

Proposition 64 On the one hand, if |ℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ ξ

m

m∑

i=1

EPW,X⋆
i

[√
χ2(PXi|W,X⋆

i
∥PXi|X⋆

i
) +

√
χ2(PX̄i|W,X⋆

i
∥PX̄i|X⋆

i
)
]
.

On the other hand, assume ♣. If |∇wℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ ξ

m

m∑

i=1

∞∑

k=1

εk−1EPW,X⋆
i

[√
χ2(PXi|Wk,X

⋆
i
∥PXi|X⋆

i
) +

√
χ2(PX̄i|Wk,X

⋆
i
∥PX̄i|X⋆

i
)
]
.

Proposition 65 On the one hand, if |ℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ 2ξ

m

m∑

i=1

EPW,X⋆
i

[
TV(PXi|X⋆

i
,PXi|W,X⋆

i
) + TV(PX̄i|X⋆

i
,PX̄i|W,X⋆

i
)
]
.

On the other hand, assume ♣. If |∇wℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ 2ξ

m

m∑

i=1

∞∑

k=1

εk−1

[
TV(PXi|X⋆

i
,PXi|Wk,X

⋆
i
) + TV(PX̄i|X⋆

i
,PX̄i|Wk,X

⋆
i
)
]
.
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Proposition 66 On the one hand, if |ℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ 2ξ

m

m∑

i=1

√
2L(W ;Xi|X⋆

i ) .

On the other hand, assume ♣. If |∇wℓ(w, x)| ≤ ξ, uniformly on W and X , then

|G| ≤ 2ξ

m

m∑

i=1

∞∑

k=1

εk−1

√
2L(Wk;Xi|X⋆

i ) .

G.6. Summary table

Several explicit bounds that can be derived within our general framework of Section 3 are reported
in Table 1. The first column states the regularity condition required on the loss. However, we
refer to the corresponding propositions for the detailed assumptions of each bound. All bounds are
stated for ξ = 1. The last columns give the literature references for each bound, to the best of our
knowledge. However, this bibliography should be taken as a mere guideline, as there might possibly
be missing references. Those bounds that we could not find in the literature are marked as “New”.
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Table 1: Some bounds that can be derived with the framework from Section 3

Assumption (∀w ∈ W) Bound Prop Ref

ℓ(w,X) 1-SG
√
2I(W ;S)/m 10 Russo and Zou (2019)

∇wℓ(w,X) 1-SG
∑

k εk−1

√
2I(Wk;S)/m 13 Asadi et al. (2018)

ℓ(w, ·) 1-Lipschitz EPW
[W(PS ,PS|W )]/

√
m 11 Lopez and Jog (2018)

∇wℓ(w, ·) 1-Lipschitz
∑

k εk−1EPW
[W(PS ,PS|Wk

)]/
√
m 15 New

ℓ(w,X) 1-SG e1/e
√
p(I(p)(W ;S) + 1)1/p/

√
m(p− 1) 39 Aminian et al. (2021)

∇wℓ(w,X) 1-SG e1/e
√
p
∑

k εk−1(I
(p)(Wk;S) + 1)1/p/

√
m(p− 1) 39 New

VPX
[ℓ(w,X)] ≤ 1 EPW

[χ2(PS|W ∥PS)
1/2]/

√
m 40 Rodrı́guez-Gálvez et al. (2021)

∥CPX
[∇wℓ(w,X)]∥ ≤ 1

∑
k εk−1EPW

[χ2(PS|W ∥PS)
1/2]/

√
m 40 New

ℓ(w,X) 1-SG
∑

i

√
2I(W ;Xi)/m 43 Bu et al. (2019)

∇wℓ(w,X) 1-SG
∑

i

∑
k εk−1

√
2I(Wk;Xi)/m 43 Zhou et al. (2022)

ℓ(w, ·) 1-Lipschitz
∑

i EPW
[W(PX ,PXi|W )]/m 44 Rodrı́guez-Gálvez et al. (2021)

∇wℓ(w, ·) 1-Lipschitz
∑

i

∑
k εk−1EPW

[W(PX ,PXi|Wk
)]/m 44 New

EPX
[|ℓ(w,X)− ℓ̄(w)|p/(p−1)] ≤ 1

∑
i(I

(p)(W ;Xi) + 1)1/p/m 45 New
EPX

[∥∇wℓ(w,Xi)−∇wℓ(w)∥p/(p−1)] ≤ 1
∑

i

∑
k εk−1(I

(p)(Wk;Xi) + 1)1/p/m 45 New

VPX
[ℓ(w,X)] ≤ 1

∑
i EPW

[χ2(PXi|W ∥PX)1/2]/m 46 New
∥CPX

[∇wℓ(w,X)]∥ ≤ 1
∑

i

∑
k εk−1EPW

[χ2(PXi|Wk
∥PX)1/2]/m 46 New

|ℓ| ≤ 1
∑

i EPW
[TV(PX ,PXi|W )]/m 47 Rodrı́guez-Gálvez et al. (2021)

∥∇wℓ∥ ≤ 1
∑

i

∑
k εk−1EPW

[TV(PX ,PXi|Wk
)]/m 47 New

|ℓ| ≤ 1
∑

i

√
2L(W ;Xi)/m 49 Rodrı́guez-Gálvez et al. (2021)

∥∇wℓ∥ ≤ 1
∑

i

∑
k εk−1

√
2L(Wk;Xi)/m 49 New

|ℓ| ≤ 1 2
√
2I(W ;S|S⋆)/m 53 Steinke and Zakynthinou (2020)

∥∇wℓ∥ ≤ 1 2
∑

k εk−1

√
2I(Wk;S|S⋆)/m 53 New

ℓ(w, ·) 1-Lipschitz EPW,S⋆ [W(PS|S⋆ ,PS|W,S⋆) + . . . 11]/
√
m 54 Rodrı́guez-Gálvez et al. (2021)

∇wℓ(w, ·) 1-Lipschitz
∑

k εk−1EPW,S⋆ [W(PS|S⋆ ,PS|Wk,S⋆) + . . . ]/
√
m 54 New

|ℓ| ≤ 1 2e1/e
√
p(I(p)(W ;S|S⋆) + 1)1/p/

√
m(p− 1) 55 New

∥∇wℓ∥ ≤ 1 2e1/e
√
p
∑

k εk−1(I
(p)(Wk;S|S⋆) + 1)1/p/

√
m(p− 1) 55 New

|ℓ| ≤ 1 2EPW,S⋆ [χ
2(PS|W,S⋆∥PS|S⋆)1/2 + . . . ]/

√
m 56 New

∥∇wℓ∥ ≤ 1 2
∑

k εk−1EPW,S⋆ [χ
2(PS|W,S⋆∥PS|S⋆)1/2 + . . . ]/

√
m 56 New

|ℓ| ≤ 1 2
∑

i

√
2I(W ;Xi|X⋆

i )/m 61 Haghifam et al. (2020)
∥∇wℓ∥ ≤ 1 2

∑
i

∑
k εk−1

√
2I(Wk;Xi|X⋆

i )/m 61 New

ℓ(w, ·) 1-Lipschitz
∑

i EPW,X⋆
i
[W(PXi|X⋆

i
,PXi|W,X⋆

i
) + . . . ]/m 62 Rodrı́guez-Gálvez et al. (2021)

∇wℓ(w, ·) 1-Lipschitz
∑

i

∑
k εk−1EPW,X⋆

i
[W(PXi|X⋆

i
,PXi|Wk,X

⋆
i
) + . . . ]/m 62 New

|ℓ| ≤ 1 2
∑

i(I
(p)(W ;Xi|X⋆

i ) + 1)1/p/m 63 New
∥∇wℓ∥ ≤ 1 2

∑
i

∑
k εk−1(I

(p)(Wk;Xi|X⋆
i ) + 1)1/p/m 63 New

|ℓ| ≤ 1
∑

i EPW,X⋆
i
[χ2(PXi|W,X⋆

i
∥PXi|X⋆

i
)1/2 + . . . ]/m 64 New

∥∇wℓ∥ ≤ 1
∑

i

∑
k εk−1EPW,X⋆

i
[χ2(PXi|Wk,X

⋆
i
∥PXi|X⋆

i
)1/2 + . . . ]/m 64 New

|ℓ| ≤ 1 2
∑

i EPW,X⋆
i
[TV(PXi|X⋆

i
,PXi|W,X⋆

i
) + . . . ]/m 65 Rodrı́guez-Gálvez et al. (2021)

∥∇wℓ∥ ≤ 1 2
∑

i

∑
k εk−1EPW,X⋆

i
[TV(PXi|X⋆

i
,PXi|Wk,X

⋆
i
) + . . . ]/m 65 New

|ℓ| ≤ 1 2
∑

i

√
2L(W ;Xi|X⋆

i )/m 66 New
∥∇wℓ∥ ≤ 1 2

∑
i

∑
k εk−1

√
2L(Wk;Xi|X⋆

i )/m 66 New

11. Here and in the following, “ . . . ” should be read as: “Take the same expression on the left and replace PS|W,S⋆ with
PS̄|W,S⋆ (or PXi|W,X⋆

i
with PX̄i|W,X⋆

i
).”.

164



4.2. STATEMENT OF AUTHORSHIP 165

4.2 Statement of authorship

  
Statement of Authorship for joint/multi-authored papers for PGR thesis 

To appear at the end of each thesis chapter submitted as an article/paper 
  
 

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis 
publications. For each publication there should exist a complete statement that is to be filled out and signed by the 
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper 
itself). 
 

  
 
Title of Paper 
 

Chained Generalisation Bounds  

 
Publication Status 
 
 
 

  Published 

 
Publication Details E. Clerico, A. Shidani, G. Deligiannidis, and A. Doucet. Chained generali- 

sation bounds. COLT, 2022. 

Student Confirmation 
 

 
Student Name: 
 

 
Eugenio Clerico 

 
Contribution to the 
Paper 
 

Amitis Shidani and I equally contributed to the paper. I worked on stating and proving 
the main results in the paper. Amitis Shidani provided the initial idea and inspiration, 
helped with the writing and with some examples.   
George Deligiannidis and Arnaud Doucet provided helpful insights and contributed to 
the writing of the paper and to the checking the proofs.  
 

 
Signature  
 
 

 
Date 

 
24/03/2023 

 

Supervisor Confirmation 

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the 
publication, and that the description described above is accurate. 
 

 
Supervisor name and title: 
 
 
 
Supervisor comments 
 
 
 
 
 
 
 
Signature 
 
 

 
Date 

 

 
 
This completed form should be included in the thesis, at the end of the relevant chapter. 

Prof George Deligiannidis

Eugenio’s description of his contributions to the paper is fair and accurate 

27/03/2023



Chapter 5

Deterministic PAC-Bayes under

gradient descent

166



Generalisation under gradient descent via deterministic PAC-Bayes

Eugenio Clerico* CLERICO@STATS.OX.AC.UK
Department of Statistics, University of Oxford

Tyler Farghly* FARGHLY@STATS.OX.AC.UK
Department of Statistics, University of Oxford

George Deligiannidis DELIGIAN@STATS.OX.AC.UK
Department of Statistics, University of Oxford

Benjamin Guedj B.GUEDJ@UCL.AC.UK
Centre for Artificial Intelligence and Department of Computer Science, University College London & Inria
London

Arnaud Doucet DOUCET@STATS.OX.AC.UK

Department of Statistics, University of Oxford

Abstract
We establish disintegrated PAC-Bayesian generalisation bounds for models trained with gradient
descent methods or continuous gradient flows. Contrary to standard practice in the PAC-Bayesian
setting, our result applies to optimisation algorithms that are deterministic, without requiring any
de-randomisation step. Our bounds are fully computable, depending on the density of the initial
distribution and the Hessian of the training objective over the trajectory. We show that our frame-
work can be applied to a variety of iterative optimisation algorithms, including stochastic gradient
descent (SGD), momentum-based schemes, and damped Hamiltonian dynamics.

1. Introduction

Effectively upper-bounding the generalisation error of modern learning algorithms is an open prob-
lem of great importance to the statistical learning theory community (Zhang et al., 2016). Originally,
properties of the hypothesis space, such as VC dimension and Rademacher complexity (Vapnik,
2000; Bousquet et al., 2004; Shalev-Shwartz and Ben-David, 2014), were used to establish worst-
case generalisation bounds, holding uniformly over all possible algorithms and training datasets.
However, as these results are often vacuous in over-parameterised settings, the modern perspective
focuses on algorithm and data-dependent bounds (McAllester, 1998; Bousquet and Elisseeff, 2002;
Hardt et al., 2016; Xu and Raginsky, 2017; Clerico et al., 2022b; Lugosi and Neu, 2022).

Among the various approaches, the PAC-Bayesian framework (Guedj, 2019; Alquier, 2021)
has obtained particularly promising empirical results (Dziugaite and Roy, 2017; Zhou et al., 2019;
Pérez-Ortiz et al., 2021a,b; Biggs and Guedj, 2022b; Clerico et al., 2022a). Typically, a PAC-
Bayesian bound is an upper bound on the expected population loss of a stochastic algorithm, hold-
ing with high probability on the random draw of the training dataset. Beyond the popularity of this
framework is the fact that it has led to non-vacuous empirical bounds in overparameterised regimes,
such as modern neural networks (Dziugaite and Roy, 2017; Zhou et al., 2019; Pérez-Ortiz et al.,
2021a; Clerico et al., 2022a). Since the standard PAC-Bayesian framework relies on the randomness
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of the trainable parameters, this type of analysis is typically applied to specifically designed stochas-
tic models. For instance, in the setting of neural networks, this requires an architecture featuring
stochastic weights and biases, instead of the standard deterministic ones. To extend these ideas to
deterministic settings, de-randomisation techniques are used. One possibility consists in exploit-
ing stability properties to approximate a model by randomly perturbing its parameters. While this
approach has shown promising results for feed-forward neural networks (Neyshabur et al., 2018;
Nagarajan and Kolter, 2019; Miyaguchi, 2019; Banerjee et al., 2020), it relies on specific archi-
tectural assumptions. Other approaches provide bounds for the predictor obtained by averaging a
stochastic one, an approach started by Germain et al. (2009). However, this leads to bounds for
a deterministic models with very specific structures: for instance, Letarte et al. (2019), Biggs and
Guedj (2021), and Biggs and Guedj (2022a) extended this approach to get bounds for particular
deterministic networks with a rather unusual erf activation function. Finally, besides PAC-Bayesian
bounds in expectation, there are disintegrated results that hold with high probability on a random
realisation of the stochastic model (Catoni, 2004, 2007; Blanchard and Fleuret, 2007; Alquier and
Biau, 2013; Guedj and Alquier, 2013; Rivasplata et al., 2020; Viallard et al., 2021). To the best of
our knowledge, this last approach has not been applied to study standard non-stochastic algorithms,
such as neural networks trained via gradient-descent methods.

In the present work, we consider models trained by gradient descent-type methods and leverage
the framework of disintegrated PAC-Bayesian bounds. Our starting point is noticing that often
training with a deterministic optimisation scheme does still involve some randomness due to the
initialisation, which features a random draw of the initial values of the parameter (for instance,
this is usually the case for neural networks (Goodfellow et al., 2016)). Our analysis applies to this
setting, where we show that it is possible to exploit this source of noise and obtain disintegrated
PAC-Bayes bounds, holding with high probability on the random training dataset and initialisation.
To the best of our knowledge, this is the first PAC-Bayesian result that directly applies to standard
non-stochastic settings, without strong requirements on the model or the need for any randomness
other than the initialisation. Besides, unlike bounds based on de-randomisation, ours apply with
only limited assumptions made about the smoothness of the training objective and can be computed
in closed form using information collected along the trajectory of the parameters during training.

We compare our bounds with other known results, including some outside the scope of the PAC-
Bayesian literature. When compared to uniform stability bounds (Elisseeff, 2005; Hardt et al., 2016;
Bousquet et al., 2020), we find that ours have sharper rates with respect to the size of the training
dataset, and grow slower with the number of iterations. With regards to the recently popularised
information-theoretic bounds (Xu and Raginsky, 2017; Negrea et al., 2019; Neu et al., 2021; Clerico
et al., 2022b), ours are noticeably easier to compute and are not limited to bounds in expectation.
Evaluating our bound only requires knowledge of the density of the initial distribution and of the
Hessian of the training objective over the optimisation trajectory. The latter captures the flatness
of the optimisation objective along the training path and can be seen to agree with the notion that
flatter minima generalise better (Hochreiter and Schmidhuber, 1997; Keskar et al., 2017; Izmailov
et al., 2018; He et al., 2019; Neu et al., 2021). We also highlight how this term relates to the implicit
regularisation occurring in algorithms known to result in improved generalisation (Blanc et al.,
2020; Damian et al., 2021). We demonstrate that this framework is easily extended to almost all
iterative schemes, including stochastic variants of gradient descent (Kiefer and Wolfowitz, 1952),
and iterative procedures based on auxiliary variables, like momentum schemes (Qian, 1999) or
damped Hamiltonian dynamics (Hairer et al., 2006; França et al., 2020).
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2. Notation and setting

In the standard supervised learning framework, examples are pairs z = (x, y) ∈ X × Y = Z ,
where x denotes the features of the example and y its label. A learning algorithm takes a training
dataset s = {z1, . . . , zm} of m examples and outputs a function f : X → Y . More specifically,
we consider algorithms that choose a hypothesis h ∈ H, which is understood to parameterise a
map fh : X → Y (e.g., h could be the weights of a neural network). We will always assume that
H ⊆ Rd, for some dimension d > 0. We call the algorithm stochastic when its output h is a random
variable on H whose law can depend on s.

Given a loss function ℓ : H×Z → R, we define the empirical risk on a dataset s by

Ls(h) =
1

m

∑

z∈s
ℓ(h, z) .

However, what often matters is how well h predicts the labels of features outside of s. Assuming
that the population of examples follows a distribution µ, the relevant quantity is the population loss,

LZ(h) =
∫

Z
ℓ(h, z)dµ(z) .

Upper-bounding LZ while only having access to Ls is the subject of focus in this paper and in the
literature on generalisation bounds more broadly. We assume that each example in the training set s
is sampled i.i.d. from µ (i.e., s ∼ µm = µ⊗m). We are interested in upper bounds on LZ(h) (where
h is the hypothesis picked by the algorithm) that hold with high probability on the random draw of
s (or on (h, s) in the stochastic setting).

Our results are inspired and naturally find their place within the PAC-Bayesian framework. Al-
though the main focus in the PAC-Bayesian literature has been on bounds in expectation, Rivasplata
et al. (2020) and Viallard et al. (2021) have recently brought back interest in disintegrated bounds,
which actually date back to the works of Catoni (2004, 2007) and Blanchard and Fleuret (2007).
We refer to Alquier (2021) for an introductory exposition on PAC-Bayes that also discusses a few
disintegrated results. PAC-Bayesian bounds deal with a stochastic model that, given s ∼ µm, re-
turns a random hypothesis h ∼ ρs, where the superscript s here stresses explicitly ρ’s dependence
on s.1 We will call ρs the posterior distribution and denote the joint law of (s, h) as µm ∗ ρs, that
is d(µm ∗ ρs)(s, h) = dµm(s)dρs(h). A disintegrated PAC-Bayesian bound is an upper bound
on LZ(h) that holds with high probability over (s, h) ∼ µm ∗ ρs. A fundamental ingredient in
this framework is the comparison of the posterior ρs with a prior distribution π on H, whose only
requirement is to be data-agnostic, namely it cannot depend on the specific s used for the training.
We write µm ⊗ π for the law of a pair (s, h), where s ∼ µm and h ∼ π are independent.

The purpose of this work is to provide generalisation bounds for algorithms whose output is
obtained optimising an objective Cs : H → R via gradient-based descent methods. We can let Cs
depend on the training dataset s and, in practice, it can coincide with the empirical loss. However,
this is not necessarily the case, as one might use a surrogate loss for the training or add some
regularising term. In our analysis, we use ht (or hk) to denote the value of the parameters at time t
(or iteration k) and similarly, we use ρt (or ρk) to denote its marginal distribution. All the measures
that we consider will always be absolutely continuous with respect to the Lebesgue measure, and we
will use the same notation to denote their density. The random initialisation is given by the measure
ρ0, that we assume to have strictly positive density on the whole H.

1. To be rigorous, one should actually require that s 7→ ρs is a Markov kernel.

169



CLERICO FARGHLY DELIGIANNIDIS GUEDJ DOUCET

3. Disintegrated PAC-Bayes for continuous-time gradient flows

We begin by considering the continuous-time dynamics of the gradient flow. While this setting is
less realistic than that considered in the discrete-time analysis to follow, the analysis is considerably
cleaner and will help expose some of the primary ideas of the framework we propose. We define
the gradient flow (h0, t) 7→ Φs

t (h0) ∈ H as the solution of the dynamics

∂tΦ
s
t (h0) = −∇Cs(Φt(h0)) ; Φs

0(h0) = h0 . (1)

We will assume that this solution exists until a fixed time horizon T > 0, for all initial conditions and
training datasets. As h0 and s are fixed before starting the training, we will often omit the explicit
dependence on them, and simply write the solution of (1) as ht. Given a random initialisation ρ0 we
can obtain ρt as the push-forward of ρ0 under the gradient flow:

ρt = Φs
t
#ρ0 .

In the following result, we take a PAC-Bayesian approach to deriving generalisation bounds by
selecting ρ0 as the prior. On the other hand, fixed T > 0, ρT depends on s through Cs, and plays the
role of posterior. Sampling the model’s initialisation h0 from ρ0 and following the flow dynamics up
to T , we get a hypothesis hT that is a sample from ρT . Building on this last point, we can now state
a PAC-Bayesian generalisation bound for an algorithm that, once drawn s and h0, is deterministic.

Theorem 1 Consider the dynamics ∂tht = −∇Cs(ht), with Cs : H → R twice differentiable. Let
Ψ : R2 → R be a measurable function. Fixed δ ∈ (0, 1) and T > 0, with probability at least 1− δ
on the random draw (s, h0) ∼ µm ⊗ ρ0, we have

Ψ(Ls(hT ),LZ(hT )) ≤ log
ρ0(h0)

ρ0(hT )
+

∫ T

0
∆Cs(ht)dt+ log

ξ

δ
, (2)

where ∆ denotes the Laplacian with respect to h and ξ =
∫
Zm×H e

Ψ(Ls̄(h),LZ(h))dµm(s̄)dρ0(h).

Proof The proof is based on two steps. First we keep track of how the density evolves during the
training along the trajectory, by means of the “instantaneous change of variable” trick (Chen et al.,
2018). Then we conclude with a classical Markov argument from the disintegrated PAC-Bayesian
literature (Rivasplata et al., 2020), using the fact that we can explicitly express the posterior density.

For the first step, the gradient flow’s continuity equation states ∂tρt(h) = ∇ · (ρt(h)∇Cs(h)),
for all h ∈ H, which also shows that ρt admits a Lebesgue density for all t ∈ [0, T ]. In particular,

∂t(ρt(ht)) = ∂tρt(ht) +∇ρt(ht) · ∂tht = ρt(ht)∆Cs(ht)

and so

log
ρT (hT )

ρ0(h0)
=

∫ T

0
∆Cs(ht)dt .

For the second step, by Markov’s inequality,

e
Ψ(Ls(hT ),LZ(hT ))−log

ρT (hT )

ρ0(hT ) ≤ 1

δ

∫

Zm×H
e
Ψ(Ls̄(h),LZ(h))−log

ρT (h)

ρ0(h) dµm(s̄)dρT (h) .

170



GENERALISATION UNDER GRADIENT DESCENT VIA DETERMINISTIC PAC-BAYES

with probability at least 1− δ on (s, hT ) ∼ µm ∗ ρT . For all s̄ ∈ Zm,
∫

H
e
Ψ(Ls̄(h),LZ(h))−log

ρT (h)

ρ0(h) dρT (h) =

∫

{ρT>0}
eΨ(Ls̄(h),LZ(h))dρ0(h) ,

and so in particular

Ψ(Ls̄(hT ),LZ(hT )) ≤ log
ρT (hT )

ρ0(hT )
+ log

ξ

δ
,

with probability at least 1 − δ on (s, hT ) ∼ µm ∗ ρT . But since sampling (s, hT ) from µm ∗ ρT is
equivalent to drawing (s, h0) ∼ µm ⊗ ρ0 and following the dynamics up to T , we can equivalently
say that the bound holds with probability at least 1− δ on (s, h0) ∼ µm ⊗ ρ0. Using that

log
ρT (hT )

ρ0(hT )
= log

ρ0(h0)

ρ0(hT )
+ log

ρT (hT )

ρ0(h0)
= log

ρ0(h0)

ρ0(hT )
+

∫ T

0
∆Cs(ht)dt

we conclude.

Note that the time horizon T must be chosen a priori, as it cannot depend on the specific s and
h0 used for the training. However, adding a penalty logK to the RHS of (2) (i.e., replacing the
term log ξ

δ with log Kξ
δ ) allows us to pick the best time horizon among a pool {T1, . . . , TK} of

K potential candidates. This follows from an elementary union argument, as for each Tk we can
consider a bound holding with probability at least 1 − δ/K. Finally, it is worth noticing that the
RHS of (2) will diverge for large T . This is due to the fact that ρt is will tend to a sum of Dirac
deltas, centred on the local minima of the objective, and hence is somehow related to the fact that
standard PAC-Bayesian bounds are vacuous if the posterior is degenerate.

In order to get a more readable result from Theorem 1, one need to specialise the choice of Ψ
and provide some additional hypotheses on ℓ, in a way that make possible to explicitly upperbound
ξ in (14). A simple possible choice is to set Ψ(u, v) =

√
m(v−u), which works for a loss function

sub-Gaussian in h for each input x. If the loss ℓ is bounded in [0, 1], then a tighter bound is obtained
with Ψ(u, v) = mkl(u∥v), where kl(u∥v) = u log u

v + (1 − u) log 1−u
1−v is the relative entropy

between two binary Bernoulli distributions. We define kl−1(u|c) = sup{v ∈ [0, 1] : kl(u∥v) ≤ c}.
We remark that these choices of Ψ are common in the PAC-Bayesian literature (Bégin et al., 2016;
Alquier, 2021), and we refer to Rivasplata et al. (2020) for alternative regularity hypotheses for ℓ
and choices of Ψ that still allow to control the quantity ξ appearing in our bound (14).

Corollary 2 If ℓ(h, ·) is R-sub-Gaussian2 for each h ∈ H, the bound (2) takes the form

LZ(hT ) ≤ Ls(hT ) +
1√
m

(
log

ρ0(h0)

ρ0(hT )
+

∫ T

0
∆Cs(ht)dt+ log

1

δ
+
R2

2

)
.

Moreover, if ℓ is bounded in [0, 1] we have the tighter bound

LZ(hT ) ≤ kl−1


Ls(hT )

∣∣∣∣∣
log ρ0(h0)

ρ0(hT ) + log 2
√
m
δ +

∫ T
0 ∆Cs(ht)dt

m


 . (3)

2. We say that ℓ(h, ·) is R-sub-Gaussian if for all λ ∈ R we have log
∫
Z e

ℓ(h,z)dµ(z) ≤
∫
Z ℓ(h, z)dµ(z) +

R2λ2

2
.
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The presence of kl−1 in (3) might puzzle some readers. It was introduced by Langford and Seeger
(2001) and Maurer (2004) to the PAC-Bayesian community, and has by now become standard.
A useful property is that kl−1(u|c) ≤ min{2(u + c), u +

√
c/2} (Lemma 7 in Appendix B). This

translates to the fact that Corollary 2 leads to a fast-rate boundO(logm/m) for small enough values
of the empirical loss, Ls ≤ O(1/m); see also Tolstikhin and Seldin (2013) and the discussion and
references therein.

As a final comment for this section, an interesting feature of the bound (2) is the integral of the
Laplacian of the optimisation objective along the training path. Under the gradient flow dynamics,
∆Cs(ht) is keeping track of how the probability density is locally varying. Indeed, from a PAC-
Bayesian perspective, for the bound to be small we need to end up in some point where the posterior
density is not too high compared to the initial one. If we follow a trajectory characterised by a large
Laplacian, we see a sharp increase of the density. Intuitively, we can picture the situation as if we
were attracting the nearby paths and bringing further probability mass around us. In such a case,
the final ρT is likely to be much larger than the initial ρ0 and lead to a loose bound. Note that we
can rewrite ∫ T

0
∆Cs(ht)dt = log

∥∇Cs(h0)∥
∥∇Cs(hT )∥

−
∫

h[0:T ]

∇ · τ(h) ∥δh∥ . (4)

Here τ(h) = − ∇Cs(h)
∥∇Cs(h)∥ is the unit tangent vector to the trajectory in h, and

∫
h[0:T ]

. . . ∥δh∥ denotes
the line integral along the path h[0:T ]. The last term has a clear meaning, as it quantifies how much
h[0:T ] is attracting the nearby trajectories. We refer to Appendix C for a derivation of (4).

4. Discrete time dynamics

When trying to restate the results of the previous section for a discrete time gradient descent algo-
rithm, the main obstacle comes from the fact that we cannot anymore use the gradient flow con-
tinuity equation to keep track of the density change along the trajectory. However, the change in
density can still be computed exactly as long as we can ensure that the update map is injective and
differentiable. To make things more concrete, let Gη denote the map

Gη(h) = h− η∇Cs(h) .

We fix the total number of steps K ≥ 1 and a training schedule {ηk}K−1
k=0 . We consider the updates

hk+1 = Gηk(hk) .

As usual we denote as ρk the law of hk, and we assume that ρ0 admits a positive Lebesgue density
on the whole H.

Theorem 3 Consider the dynamics hk+1 = Gηk(hk). For each dataset s ∈ Zm, denote as As

a Borel set on which Cs is twice-differentiable and M -smooth3, with supk ηk ≤ 1/(2M). Let
Ψ : R2 → R be a measurable function. Fix K ∈ N and choose δ ∈ (0, 1), such that the trajectory

3. A function f is said M -smooth on a set A if its Jabobian is M -Lipschitz, that is for any h, h′ ∈ A we have
∥∇f(h)−∇f(h′)| ≤M∥h− h′∥.
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{hk}K−1
k=0 lies in As with probability at least 1 − δ/2, under (s, h0) ∼ µm ⊗ ρ0. Then, with a

probability of at least 1− δ on (s, h0) ∼ µm ⊗ ρ0,

Ψ(Ls(hT ),LZ(hT )) ≤ log
ρ0(h0)

ρ0(hk)
−

K−1∑

k=0

tr log
(
Id−ηk∇2Cs(hk)

)
+ log

2ξ

δ
+ δ/2 , (5)

where ξ =
∫
Zm×H e

Ψ(Ls̄(h),LZ(h))dµm(s̄)dρ0(h).

We refer to Appendix A for the proof. We note that the term − tr log(Id−ηk∇2Cs(hk)) in (5) can
be upper bounded in various ways, using the fact that Cs is smooth around hk. From this, we see
that the continuous time bound of Theorem 1 is recovered when one let the learning rates tend to 0.

Lemma 4 With the notation of Theorem 3, let hk ∈ As. Then

− tr log
(
Id−ηk∇2Cs(hk)

)
≤ ηk∆Cs(hk) + η2k∥∇2Cs(hk)∥2F ≤ 3

2
ηk∥∇2Cs(hk)∥TR,

where ∥ · ∥F is the Frobenius norm and ∥ · ∥TR the trace norm.4

From the final inequality, it follows that this term scales at worst asO(d), as the smoothness assump-
tion ensures that ηk∥∇2Cs(hk)∥TR ≤ d/2. However, it is likely that in many cases this translates
in an over-pessimistic estimate. For instance, we will show in the next section that for a simple
random feature model one can upper-bound ∥∇2Cs∥TR with a term that is of order O(1) for large
d. It is also worth mentioning that − tr log(Id−ηk∇2Cs(hk)) can be directly expressed in terms of
the spectrum {λi}di=1 of ∇2Cs(hk), as we have

− tr log
(
Id−ηk∇2Cs(hk)

)
=

d∑

i=1

log
1

1− ηkλi
.

5. Discussion and examples

In this section, we discuss various aspects and consequences of the results given in the previous
sections. As part of this, we consider two examples that allow for further theoretical inspection.

5.1. Random feature model

To start, we investigate how ∥∇2Cs∥TR scales with d in practice, by considering a simple feature
model for classification. In this setting, we let X ⊆ Rp and Y = {1, . . . , q}. We consider the class
of mappings Fh : X → Rq defined as

Fh(x) =
1√
d
hΦ(x) , 5

for h ∈ Rq×d, where Φ : Rp → Rd is a feature map fixed during training. The label predicted
by the model will be fh = argmaxi F

i
h, the index of the largest component of Fh. We consider

4. For a matrix U with singular values {σi}, let ∥U∥TR =
∑

i σi and ∥U∥F =
√∑

i σ
2
i = tr[UU⊤]1/2.

5. The factor 1/
√
d is a standard choice for this kind of models, as it brings ∥h/

√
d∥ ∼ O(1) at initialisation, when the

components of h are independently initialisedN (0, 1) (e.g., see Ghorbani et al., 2021 for random feature models).
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an optimisation objective Cs(h) = 1
m

∑
z∈s ℓ̂(Fh(x), y), where ℓ̂ denotes the cross-entropy loss

ℓ̂(F, y) = log(
∑

i e
F i
)−F y, with F i and F y respectively denoting the i-th and y-th component of

F . Since this is convex in F and the model is linear in h, we get that ℓ̂(Fh(x), y) is itself convex in
h, and so ∥∇2Cs∥TR = ∆Cs. The Laplacian can be explicitly evaluated (see Appendix D.1):

∆Cs(h) =
1

m

∑

z∈s

1

d
∥Φ(x)∥2

(
1−

∑
i e

2F i(x)

(∑
i e

F i(x)
)2

)
≤ 1

m

∑

z∈s

1

d
∥Φ(x)∥2 .

To further investigate this quantity, we consider the setting of random feature models (Rahimi
and Recht, 2007; Mei and Montanari, 2022), where the features are given by Φ(x) = ϕ(Wx). Here
ϕ is a non-linearity acting component-wise, and W is a d× q matrix whose rows are sampled inde-
pendently. Assuming that |ϕ(r)| ≤ |r|, we can further bound the Laplacian by 1

dm∥W∥2∑z∈s ∥x∥2,
with ∥W∥ denoting the matrix operator norm of W . If we consider the case where the components
of W are independently drawn from a standard Gaussian distribution, we get that ∥W∥ = O(

√
d)

for large d, and so ∆Cs(h) = O(1). Thus, it is concluded that the trajectory-dependent term in (5)
can be controlled using

tr log(Id−η∇2Cs(h)) = O(η) .

5.2. Wide neural networks

Next, we investigate the first term of the bound, log ρ0(h0)/ρ0(hk), by considering the setting of
wide feed-forward neural networks. For simplicity, we assume that each layer has the same activa-
tion and the hidden layers have the same width n, and that each of the weights and bias parameters
are initialised with a centred Gaussian distribution with variance σ2w/n and σ2b , respectively. We also
assume the learning rate decays faster than O(1/n) so that the NN enters the NTK regime in the
large width limit (see Appendix D.2). We consider the case of an optimisation objective quadratic
in the network’s output.

Borrowing the analysis of Lee et al. (2020), we obtain two properties of the large n setting:
(i) with high probability, h0 (the initial value of all weights and biases) is such that Cs is smooth
and bounded in a region around it and (ii) with the same probability, gradient descent stays close to
initialisation. In combination with Theorem 3, we obtain the generalisation bound in the proposition
that follows. We refer to Appendix D.2 for the proof.

Proposition 5 (Informal statement) For each n, consider a training schedule {ηk}K−1
k=0 such that

ηk ≤ ηmax/n, where ηmax > 0 is a constant independent of n. Under suitable regularity conditions,
for any δ ∈ (0, 1), there exists nδmin ∈ N such that whenever n ≥ nδmin, the assumptions of Theorem
3 are satisfied. In particular, with a probability of at least 1− δ on (s, h0) ∼ µm ⊗ ρ0,

Ψ(Ls(hK),LZ(hK)) ≤ C

σ2ω
(C/2 + ∥h0∥n1/2)−

K−1∑

k=0

tr log
(
Id−ηk∇2Cs(hk)

)
+ log

2ξ

δ
+ δ/2 ,

where ξ =
∫
Zm×H e

Ψ(Ls̄(h),LZ(h))dµm(s̄)dρ0(h) and C > 0 is some constant that is independent
of n, δ and m.

Note that ∥h0∥ ∼ (nL)1/2 and thus, if we were to employ the bound (3) of Corollary 2, the first
term of the above bound would contribute a term of order O(nL1/2/m). This is notably sharper
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than what follows from the naive deduction that it scales at worst linearly with the number of
parameters, which is d = O(n2L) in this case. As for the Hessian-dependent term, although in
general it is difficult to characterise the spectrum of the Hessian, empirical studies on deep neural
networks suggest that in the later stages of training, the Hessian has only a few dominant positive
Hessian eigenvalues (Sagun et al., 2018; Ghorbani et al., 2019; Sankar et al., 2020), meaning that
∥∇2Cs(hk)∥TR will typically be much smaller than d times the largest eigenvalue of the Hessian.

5.3. Implicit regularisation in first-order methods

In this section, we consider some modifications of gradient descent that are known to lead to better
generalisation and we relate this improvement to the bound given in Theorem 3.

The role of noise in both optimisation and generalisation is a topic that has received considerable
attention recently. The Langevin dynamics, as well as its discrete-time approximations, have proved
to be a popular model for investigating this (Raginsky et al., 2017; Mou et al., 2018; Farghly and
Rebeschini, 2021; Erdogdu et al., 2018). The evolution of the Langevin diffusion is most often
described by a stochastic differential equation of the form,

dht = −∇Cs(ht)dt+ σdBt , (6)

where Bt is a Brownian motion process. Its generalisation properties have been studied using
uniform stability and information-theoretic bounds (see sections 7.2 and 7.3). By analysing the
associated Fokker-Planck equation (Pavliotis, 2014), one can show that the evolution of the marginal
density is identical to that of the deterministic flow,

∂tĥt = −∇
(
Cs(ĥt) +

σ2

2
log ρ̂t(ĥt)

)
, ĥ0 ∼ ρ0, (7)

where we denote as ρ̂t the density of ĥt. This idea was recently exploited in Song et al. (2021) in
the context of generative modelling, for example. We compare this to Theorem 1 which, with the
choice of Ψ(u, v) = 2

σ2 (v − u) (for an arbitrary σ > 0) and with a bounded loss ℓ ⊆ [0, 1], leads to
a bound in the form

LZ(hT ) ≤ Ls(hT ) +
1

4mσ2
+
σ2

2

(
log

ρT (hT )

ρ0(hT )
+ log

1

δ

)
.

Using this bound as an optimisation objective is equivalent to following the dynamics (7) with
Cs(h) = Ls(h)− σ2

2 log ρ0(h).
On another note, it has been shown that applying uniformly distributed label noise during train-

ing can improve generalisation results (Blanc et al., 2020; Damian et al., 2021). Damian et al. (2021)
established that in certain settings this improvement is characterised by the following implicit regu-
larisation term that is added to the optimisation objective:

− σ2

2B
tr log

(
1− η

2
∇2Cs

)
.

Here σ is the scale of the label noise and B is the batch size. Indeed, up to a scaling factor, this is
precisely the term that is summed over in the bound given in Theorem 3.
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However, we note that these algorithms are not optimising our PAC-Bayesian bounds. Indeed,
if one were to try to use the bound as an optimisation objective, then the generalisation guarantee
provided by our theory would change (as it would involve the Hessian of this new objective). We
defer to future work for deeper analysis of how our bounds relate to the generalisation properties of
these algorithm.

6. Extension to other algorithms

While we have focused on gradient descent, the analysis can be extended to any iterative scheme of
the form

hk+1 = hk + Vs(hk; k) ,

where Vs : H × N → H can be any iteration-dependent vector field. This leads to the following
generalisation of Theorem 3, which differs only the trajectory dependent sum, where the Jacobian
of the vector field now replaces the Hessian of Cs. As one might expect, a similar result is found for
continuous flows (see Theorem 10 in Appendix E).

Theorem 6 Consider the dynamics hk+1 = hk + Vs(hk; k). For each dataset s ∈ Zm, denote as
As a Borel set on which Vs is differentiable and M -Lipschitz, with M ≤ 1/2. Let Ψ : R2 → R be
a measurable function. Fix K ∈ N and choose δ ∈ (0, 1), such that the trajectory {hk}K−1

k=0 lies in
As with probability at least 1− δ/2, under (s, h0) ∼ µm ⊗ ρ0. Then, with a probability of at least
1− δ on (s, h0) ∼ µm ⊗ ρ0,

Ψ(Ls(hK),LZ(hK)) ≤ log
ρ0(h0)

ρ0(hK)
−

K−1∑

k=0

tr log
(
Id+∇Vs(hk; k)

)
+ log

2ξ

δ
+ δ/2 ,

where ∇Vs(h; k) denotes the Jacobian of Vs(·; k) and ξ =
∫
Zm×H e

Ψ(Ls̄(h),LZ(h))dµm(s̄)dρ0(h).

Stochastic gradient descent An immediate corollary of this is that our theory applies to noisy
variants of gradient descent with little modification. For example, we can consider a version
of gradient descent that only evaluates C on a mini-batch sk ⊂ s at each iteration k ∈ N, by
simply setting Vs(h; k) = −ηk∇Csk(h). The resulting generalisation bound applies identically
for stochastic variants of this scheme, including stochastic gradient descent, where the result-
ing bound is a function of the instance of the sampled mini-batches. To make things more ex-
plicit, we consider a surrogate loss function ℓ̂ : Z × H → R and for a batch sk ⊂ s, we write
Csk(h) = 1

|sk|
∑

z∈sk ℓ̂(z, h). For a sequence of batches {sk} (potentially randomly selected), we
consider the dynamics hk+1 = hk − ηk∇Csk(hk). Then, under suitable smoothness assumptions
for ℓ̂, we can derive from Theorem 6 the following bound

Ψ(Ls(hK),LZ(hK)) ≤ log
ρ0(h0)

ρ0(hK)
−

K−1∑

k=0

tr log
(
Id+ηk∆Csk(hk)

)
+ log

2ξ

δ
+
δ

2
,

which holds with a probability higher than 1 − δ on the randomness of the training dataset s, the
initialisation h0, and the choice of the batches. We refer to Proposition 11 in Appendix E.1 for a
rigorous statement.
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Momentum dynamics We can also use Theorem 6 to consider settings in which auxiliary vari-
ables are used to compute the update. We do this by replacing hk with the pair (hk, vk), where vk
denotes the auxiliary variable. Indeed, this setting applies to a wide range of optimisation schemes.
Note that in this scenario, the initial density ρ0 must refer to the pair (h0, v0).

An interesting example consists in the momentum dynamics

hk+1 = hk + vk+1 , vk+1 = µkvk − ηk∇Cs(hk) ,

for some momentum schedule {µk}. In such a case we obtain a high probability bound in the form

Ψ(Ls(hK),LZ(hK)) ≤ log
ρ0(h0, v0)

ρ0(hK , vK)
− d

K−1∑

k=0

log
1

µk
+ log

2ξ

δ
+
δ

2
.

We refer to Appendix E.2 for further details and discussion.

Damped Hamiltonian dynamics For damped Hamiltonian dynamics (França et al., 2020), we
can exploit the fact that the joint density of the pair ‘position-momentum’ pair (h, v) is conserved
under the Hamiltonian flow, a property that is preserved for discrete time-steps by suitable sym-
plectic integrators (Hairer et al., 2006). Using this property, we obtain bounds for discrete-time
algorithms without any smoothness assumptions on the objective Cs, other than twice differentiabil-
ity. We refer to Appendix F for the details.

7. Comparison with the literature

7.1. Comparison with other PAC-Bayesian bounds

Contrary to many PAC-Bayesian results, our bound has the remarkable feature of applying to neural
networks with deterministic parameters, trained via standard gradient-descent methods. Yet, this is
not a complete novelty. For instance, a few previous works in the literature propose to study the
generalisation of a deterministic neural network by analysing, via PAC-Bayesian methods, a noisy
stochastic perturbation of it. This idea was exploited by Neyshabur et al. (2018), and later Biggs
and Guedj (2022a), for a L-layer fully connected neural network with a 1-Lipschitz homogeneous
activation function, and a 1-Lipschitz loss. In these works, margin arguments were combined with
PAC-Bayesian techniques to find a bound that (up to logarithmic factors) scales as

LZ(h)− Lγ
s (h) ≤ O

(√
dnΓ

γ2m

)
, (8)

where n is the width of the network, Lγ
s the margin empirical loss with margin γ > 0,6 and

Γ =
∑L

l=1

(
∥Wl∥2F

∏
l′ ̸=l ∥Wl′∥

)
, with {Wl}Ll=1 the weights of the network, ∥ · ∥ denoting the

spectral norm, and ∥ · ∥F the Frobenius norm. One of the main issues of this result is R’s ex-
ponential dependence on the depth, due to the product of the norm of the weights. On the other
hand, our bounds involve the Hessian term, which are at most of order d (see Lemma 4), and the
contribution log ρ0(h0)

ρ0(hT ) . When the weights are independently initialised as N (0, 1), this last term is

6. The margin γ is a standard measure of the confidence of the network’s prediction. We refer to Neyshabur et al. (2018)
or Biggs and Guedj (2021) for a definition of the margin loss. Note however that we always have Lγ

s ≥ Ls.
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upperbounded by 1
2

∑L
l=1 ∥Wl∥2F . Moreover, as discussed in Section 4, for low values of Ls, our

bound can have a fast-rate dependence of O(1/m) with the training dataset size.
Later, building on the ideas from Neyshabur et al. (2018), Nagarajan and Kolter (2019) obtained

a bound that does not suffer of the exponential dependence on the depth. However, this comes at
the price of a bound that scales inversely with the smallest absolute value of the pre-activations on
the training data, a fact that leads to vacuous bounds in practice. We mention that a result similar to
that of Neyshabur et al. (2018) had previously been established by Bartlett et al. (2017), without the
use of PAC-Bayesian techniques.

The bounds discussed so far only take into account the final output of the algorithm, while our
result looks at the evolution of the model during the training. A similar spirit is shared by Miyaguchi
(2019), where the author focuses on the continuous time setting and studies the evolution of the
generalisation gap under the gradient flow training dynamics. Applying this result to a multilayer
network, it is possible to re-derive (8) under slightly weaker assumptions.

Other PAC-Bayesian results that hold for deterministic models usually cannot be applied to
standard training algorithms, as they require strong, and often unusual, assumptions on the model
architecture (e.g., Letarte et al., 2019; Germain et al., 2009; Biggs and Guedj, 2021), or the sample
of the parameters from the posterior distribution (e.g., Zantedeschi et al., 2021; Viallard et al., 2021;
Rivasplata et al., 2020).

7.2. Comparison with the stability literature

Another method for obtaining algorithm-dependent generalisation bounds is the framework of uni-
form stability Hardt et al. (2016); Pensia et al. (2018); Farghly and Rebeschini (2021); Raj et al.
(2023), proposed by Elisseeff (2005). This approach has recently received attention due to its appli-
cation to fundamental optimisation methods, such as gradient descent and its stochastic counterpart
(Hardt et al., 2016), while other works have leveraged it to obtain bounds in high-probability (Feld-
man and Vondrak, 2018, 2019; Bousquet et al., 2020). Hardt et al. (2016) considered the training
of SGD on non-convex training objectives. Under the assumption that Cs is M -smooth in h (uni-
formly on Z), ℓ is L-Lipschitz and bounded in [0, 1], and the step-size satisfies ηk ≤ c/(k + 1), the
combined analysis of Hardt et al. (2016) and Bousquet et al. (2020) leads to the bound,

LZ(h) ≲ Ls(h) +
(K/c)

Mc
Mc+1 log (m/δ)

Mm
+

√
log δ−1

m
, (9)

which holds with probability δ ∈ (0, 1).7

To compare with these results, we recall that under the same assumptions, Theorem 3 leads to
the bound,

LZ(hK) ≲ Ls(hK) +
log ρ0(h0)

ρ0(hK) +
∑K−1

k=0 (ηk∆Cs(hk) + η2k∥∇2Cs(hk)∥2F) + log (2m/δ)

m
,

for GD and, using a Proposition 11, a similar bound is obtained for SGD.
As a first point of comparison, we note that our analysis does not require the Lipschitz assump-

tion and only requires smoothness to hold along the path of GD with high probability. Additionally,
our analysis holds in both the stochastic and non-stochastic setting, whereas the technique used by

7. The notation ≲ denotes that the inequality holds up to a multiplicative constant.
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Hardt et al. (2016) fundamentally requires random mini-batches to have bounds that decay with m.
While the bound of (9) decays at a rate of m−1/2, our bound decays faster with rates log(m)/m
(given that the training loss is small – see the discussion following Corollary 2). The fact that∑K−1

k=0 ηk ∼ c logK suggests that our bound may scale better with K, though this would require
the ∆Cs(hk) and ∥∇2Cs(hk)∥F terms to not grow too quickly with k. In the worst case, the smooth-
ness can be used to upper bound these terms by 3dM/2.

Lastly, we note that one of the main criticisms to the uniform stability approach is that it is solely
related to the algorithm and does not consider specifics of the data or the distribution of the labels,
raising doubts on its ability to distinguish whether a model has been trained on true or random labels
(Zhang et al., 2016). On the other hand, our bound can depend on the data distribution trough the
optimisation objective Cs and its landscape along the training trajectory.

7.3. Comparison with information-theoretic bounds

Another popular direction within the literature on generalisation bounds uses ideas from information
theory to upper bound the expected generalisation error in terms of the mutual information (Xu and
Raginsky, 2017; Russo and Zou, 2019). This has been particularly practical for developing data-
dependent bounds for noisy iterative methods, such as stochastic gradient Langevin dynamics and
SGD (Mou et al., 2018; Negrea et al., 2019; Neu et al., 2021).

The general approach to this requires controlling the mutual information between the training
data and the update of each iterate. Therefore, this technique is restricted to settings where noise is
applied at each iteration, and the bounds explode when the amount of noise is reduced. To apply this
to GD and SGD, Neu et al. (2021) consider a surrogate model trained by a Gaussian perturbation of
these iterates. They show that when the loss is R-sub-Gaussian, the expected generalisation error is
bounded by

ELZ(hK) ≲ ELs(hK) +

√√√√R2

m

k∑

k=1

η2kEA(hk) + |EB(hK)|,

where A(h) and B(h) measures the sensitivity of the gradient and the loss function, respectively,
to perturbations in the parameters and dataset at h. A notable difference between this technique
and our method is that this can only provide bounds in expectation. This comes with the downside
that the right-hand side can usually not be computed exactly and the expectation of A and B should
be approximated using a Monte Carlo average. In contrast, our bound is based on the instance
of the optimisation trajectory, it can be computed exactly. Furthermore, our bounds have better
dependence on m but worse dependence on ηk.

8. Conclusion

We derive novel high-probability generalisation bounds for models learned via optimisation algo-
rithms such as gradient descent. Contrary to the standard PAC-Bayesian framework, our guaran-
tees apply to models whose only randomness lies in the initialisation without requiring any de-
randomisation step. To the best of our knowledge, our results are the first to leverage the disinte-
grated PAC-Bayesian framework to analyse such settings. We make this explicit by stating a bound
that holds for wide neural networks trained via gradient descent.
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A strength of our bounds is that it assumes little about the model or training procedure. For the
continuous gradient flow dynamics, we require only that the optimisation objective be twice differ-
entiable. For the discrete-time algorithm, we require smoothness and twice differentiability only in
high probability on the trajectory. Additionally, we show that our results can be extended to settings
more general than gradient descent and give explicit bounds for SGD, momentum schemes, and
damped Hamiltonian dynamics. We foresee that this should motivate further work into developing
generalisation bounds for other optimisation algorithms.

A promising direction for future work could be designing computationally efficient methods
for computing these bounds. We would also like to evaluate the tightness of our guarantees and
compare them with other results known in the literature with thorough empirical investigation. We
also believe that our results can be improved by identifying more easily verifiable assumptions to
make the framework more broadly applicable.
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Saint-Flour XXXI-2001. Springer, 2004.

O. Catoni. PAC-Bayesian supervised classification: The thermodynamics of statistical learning.
IMS Lecture Notes Monograph Series, 2007.

R.T.Q. Chen, Y. Rubanova, J. Bettencourt, and D.K. Duvenaud. Neural ordinary differential equa-
tions. NeurIPS, 2018.

E. Clerico, G. Deligiannidis, and A. Doucet. Conditionally Gaussian PAC-Bayes. AISTATS, 2022a.

E. Clerico, A. Shidani, G. Deligiannidis, and A. Doucet. Chained generalisation bounds. COLT,
2022b.

181



CLERICO FARGHLY DELIGIANNIDIS GUEDJ DOUCET

A. Damian, T. Ma, and J.D. Lee. Label noise SGD provably prefers flat global minimizers. NeurIPS,
2021.

G.K. Dziugaite and D.M. Roy. Computing nonvacuous generalization bounds for deep (stochastic)
neural networks with many more parameters than training data. UAI, 2017.

A. Elisseeff. Stability of randomized learning algorithms. Journal of Machine Learning Research,
6, 2005.

M. Erdogdu, L. Mackey, and O. Shamir. Global non-convex optimization with discretized diffu-
sions. NeurIPS, 2018.

T. Farghly and P. Rebeschini. Time-independent generalization bounds for SGLD in non-convex
settings. NeurIPS, 2021.

V. Feldman and J. Vondrak. Generalization bounds for uniformly stable algorithms. NeurIPS, 2018.

V. Feldman and J. Vondrak. High probability generalization bounds for uniformly stable algorithms
with nearly optimal rate. COLT, 2019.

G. França, J. Sulam, D. Robinson, and R. Vidal. Conformal symplectic and relativistic optimization.
NeurIPS, 2020.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning of linear classi-
fiers. ICML, 2009.

B. Ghorbani, S. Krishnan, and Y. Xiao. An investigation into neural net optimization via Hessian
eigenvalue density. ICML, 2019.

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Linearized two-layers neural networks in
high dimension. The Annals of Statistics, 49, 2021.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

B. Guedj. A primer on PAC-Bayesian learning. Proceedings of the Second Congress of the French
Mathematical Society, 2019.

B. Guedj and P. Alquier. PAC-Bayesian estimation and prediction in sparse additive models. Elec-
tronic Journal of Statistics, 7, 2013.

E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration. Springer-Verlag, 2006.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. ICML, 2016.

H. He, G. Huang, and Y. Yuan. Asymmetric valleys: Beyond sharp and flat local minima. NeurIPS,
2019.

S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9, 1997.

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A.G. Wilson. Averaging weights leads to
wider optima and better generalization. UAI, 2018.

182



GENERALISATION UNDER GRADIENT DESCENT VIA DETERMINISTIC PAC-BAYES

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: convergence and generalization in
neural networks. NeurIPS, 2018.

N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P.T.P. Tang. On large-batch training
for deep learning: Generalization gap and sharp minima. ICLR, 2017.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. The
Annals of Mathematical Statistics, 23(3), 1952.

J. Langford and M. Seeger. Bounds for averaging classifiers. CMU technical report, 2001.

J. Lee, L. Xiao, S.S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide
neural networks of any depth evolve as linear models under gradient descent. Journal of Statisti-
cal Mechanics, 2020.

G. Letarte, P. Germain, B. Guedj, and F. Laviolette. Dichotomize and generalize: PAC-Bayesian
binary activated deep neural networks. NeurIPS, 2019.

G. Lugosi and G. Neu. Generalization bounds via convex analysis. COLT, 2022.

A. Maurer. A note on the PAC Bayesian theorem. arXiv:0411099, 2004.

D.A. McAllester. Some PAC-Bayesian theorems. COLT, 1998.

S. Mei and A. Montanari. The generalization error of random features regression: Precise asymp-
totics and the double descent curve. Communications on Pure and Applied Mathematics, 75(4),
2022.

K. Miyaguchi. PAC-Bayesian transportation bound. arXiv:1905.13435, 2019.

W. Mou, L. Wang, X. Zhai, and K. Zheng. Generalization bounds of SGLD for non-convex learning:
Two theoretical viewpoints. COLT, 2018.

V. Nagarajan and J.Z. Kolter. Deterministic PAC-Bayesian generalization bounds for deep networks
via generalizing noise-resilience. ICLR, 2019.

J. Negrea, M. Haghifam, G.K. Dziugaite, A. Khisti, and D.M. Roy. Information-Theoretic general-
ization bounds for SGLD via Data-Dependent estimates. NeurIPS, 2019.

G. Neu, G.K. Dziugaite, M. Haghifam, and D.M. Roy. Information-theoretic generalization bounds
for stochastic gradient descent. COLT, 2021.

B. Neyshabur, S. Bhojanapalli, and N. Srebro. A PAC-Bayesian approach to spectrally-normalized
margin bounds for neural networks. ICLR, 2018.

G.A. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and
Langevin Equations. Springer, 2014.

A. Pensia, V. Jog, and P.L. Loh. Generalization error bounds for noisy, iterative algorithms. IEEE
International Symposium on Information Theory, 2018.

183



CLERICO FARGHLY DELIGIANNIDIS GUEDJ DOUCET
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Appendix A. Omitted proofs

Corollary 2 If ℓ(h,X) is R-sub-Gaussian for each h ∈ H, the bound (2) takes the form

LZ(hT ) ≤ Ls(hT ) +
1√
m

(
log

ρ0(h0)

ρ0(hT )
+

∫ T

0
∆Cs(ht)dt+ log

1

δ
+
R2

2

)
.

Moreover, if ℓ is bounded in [0, 1] we have the tighter bound

LZ(hT ) ≤ kl−1


Ls(hT )

∣∣∣∣∣
log ρ0(h0)

ρ0(hT ) + log 2
√
m
δ +

∫ T
0 ∆Cs(ht)dt

m


 .

Proof The first bound follows from Theorem 1 with Ψ(u, v) =
√
m(v − u). In this case ξ ≤

R2/(2m) by the definition of sub-Gaussianity. The second bound follows from Theorem 1 with
Ψ(u, v) = mkl(u∥v), after using the fact that with this choice one has ξ ≤ 2

√
m if the loss is

bounded in [0, 1] (Bégin et al., 2016).

Theorem 3 Let K ∈ N and δ ∈ (0, 1), and let Ψ : R2 → R be a measurable map. For each
dataset s ∈ Zm, denote as As a Borel set on which Cs is twice-differentiable and M -smooth, with
supk ηk ≤ 1/(2M). For (s, h0) ∼ µm ⊗ ρ0, assume that the trajectory {hk}K−1

k=0 lies in As with
probability higher than 1− δ/2. Then, with a probability of at least 1− δ on (s, h0) ∼ µm ⊗ ρ0,

Ψ(Ls(hT ),LZ(hT )) ≤ log
ρ0(h0)

ρ0(hk)
−

K−1∑

k=0

tr log
(
Id−ηk∇2Cs(hk)

)
+ log

2ξ

δ
+ δ/2 ,

where ξ =
∫
Zm×H e

Ψ(Ls̄(h),LZ(h))dµm(s̄)dρ0(h).

Proof First, for any s ∈ Zm define

A0
s = {h0 ∈ H : hk ∈ As for all k ∈ {0, . . . ,K − 1}} ,

which is a Borel set thanks to the regularity of G on As.
We start by noticing that for all k, the restriction of Gηk to As is injective. Indeed, if h and h′

are in As, we have that

∥Gηk(h)−Gηk(h
′)∥ ≥ ∥h− h′∥ − ηk∥∇Cs(h)−∇Cs(h′)∥ ≥ 1

2
∥h− h′∥ .

For any fixed s, if we condition on h0 ∈ A0
s, we have that this condition is satisfied for all k ∈

{0, . . . ,K − 1}. Now let ρ̃sk = ρk(·|h0 ∈ A0
s) be the law of hk, conditioned on h0 ∈ A0

s. If
we denote as G̃k the restriction of Gηk to supp ρ̃sk, we have that G̃k is a differentiable bijection
supp ρ̃sk ↔ supp ρ̃sk+1. In particular, we see by induction that this implies that ρ̃sk+1 admits a
Lebesgue density (since ρ̃s0 ≪ ρ0), and by the change of variable formula

ρ̃sk+1(h) = ρ̃sk ◦ G̃−1
k (h) det

[
Id−ηk∇2Cs ◦ G̃−1

k (h)
]−1

, ∀h ∈ supp ρ̃sk+1.
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Since G̃k(hk) = hk+1 for hk ∈ As, we get

ρ̃sk+1(hk+1) = ρ̃sk(hk) det
[
Id−ηk∇2Cs(hk)

]−1
.

In particular, we have that for h0 ∈ A0
s

log
ρ̃sK(hK)

ρ̃s0(h0)
=

K−1∑

k=0

log
ρ̃sk+1(hk+1)

ρ̃sk(hk)

= −
K−1∑

k=0

log det
[
Id−ηk∇2Cs(hk)

]
= −

K−1∑

k=0

tr log
[
Id−ηk∇2Cs(hk)

]
.

(10)

where the last equality follows from the Jacobi formula for positive definite matrices, namely
log det = tr log.

We now use the same Markov argument as in Theorem 1, with posterior ρ̃sK and prior ρ0.
Explicitly, we have that with probability at least 1− δ

2 on (s, hK) ∼ µm ∗ ρ̃K

e
Ψ(Ls(hK),LZ(hK))−log

ρ̃sK (hK )

ρ0(hK ) ≤ 2

δ

∫

Zm×H
e
Ψ(Ls̄(h),LZ(h))−log

ρ̃s̄K (h)

ρ0(h) dµm(s̄)dρ̃s̄K(h) .

Since for every s̄ ∈ Zm we get

∫

H
e
Ψ(Ls̄(h),LZ(h))−log

ρ̃s̄K (h)

ρ0(h) dρ̃s̄K(h)

=

∫

{ρ̃k>0}
e
Ψ(Ls̄(h),LZ(h))−log

ρ̃s̄K (h)

ρ0(h) dρ̃s̄K(h) ≤
∫

H
eΨ(Ls̄(h),LZ(h))dρ0(h) ,

we get that

µm ∗ ρK
(
Ψ(Ls(hK),LZ(hK)) ≤ log

ρ̃sK(hK)

ρ0(hK)
+ log

2ξ

δ

∣∣∣∣h0 ∈ A0
s

)
≥ 1− δ/2. .

Now, we note that for any h0 ∈ A0
s, the following holds:

log
ρ̃sk(hK)

ρ0(hK)
= log

ρ̃sk(hK)

ρ̃s0(h0)
+ log

ρs0(h0)

ρ0(hK)
− log ρ0(A

0
s) ,

which is further bounded noticing that − log(1 − δ/2) ≤ δ/2. In particular, using the change of
density formula (10) we get that

µm ∗ ρK
(
Ψ(Ls(hK),LZ(hK))

≤ log
ρ0(h0)

ρ0(hK)
−

K−1∑

k=0

tr log
[
Id−ηk∇2Cs(hk)

]
+ log

2ξ

δ
+
δ

2

∣∣∣∣h0 ∈ A0
s

)
≥ 1− δ/2 .

(11)
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Now, note that for any event E we have

µm ∗ ρK(E) =

∫

Zm

(
ρK(E|h0 ∈ A0

s)ρ0(A
0
s) + µm ∗ ρK(E|h0 ∈ A0

s)(1− ρ0(A
0
s))
)
dµm(s)

≤ µm ∗ ρK(E|h0 ∈ A0
s) +

δ

2
,

since µm ⊗ ρ0(h0 /∈ As
0) ≤ δ/2 by hypothesis. Applying this to (11), we get that

Ψ(Ls(hK),LZ(hK)) ≤ log
ρ0(h0)

ρ0(hK)
−

K−1∑

k=0

tr log
[
Id−ηk∇2Cs(hk)

]
+ log

2ξ

δ
+
δ

2
, (12)

with probability at least 1 − δ on (s, hK) ∼ µm ∗ ρK . Since sampling from ρK for a given s is
equivalent to sample from ρ0 and follow the dynamics until the K-th step, we can claim that (12)
holds with probability at least 1− δ on (s, h0) ∼ µm ⊗ ρ0.

Lemma 4 With the notation of Theorem 3, let hk ∈ As. Then

− tr log
(
Id−ηk∇2Cs(hk)

)
≤ ηk∆Cs(hk) + η2k∥∇2Cs(hk)∥2F ≤ 3

2
ηk∥∇2Cs(hk)∥TR,

where ∥ · ∥F is the Frobenius norm and ∥ · ∥TR the trace norm.

Proof To obtain the first upper bound, denote as {λi(hk)}di=1 the spectrum of ∇2Cs(hk). Then we
have that

− tr log
(
Id−ηk∇2Cs(hk)

)
= −

K−1∑

k=0

d∑

i=1

log(1− ηkλi(hk)) .

Using that − log(1− u) ≤ u(u+ 1) for |u| ≤ 1/2, we obtain that for each k

−
d∑

i=1

log(1− ηkλi(hk)) ≤ ηk

d∑

i=1

λi(hk) + η2k

d∑

i=1

λi(hk)
2 = ηk∆Cs(hk) + η2k∥∇2Cs(hk)∥2F .

For the second upper bound, note that ∆Cs(hk) ≤ ∥∇2Cs(hk)∥TR and

η2k∥∇2Cs(hk)∥2F = η2k

d∑

k=1

λi(hk)
2 ≤ ηk

d∑

k=1

|ηkλi(hk)||λi(hk)| =
1

2
ηk∥∇2Cs(hk)∥TR ,

where we used that |ηkλi(hk)| ≤ ηk∥∇2Cs(hk)∥ ≤ 1/2 since Cs is 1/(2ηk)-smooth in hk ∈ As.

Appendix B. Upper bounding kl−1

Recall that kl(u∥v) = u log u
v + (1 − u) log 1−u

1−v is well defined on (0, 1)2 and has range (0, 1).
If we restrict to the region {v ≥ u}, then the function is injective and we can define the inverse
kl−1(u|c), which returns the only v ≥ u such that kl(u∥v) = c. Here, we upper bound this inverse.
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Lemma 7 kl−1(u|c) ≤ min{2(u+ c), u+
√
c/2}.

Proof It is well known in the literature that

kl−1(u|c) ≤ u+
√
c/2

(see for instance Dziugaite and Roy (2017)). Now we want to show that kl−1(u|c) ≤ 2(u+ c). Fix
u ∈ (0, 1) and define on (u, 1) the map

hu : v 7→ kl(u∥v) .

We have that h′u(v) =
1−u
1−v − u

v and h′′u(v) =
1−u

(1−v)2
+ u

v2
. In particular, hu is convex. Define the

straight line
σu : v 7→ (v − 2u)/2 .

We want to show that hu(v) ≥ σu(v) for all v ∈ (u, 1). Indeed, if this is the case, then h−1
u (c) ≤

σ−1
u (c) = 2(u + c) and the statement of the lemma follows. Since hu is convex, it is enough to

show that σu lies below the tangent of hu with slope 1/2, which we denote as τu. Let vu be the
value of v such that h′u(vu) = 1/2 (which always exists in (0, 1) since h′u(v) → 0 for v → u and
h′u(v) → ∞ for v → 1). We have that vu = 1

2(
√
1 + 8u − 1). Now, note that u 7→ vu is strictly

concave, increasing in (0, 1), and tends to 0 for u → 0 and to 1 for u → 1. In particular, we have
that vu > u for all u. We hence know that kl(u∥vu) is well defined and positive. This means that
τu(vu) > 0. On the other hand, we have that

u 7→ σu(vu) =
1

4
(
√
1 + 8u− 1)− u

is a strictly concave function that vanishes in 0. As its derivative for u → 0 tends to 0, we have
σu(vu) < 0 for all u ∈ (0, 1). In particular τu(vu) < σu(vu). Since τu and σu have the same slope,
we get that σu lies below τu and so we conclude.

Appendix C. Rewriting the Laplacian’s integral

We explicitly derive here (4). First, notice that ∂t log ∥∇Cs(ht)∥ = − ∇Cs(ht)
∥∇Cs(ht)∥ · ∇∥∇Cs(ht)∥.

Since, for all h,

∆Cs(h) = ∇ · ∇Cs(h) = ∇ ·
( ∇Cs(h)
∥∇Cs(h)∥

)
∥∇Cs(h)∥+

∇Cs(h)
∥∇Cs(h)∥

· ∇∥∇Cs(h)∥ ,

we get

∆Cs(ht) = ∇ ·
( ∇Cs(ht)
∥∇Cs(ht)∥

)
∥∇Cs(ht)∥ − ∂t log ∥∇Cs(ht)∥ .

We conclude that
∫ T

0
∆Cs(ht)dt = log

∥∇Cs(h0)∥
∥∇Cs(hT )∥

+

∫ T

0
∇ ·
( ∇Cs(ht)
∥∇Cs(ht)∥

)
∥∇Cs(ht)∥dt .
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The integral in the RHS is a line-integral along the path h[0,T ], as ∥∇Cs(h)∥ is the norm of the flow’s

“velocity” in h. Moreover, τ(h) = − ∇Cs(h)
∥∇Cs(h)∥ is the unit tangent vector to the gradient flow in h.

We can thus write
∫ T

0
∆Cs(ht)dt = log

∥∇Cs(h0)∥
∥∇Cs(hT )∥

−
∫

h[0:T ]

∇ · τ(h)∥δh∥ ,

which is (4).

Appendix D. Examples

D.1. Calculations for the random feature model

We derive here the formula for ∆Cs for the random feature model of Section 5.1. We let

F (x) =
1√
d
hΦ(x) ,

where the h is a q × d learnable matrix and Φ : Rp → Rd is a fixed feature map, chosen randomly
at initialisation.

In general, for a generic model with a twice differentiable ℓ̂ one has that

∆ℓ̂ =
∑

i
∂ℓ̂
∂F i∆F

i +
∑

ii′
∂2ℓ̂

∂F i∂F i′ ∇F i · ∇F i′ ,

which follows easily from the chain rule. Here the model is linear in h and so we are simply left
with

∆ℓ̂ =
1

d
∥Φ∥2∆F ℓ̂ ,

where ∆F ℓ̂ =
∑

i ∂
2
F i ℓ̂.

When ℓ̂ is the cross entropy loss, we get

∆F ℓ̂ =
∑

i

∂2F i ℓ̂ =
∑

i


 eF

i

∑
j e

F j − e2F
i

(∑
j e

F j
)2


 = 1−

∑
i e

2F i

(∑
i e

F i
)2 ≤ 1 ,

and so

∥∇2Cs(h)∥TR = ∆Cs(h) =
1

m

∑

z∈s

1

d
∥Φ(x)∥2

(
1−

∑
i e

2F i(x)

(∑
i e

F i(x)
)2

)
≤ 1

m

∑

z∈s

1

d
∥Φ(x)∥2 .

D.2. Wide Neural Networks

We consider a fully connected neural network Fh : Rn0 → R, for some n0 ∈ N. For simplicity, we
let each hidden layer have identical width n ∈ N and activation function ϕ : R → R. We assume
that the inputs are coming from a compact set X ⊂ Rn0 .

The network output is determined by an input x0 ∈ X , weights {W l}L−1
l=2 ⊂ Rn×n, W 1 ∈

Rn0×n and WL ∈ Rn×1, and biases {bl}L−1
l=1 ⊂ Rn and bL ∈ R. We use h to denote the vector of

all weights and biases. The network’s output is

Fh(x
0) = xL−1WL + bL ,
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where we define
xl+1 = ϕ

(
xlW l+1 + bl+1

)
, for l = 0, . . . , L− 2,

where ϕ is applied component-wise. We consider a dataset s = (xi, yi)
m
i=1 ∈ Zm sampled from the

measure µm. We consider a square loss objective in the form

Cs(h) =
1

m

m∑

i=1

(Fh(xi)− yi)
2 .

We consider a Gaussian initialisation ρ0, where the all of the parameters are independently drawn
as

W l
ij ∼ N

(
0,
σ2w
n

)
, bli ∼ N (0, σ2b ) ,

for some positive σw and σb.
If the training step-size is scaled appropriately, the large width limit is known to reduce to the

neural tangent kernel (NTK) dynamics (Jacot et al., 2018). Given x, x′ ∈ X , the value of the NTK
Θ(x, x′) ∈ R is given by the limit (in probability) as n→ ∞ of the quantity

Θ̂(x, x′) =
1

n
⟨∇Fh0(x),∇Fh0(x

′)⟩ ,

with h0 ∼ ρ0. We borrow the analysis of Lee et al. (2020), who use this fact to study the convergence
on the finite width NN under training with gradient descent. To leverage ideas from this analysis,
we must make the following additional assumptions:

1. The analytic NTK Θ is full-rank with minimum and maximum eigenvalues satisfying 0 <
λmin ≤ λmax <∞.

2. Z = X × Y is compact and the data distribution µ has no atoms.

3. The activation function ϕ has Lipschitz continuous and bounded gradients.

Lemma 8 (Lemma 1, Lee et al. (2020)) Suppose assumptions 1-3 are satisfied, then there exists
a constant R > 0 such that, for any fixed C > 0 and δ ∈ (0, 1), for n sufficiently large we can find
a convex subset A(C, δ, n) ⊆ H, such that ρ0(A(C, δ, n)) ≥ 1− δ/2 and

∥∇Fh(x)−∇Fh′(x)∥F ≤ √
nR∥h− h′∥ ; ∥∇Fh(x)∥F ≤ √

nR ,

for all h, h′ ∈ B(h0, Cn
−1/2), h0 ∈ A(C, δ, n) and x ∈ X .

Here we use the notationB(h, r) to denote the ball about h of radius r. As usual, the notation ∇
denote derivatives with respect to the parameters. The result is not stated so explicitly in the paper
of Lee et al. (2020), but can be deduced easily by following the proof therein. The convexity of the
set A(C, δ, n) follows from its construction by upper bounding the operator norms of the weight
matrices. Similarly, we state more formally another result from this work.

Lemma 9 (Theorem G.1, Lee et al. (2020)) Suppose assumptions 1-3 are satisfied, s ∈ supp(µm)
and let η⋆ = 2(λmin + λmax)

−1. Then there exists constants C,R0 > 0 such that for sufficiently
large n, whenever supk ηk < η⋆/n and h0 ∈ A(C, δ, n),

∥hk − h0∥ ≤ Cn−1/2, Cs(hk) ≤ R0, for each k ∈ N.
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Now we state Proposition 5 more formally.

Proposition 5 (Rigorous statement) Suppose assumptions 1-3 are satisfied and let η⋆ = 2(λmin+
λmax)

−1. Then, there exists positive constants C, R, and R0 such that, for any δ ∈ (0, 1) and
sufficiently large n, whenever supk ηk <

1
n min{η⋆, (2R(R + R

1/2
0 ))−1}, with a probability of at

least 1− δ on (s, h0) ∼ µm ⊗ ρ0

Ψ(Ls(hT ),LZ(hT )) ≤
C

σ2w

(
∥h0∥n1/2 +C/2

)
−

K−1∑

k=0

tr log
(
Id−ηk∇2Cs(hk)

)
+ log

2ξ

δ
+ δ/2 ,

where ξ =
∫
Zm×H e

Ψ(Ls(h),LZ(h))dµm(s)dρ0(h).

Proof Let C be the constant given in Lemma 9 and suppose n is sufficiently large so that its
conclusion is satisfied. We construct the set As as the set containing all points visited by gradient
flows starting in A(C, δ, n). By construction, the entire trajectory {hk}Kk=0 lies in this set with
probability at lest 1 − δ. To show that Cs is smooth on this set, we note that for any h, h′ ∈
As(C, δ, n),

∥∇Cs(h)−∇Cs(h′)∥

≤ 1

m

m∑

i=1

(|Fh(xi)− yi|∥∇Fh(xi)−∇Fh′(xi)∥+ ∥∇hFh′(xi)∥|Fh(xi)− Fh′(xi)∥)

≤ 1

m

m∑

i=1

(
|Fh(xi)− yi|∥∇Fh(xi)−∇Fh′(xi)∥+ ∥∇Fh′(xi)∥∥∇Fĥ(xi)∥∥h− h′∥

)
,

for some ĥ ∈ {τh+ (1− τ)h′ : τ ∈ [0, 1]}.
From Lemma 8, it follows that ∥∇Fh′(xi)∥F ≤ √

nR. In fact, this holds for all parameter
values of distance Cn−1/2 from A(C, δ, n). Since this is a convex set which both h and h′ belong
to, ĥ must belong to this set also, and so ∥∇Fĥ(xi)∥F ≤ √

nR. Additionally, we apply Lemma 8 as
well as the Cauchy-Schwarz inequality to deduce,

1

m

m∑

i=1

|Fh(xi)− yi|∥∇Fh(xi)−∇Fh′(xi)∥ ≤ √
nR Cs(h)1/2∥h− h′∥ ≤ √

nRR
1/2
0 ∥h− h′∥

From this, we deduce that

∥∇Cs(h)−∇Cs(h̃)∥ ≤ (R
1/2
0 R

√
n+R2n)∥h− h′∥ ≤ R(R

1/2
0 +R)n∥h− h′∥ ,

which means that the optimisation objective isM -smooth onAs(C, δ, n), withM = R(R
1/2
0 +R)n.

Since, by hypothesis, we consider a schedule such that supk ηk ≤ 1/(2M), Theorem 3 applies.
Moreover, we have

log
ρ0(h0)

ρ0(hk)
≤ n

2σ2ω

∣∣∣∥hk∥2 − ∥h0∥2
∣∣∣ ≤ n

2σ2ω
∥hk − h0∥(∥hk − h0∥+ 2∥h0∥) .

Thus, using Lemma 9,

log
ρ0(h0)

ρ0(hk)
≤ C

σ2ω
(C/2 + ∥h0∥n1/2) ,
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from which the statement follows.

As noted in Lee et al. (2020) and Yang and Littwin (2021), the NTK analysis of wide neural net-
works can be performed in settings where the hidden layers have different widths and on networks
with different architectures. Therefore, we should expect a similar argument to that given above can
be reproduced in these settings.

Appendix E. The analysis for general iterative methods

The proof of Theorem 6 follows immediately from the proof technique of Theorem 3 as soon as
−∇Cs is replaced by the vector field. Similarly, we obtain the following result for the continuous-
time flow dynamics.

Theorem 10 Consider the dynamics ∂tht = Vs(ht; t), with Vs : H×R+ → H differentiable in h.
Let Ψ : R2 → R be a measurable function. For any δ ∈ (0, 1) and T > 0, with probability at least
1− δ on the random draw (s, h0) ∼ µm ⊗ ρ0, we have

Ψ(Ls(hT ),LZ(hT )) ≤ log
ρ0(h0)

ρ0(hT )
−
∫ T

0
∇ · Vs(ht; t)dt+ log

ξ

δ
,

where ∇ refers to derivatives with respect to h and ξ =
∫
Zm×H e

Ψ(Ls(h),LZ(h))dµm(s)dρ0(h).

E.1. Mini-batches

We can consider here a version of gradient descent that only evaluates the training objective on a
mini-batch sk ⊂ s at each iteration k ∈ N, as already discussed in Section 6. Note that the choice of
the mini-batch can be random and doesn’t need to be known a priori. Our result will always apply
on the specific realisation of the sequence of batches used for the training.

We consider an objective in the form

Cs(h) =
1

m

∑

z∈s
ℓ̂(z, h) ,

for some surrogate loss function ℓ̂ : Z ×H → R. For a batch sk ⊂ s of mk elements, we write

Csk(h) =
1

mk

∑

z∈sk
ℓ̂(z, h) .

Proposition 11 For a sequence of batches {sk}, consider the dynamics hk+1 = hk − ηkCsk(hk).
We denote as µ̃m the law of (s, {sk}), which takes into account the potential randomness in the
choice of the batches. For each k, let As be a Borel where ℓ̂(z, ·) is twice differentiable and M -
smooth for every z in s, with maxk ηk ≤ 1/(2M). Let Ψ : R2 → R be a measurable function. Fix
K ∈ N and let δ ∈ (0, 1), such that the trajectory {hk}K−1

k=0 lies in As, with probability at least
1 − δ/2 on the randomness of the training dataset s, the initialisation h0, and the choice of the
batches. With probability at least 1− δ on the same randomness, we have

Ψ(Ls(hK),LZ(hK)) ≤ log
ρ0(h0)

ρ0(hK)
−

K−1∑

k=0

tr log
(
Id+ηk∇2Csk(hk)

)
+ log

2ξ

δ
+
δ

2
,

with ξ =
∫
Z×H e

Ψ(Ls̄(h),LZ(h))dµm(s̄)dρ0(h).
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E.2. Momentum

We can consider the use of auxiliary variables: instead of having just hk, we take the pair of pro-
cesses (hk, vk). If the updates of these processes are of the form

(
hk+1

vk+1

)
=

(
hk
vk

)
+ Vs(hk, vk; k) ,

for some iteration-dependent vector field Vs, then the usual analysis applies immediately. For ex-
ample, let us consider the momentum scheme

hk+1 = hk + vk+1 , vk+1 = µkvk − ηk∇Cs(hk) ,

where µk ∈ [0, 1] is the momentum schedule.
This corresponds to the vector field

Vs(h, v; k) =

(
µkv − ηk∇Cs(h)

(µk − 1)v − ηk∇Cs(h)

)
,

whose Jacobian reads

∇Vs(h, v; k) =
(
−ηk∇2Cs(h) µk Id
−ηk∇2Cs(h) (µk − 1) Id

)
.

We can easily compute

det(Id+∇Vs(h, v; k)) = det
(
µk(Id−ηk∇2Cs(h)) + µkηk∇2Cs(h)

)
= det(µk Id) = µk

d ,

and so

−
K−1∑

k=0

tr log
(
Id+∇Vs(hk, vk; k)

)
= −

K−1∑

k=0

log det
(
Id+∇Vs(hk, vk; k)

)
= d

K−1∑

k=0

log
1

µk
.

If we consider the schedule µk = 1 − α(k + 1)−1, for some fixed α < 1, then we obtain
that this sum scales with αd logK, and this is made dimension independent by choosing α ∼ 1/d.
Curiously, when µk ≡ 1, the sum vanishes. As a final remark, note that one must initialise the pair
(h0, v0) by drawing it from a fixed distribution ρ0, that we assume to have full support on H× Rd.
This excludes the case of a deterministic initial value for the velocity.

Appendix F. Discretised damped Hamiltonian dynamics

Here, we consider a Hamiltonian approach, and hence we introduce d additional variables v, repre-
senting the velocities (momenta) of the parameters h. The idea is to exploit the fact that the joint
density of the pair (h, v) ∈ H2 is conserved under the Hamiltonian flow, a property that is preserved
for discrete time-steps by suitable symplectic integrators (Hairer et al., 2006). In order to solve an
optimisation problem, we can alternate conservative Hamiltonian steps with dissipative ones, which
only involve v and entail an exactly computable change in density.

Let us make things more concrete. For the rest of this section, we denote as ρk the joint density
of (hk, vk). We consider an increasing differentiable map ψ : R → R, such that ψ(0) = 0, and
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we fix η > 0. We denote as Ψη(v) the value at t = η of the solution of ∂tṽt = −ψ(ṽt) satisfying
ṽ0 = vk, where with a slight abuse of notation we are here implying that ψ is acting component-wise
on ṽt ∈ Rd. From (hk, vk), to evaluate (hk+1, vk+1) we first proceed with a dissipative step:

hk+1/2 = hk ; vk+1/2 = Ψη(vk) .

Since this step involves the exact solution of a continuous-time gradient descent evolution, we can
appeal to the usual continuity arguments to show that

log
ρk+1/2(hk+1/2, vk+1/2)

ρk(hk, vk)
=

d∑

i=1

log
ψ(vik)

ψ(vik+1/2)
, (13)

with vi denoting the i-th component of v. Indeed, we see that for each component of ṽt

ψ′(ṽit) =
∂t(ψ(ṽ

i
t))

∂tṽit
= −∂t(ψ(ṽ

i
t))

ψ(ṽit)
= −∂t(logψ(ṽit)) ,

and so ∫ η

0
ψ′(ṽit)dt = log

ψ(ṽi0)

ψ(ṽiη)
= log

ψ(vik)

ψ(vik+1/2)
,

from which (13) follows.
After this dissipative step, we apply a symplectic Hamiltonian integrator, such as

hk+1 = hk+1/2 + ηvk+1 ; vk+1 = vk+1/2 − η∇hCs(hk) .

This step conserves the density:

ρk+1(hk+1, vk+1) = ρk+1/2(hk+1/2, vk+1/2) .

Indeed, we are applying to (hk, vk) the tranformation
(
h
v

)
7→
(
h+ ηv − η2∇Cs(h)

v − η∇Cs(h)

)
,

whose Jacobian
(
1− η2∆Cs(h) η
−η∆Cs(h) 1

)
has determinant 1 for all h and v.

Following the above dynamics for K steps and applying the usual Markov argument we obtain
the following result.

Proposition 12 Consider the damped Hamiltonian dynamics described above, with Cs twice differ-
entiable on the whole H. Let Ψ : R2 → R be a measurable function. Fix K ∈ N and let δ ∈ (0, 1).
With probability at least 1− δ on the random draw (s, h0, v0) ∼ µm ⊗ ρ0, we have

Ψ(LZ(hK),Ls(hK)) ≤ log
ξ

δ
+ log

ρ0(h0, v0)

ρ0(hK , vK)
+

K−1∑

k=0

d∑

i=1

log
ψ(vik)

ψ(vik+1/2)
, (14)

with ξ =
∫
Zm×H2 e

Ψ(Ls̄(h),LZ(h))dµm(s̄)dρ0(h, v).
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As a concrete example, we can choose ψ(v) = ε|v|pv, for p ≥ 0 and ε > 0, where |·| denotes the
absolute value computed component-wise. The case p = 0 corresponds to the standard conformal
damped Hamiltonian dynamics (França et al., 2020), and yields to

hk+1 = hk + ηvk+1 ; vk+1 = e−εηvk − η∇hCs(hk) ,

with a density that increases exponentially as

log
ρk+1(hk+1, vk+1)

ρk(hk, vk)
= dεη .

Note that this last term goes linearly with the dimension of the hypothesis space, a behaviour that is
likely to bring poor bounds in over-parameterised settings. To avoid this, one can choose p > 0 and
get

hk+1 = hk + ηvk+1 ; vk+1 =
vk

(1 + pεη|vk|p)1/p
− η∇hCs(hk) ,

and

log
ρk+1(hk+1, vk+1)

log ρk(hk, vk)
=

(
1 +

1

p

) d∑

i=1

log
(
1 + pεη|vik|p

)
.

With this choice, if the components of v are smaller than 1 (e.g., when they are sampled from a
Gaussian with small variance) the last term in the RHS of (14) will likely have a better behaviour
with d. However, this improvement might come at the price of a larger log ρ0(h0,v0)

ρ0(hK ,vK) , due to the fact
that less dissipative dynamics allow the model to explore a wider region of the hypothesis space,
potentially ending up with a final state (hK , vK) with a ρ0 density much lower than ρ0(h0, v0). It
is unclear so far what is the optimal choice of ψ that can lead to tightest bounds. We leave the
investigation of this open problem as future work.
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Chapter 6

Discussion

This thesis explores several mathematical machine learning theory topics, leveraging the

Gaussian limit of infinite-width networks and information-theoretic approaches to study

generalisation and expressiveness for over-parameterised models.

Regarding expressiveness, Chapter 2 discusses the universality of networks with finite

and infinite depth in the infinite-width limit, showing how the introduction of scaling factors

allows for stable and expressive deep residual architectures. Adding to the theoretical analysis

reported in this thesis, the empirical evidence in Hayou et al. (2021) highlights the potential

practical value of the stable ResNets we introduced, which are shown to outperform their

unscaled counterparts in several image recognition tasks.

Generalisation was the main focus of all the other chapters. Some of the results that

we presented were merely theoretical, as is the case for the abstract framework underlying

the duality between chained and unchained bounds (Chapter 4) and of the disintegrated

PAC-Bayesian bounds that can apply to deterministic algorithms (Chapter 5). On the other

hand, the discussion on the Gaussian PAC-Bayesian training (Chapter 3) is a clear example

of how theoretical results can lead to the development of learning algorithms: the Gaussian

limit that we establish for the infinitely wide shallow stochastic network not only has a direct

application in the PAC-Bayesian method of Section 3.1, but has also later inspired the training

algorithm of Section 3.2, which applies to a much broader range of architectures and achieved

state-of-the-art PAC-Bayesian bounds.

In the rest of this section, we outline some of the open questions and potential avenues for

further research that the analysis in this thesis has uncovered.
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6.1 Limitations and open questions

6.1.1 Stable and expressive ResNets

The expressiveness analysis of Chapter 2 focuses on ReLU networks. However, we believe

that most results would apply to more general settings. For instance, for “regular enough”

non-polynomial activation functions, one would expect that the kernels Ql become universal

after a finite number of layers. Leveraging results from Daniely et al. (2016) and the proof

techniques that we introduced in Section 2.6, one can find a power series for Cl of the form

∑∞
n=0 αn(x · x′)n. For a suitable class of activation functions, we conjecture that after a

few layers the coefficients α will become all strictly positive, a sufficient condition for the

universality of the kernel (Schoenberg, 1942). With a similar approach (maybe mimicking the

proof of Proposition 2), we think it would be possible to get analogous results on any compact

K ⊂ Rp (at least for σb > 0) and we conjecture that introducing depth- and layer-dependent

scaling factors would allow for a stable and fully expressive infinite-depth limit for ResNets.

Another direction for future work is to look at expressiveness from a different perspective.

So far, we have called expressive a process whose support is dense in L2. When the NTK

governs the training dynamics, our definition is enough to ensure that any L2-function can be

approximated with arbitrary precision. However, as extensively discussed in Yang and Salman

(2019), the values of the eigenvalues in the Karhunen-Loève expansion of the Gaussian process

play a crucial role in defining the performance of an algorithm. Indeed, having only a few

eigenvalues consistently larger than the others leads to a process whose samples essentially

lie in some low-dimensional space, potentially requiring a very long time to achieve good

agreement with the data. Conversely, if there are too many dominant eigenvalues of the same

order, the network has a tendency to overfit, as the implicit regularisation is extremely weak. It

would be interesting to study the spectrum of the kernels and its dependence on the activation

function ϕ, which could also contribute to the analysis of the activation function’s impact

on the learning process. Moreover, examining the decay of the eigenvalues could provide

interesting insights about the RKHS of the kernels. Recent research in this area includes Bietti

and Bach (2021), which studies the asymptotic behaviour of some network-induced kernels on

the sphere.
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Finally, another interesting question is what happens to the expressiveness when the

architecture’s width is finite and far from the kernel regime. Several works have studied the

infinite-depth limit for finite-width architectures (e.g., Peluchetti and Favaro, 2020; Li et al.,

2022; Hayou, 2023), showing that there is not a universal law for the output (contrary to the

Gaussian case). However, when the output is non-Gaussian, it is unclear if looking at the

RKHS of the covariance kernels would yield any meaningful information about the expressive

power of the model.

6.1.2 Gaussian PAC-Bayes

In Section 3.1, we establish a Gaussian limit for the output of an infinitely wide stochastic

network. The result is based on a central limit theorem that relies on the independence

of the hidden nodes, a property that is lost for architectures with more than one hidden

layer. A natural question is whether it is possible to describe the limit output distribution

for multi-layer stochastic models. A few empirical tests suggest that, at the initialisation,

the output remains Gaussian, consistently with the fact that the non-diagonal elements of

all the covariance matrices tend to zero as the width grows. However, it is not yet clear if

there is a learning regime where the correlation between hidden nodes stays weak enough to

ensure the Gaussianity of the output throughout the network’s training. In any case, even if a

Gaussian limit could be established, obtaining a practical learning algorithm (as the one that

we propose for the shallow case) would require finding a suitable compressed approximation of

the covariance matrices of the hidden layers, as their large size (n× n for a network of width

n) would be a severe bottleneck for the algorithm’s implementation.

Another interesting question is whether it is possible to describe the learning dynamics of

an infinitely wide stochastic network via the neural tangent kernel. The standard derivation

of the NTK evolution (Jacot et al., 2018) relies on the fact that the optimisation objective

Cs depends on the parameters h only through the network’s output F , making it possible to

expand ∇Cs = ∇F ·∇FCs. Nevertheless, when the learning objective is a PAC-Bayesian bound,

it contains a relative entropy term that depends directly on the trainable hyper-parameters. We

are currently working on establishing alternative NTK dynamics for a “regularised” learning.

It turns out that if the objective is in the form Cs = Ls +
λ
2∥h− ĥ∥2 (where ĥ is the value of
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the parameters at the initialisation), then the evolution is governed by

∂tFi(x) = −λ(Fi(x)− F̂i(x))−
1

m

∑

z′∈s

∑

j

θij(x, x
′)∂Fjℓ(x

′, w) ,

where F̂ is the network’s output at the initialisation. Under suitable assumptions, this result

can be used to study the dynamics of a shallow wide stochastic network from an NTK

perspective. We remark that Huang et al. (2022) also tackled the NTK evolution for the

PAC-Bayesian training of a shallow stochastic network, but used a different approach that

heavily relies on the specific setting considered (i.e., real output, quadratic loss, and training

of the hidden layer only).

6.1.3 Chained generalisation bounds

The general framework of Chapter 4 encompasses several information-theoretic results from

the literature and establishes how each can be associated with a chained bound. However, from

a practical perspective, it is not yet clear how powerful the results brought by this framework

can be. For instance, computing these information-theoretic bounds is not feasible in most

problems of interest: they require evaluating the expectation under the unknown training data

set distribution PS . Yet, upper bounds on the mutual information have allowed for empirical

bounds for some stochastic iterative optimisation algorithms (Bu et al., 2019; Haghifam et al.,

2020; Rodŕıguez-Gálvez et al., 2020; Neu et al., 2021). However, the chaining technique has

not yet been exploited in this context and might lead to interesting results.

Recently, Haghifam et al. (2023) demonstrated that several variants of the mutual infor-

mation bound from Russo and Zou (2019) cannot achieve min-max rates in the context of

stochastic convex optimisation. This raises concerns about whether these results are the right

ones to pursue in order to gain a better understanding of generalisation for over-parameterised

models. In any case, they did not consider the chaining technique or bounds based on

information-theoretic measures other than mutual information. Future research may extend

their analysis to these settings as well.

Finally, Chapter 4 is mainly focused on the backwards-channel (from the data set to the

hypothesis) information-theoretic perspective, which seemingly pairs more naturally with

the chaining on the hypotheses’ space. However, the chained PAC-Bayesian result that we
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present is an example of a forwards-channel bound, as it considers the distribution of the

hypotheses conditioned on the sample. A future direction of study could be to extend our

general framework to include forwards-channel bounds. We believe this should not present

significant technical difficulties and might bring new valuable insights.

6.1.4 Deterministic PAC-Bayes under gradient descent

The final chapter of this thesis (Chapter 5) presents novel bounds that are completely com-

putable but have not yet been adequately tested empirically. Future research will involve

conducting experiments on benchmark learning tasks to draw a deeper comparison between

our results and existing literature. However, the smoothness condition, which is necessary for

our bound to hold, may be difficult to check for general settings. Thus, further investigation is

needed to identify more easily verifiable assumptions.

Another direction for research would involve focusing on the infinite width limit, where

the network’s output behaves as a Gaussian process at the initialisation and is described by

the neural tangent kernel dynamics during the training. In this setting, the results from Jacot

et al. (2020), characterising the network’s Laplacian, could contribute to the analysis of our

bounds. Moreover, one could adopt a functional perspective by examining how the output

density evolves. While PAC-Bayesian bounds in expectation for Gaussian processes exist (e.g.,

Seeger, 2002), we are not aware of any disintegrated versions of them. For this approach, one

major challenge is the need for well-defined densities of distributions on functional spaces,

which often requires a high degree of technical sophistication.

Lastly, it should be noted that the bounds proposed in Chapter 5 explode as the training

time approaches infinity. One potential solution to this problem is introducing noise to the

training dynamics (e.g., stochastic gradient Langevin dynamics), which would cause the output

density to converge towards the Gibbs posterior. However, this would also make evaluating

the final density for a finite time horizon T much more challenging and may render the bound

not explicitly computable. An alternative approach to achieve finite generalisation bounds

would be to impose additional regularity assumptions on the optimisation objective. For

example, one could use our results to obtain a finite bound for a time T ′ and then leverage

other techniques to analyse how the population loss for hT ′ differs from that of hT , for any

arbitrarily large time horizon T .



Bibliography

P. Alquier. PAC-Bayesian bounds for randomized empirical risk minimizers. Mathematical

Methods of Statistics, 17, 2008.

P. Alquier. User-friendly introduction to PAC-Bayes bounds. Preprint arXiv:2110.11216, 2021.

P. Alquier and G. Biau. Sparse single-index model. Journal of Machine Learning Research,

14, 2013.

P. Alquier and K. Lounici. PAC-Bayesian bounds for sparse regression estimation with

exponential weights. Electronic Journal of Statistics, 5, 2010.

P. Alquier, J. Ridgway, and N. Chopin. On the properties of variational approximations of

Gibbs posteriors. Journal of Machine Learning Research, 17, 2016.

J.M. Antognini. Finite size corrections for neural network Gaussian processes. ICML Workshop,

2019.

S. Arora, S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with

an infinitely wide neural net. NeurIPS, 2019.

A.R. Asadi and E. Abbe. Chaining meets chain rule: Multilevel entropic regularization and

training of neural nets. Journal of Machine Learning Research, 21, 2020.
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